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Abstract. We solve the problem of a Bose or Fermi gas in d-dimensions trapped by δ ≤ d mutually
perpendicular harmonic oscillator potentials. From the grand potential we derive their thermodynamic
functions (internal energy, specific heat, etc.) as well as a generalized density of states. The Bose gas
exhibits Bose-Einstein condensation at a nonzero critical temperature Tc if and only if d + δ > 2, along
with a jump in the specific heat at Tc if and only if d + δ > 4. Specific heats for both gas types precisely
coincide as functions of temperature when d+δ = 2. The trapped system behaves like an ideal free quantum
gas in d + δ dimensions. For δ = 0 we recover all known thermodynamic properties of ideal quantum gases
in d dimensions, while in 3D for δ = 1, 2 and 3 one simulates behavior reminiscent of quantum wells,
wires and dots, respectively. Good agreement is found between experimental critical temperatures for the
trapped boson gases 87

37Rb, 7
3Li, 85

37Rb, 4
2He, 41

19K and the known theoretical expression which is a special
case for d = δ = 3, but only moderate agreement for 27

11Na and 1
1H.

PACS. 05.30.Fk Fermion systems and electron gas – 05.30.Jp Boson systems – 03.75.Fi Phase coherent
atomic ensembles; quantum condensation phenomena – 05.70.Ce Thermodynamic functions and equations
of state

1 Introduction

Ultra-cooled bosonic clouds trapped in a harmonic os-
cillator (HO) external potential mimic the behavior of
bosons confined by realistic potentials as in opto-magnetic
traps in the region of small oscillations. Bose-Einstein con-
densation (BEC) has been now observed with 87

37Rb [1],
27
11Na [2], 7

3Li [3], 1
1H [4], 85

37Rb [5], 4
2He [6] and 41

19K [7] neu-
tral bosonic atoms, the upper and lower prefixes being
the nuclear mass (number of nucleons in the nucleus) and
proton numbers, respectively.

BEC has also been observed in lower dimensions.
Görlitz et al. [8] report BEC of 23

11Na atoms in 1D or 2D;
Schreck et al. [9] observe it with 7

3Li atoms in 1D; and
Burger et al. [10] study the phase transition in a cloud of
87
37Rb atoms in quasi-2D.

Trapped quantum gases have been discussed in gen-
eral by several authors [11–20]. The first calculation of
the properties of a Bose gas in an isotropic harmonic trap
was reported by de Groot et al. [11]; Bagnato et al. [12] re-
ported theoretical thermodynamic properties of a Bose gas
confined by a generic power-law potential trap; Ketterle
et al. [13] and Pathria [16] considered the BEC of a fi-
nite number (∼105) of particles confined in a 3D HO and
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concluded that the thermodynamic-limit approximation
is good; Petrov et al. [17,18] discuss BEC in quasi-2D
trapped gases and study phase-coherence properties in 3D.
For a review of BEC in trapped dilute Bose gases, see ref-
erence [20].

Trapped Fermi gases have also gained interest as pos-
sible precursors of a paired-fermion condensate at lower
temperatures [21–23], and have been studied experimen-
tally in ultracold fermionic clouds, e.g., with 40

19K neutral
atoms in opto-magnetic traps [24–27].

Finally, the discovery of the quasi-2D superconduc-
tors such as the cuprates [28–30] or the quasi-1D super-
conductors such as the organo-metallics (or Bechgaard
salts) [31–33] have also motivated studying confinement
of quantum gases.

In this paper we describe boson or fermion HO trap-
ping in order to better understand these lower-dimensional
structures. Since the system dimensionality modifies the
nature of BEC, or even precludes it, we seek an exact and
complete solution in the thermodynamic limit to the non-
interacting Bose or Fermi gas problem in d-dimensions
constrained by a number δ of mutually-perpendicular HO
external potentials. We show that it is possible to map this
problem into that of a free gas but in a higher d+δ dimen-
sionality. For example, confinement [34–37] in 3D by a 1D
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HO potential collapses the system to a quasi-2D “slab”
reminiscent of a quantum well. Confinement by a 2D (or
3D) HO potential leads to a quantum wire-like quasi-1D
(or quantum dot-like quasi-0D) system.

In Section 2 we calculate the thermodynamic (or
grand) potential for the non-interacting Bose or Fermi
gas in d-dimensions with δ mutually-perpendicular HO
traps. In Section 3 we deduce the thermodynamic proper-
ties of these systems and extract a generalized density of
states, find their thermodynamic limit, and exhibit their
mapping to free gases in higher dimensions. In Section 4
we specialize to a trapped boson gas and obtain its criti-
cal BEC temperature, its condensate fraction and specific
heat cusp or jump singularity. We also summarize findings
for a 3D boson gas trapped by 1, 2 or 3 HO’s. In Section 5
we specialize to a trapped fermion gas. Section 6 contains
our conclusions.

2 A d-dimensional quantum gas trapped
by δ ≤ d HOs

We consider a d-dimensional noninteracting boson or
fermion gas trapped by δ = 1, 2, ..., d mutually-
perpendicular harmonic-oscillator potentials, the particles
otherwise moving freely in the remaining d− δ directions.
The Hamiltonian for a single boson or fermion of mass m

is H =
∑d

i=1 p2
i /2m + 1

2 m ω2
∑d

j=d−δ+1 r2
j and its eigen-

values are

ε{ni,νj} =
2π2

�
2

mL2

d−δ∑
i=1

n2
i + �ω

δ∑
j=1

(νj + 1/2) (1)

where L is the size of the “box” associated with the d− δ
free dimensions and where ni = 0, ±1, ±2, ... while νj =
0, 1, 2, ... Since ki ≡ (2π/L)ni and defining the variable
lj ≡ �ωνj , (1) can then be rewritten as

ε{ki,lj} =
�

2

2m

d−δ∑
i=1

k2
i +

δ∑
j=1

lj + �ωδ/2. (2)

The grand potential Ω(T, V, µ) can then be written in gen-
eralized form (see p. 134 of [38]) as

Ω(T, V, µ) = U − TS − µN

= δa,−1Ω0 − kBT

a

′∑
{ki,lj}

ln
[
1 + ae−β(ε{ki,lj}−µ)

]
, (3)

where the primed summation sign excludes the ki = 0 = lj
terms in the boson case. Here V ≡ Ld−δx2δ

0 is a con-
finement volume with x0 ≡ √

�/mω the oscillator length
parameter, U the internal energy, T the absolute tem-
perature, S the entropy, µ the chemical potential, N the
number of particles, a = −1 for bosons, a = 1 for fermions
and a → 0 in the classical case, δ is the Kronecker delta
function, and β ≡ 1/kBT . In the case of a Bose gas it

is convenient to separate out in the sum (3), the low-
est energy state from the excited states. We thus defined
Ω0 ≡ −(kBT/a)ln[1+ae−β(�ωδ/2−µ)] corresponding to the
ground state contribution to the grand potential. Using
the logarithm expansion ln(1 + x) = −∑∞

l=1(−x)l/l valid
for |x|< 1, (3) becomes

Ω(T, V, µ) = δa,−1Ω0 +
kBT

a

′∑
{ki,lj}

∞∑
l=1

(−ae−β(ε{ki,lj}−µ))l

l

= δa,−1Ω0 +
kBT

a

∞∑
l=1

(−aeβµ)l

l

×
′∑

{ki,lj}
e−βl[(�2/2m)

∑ d−δ
i=1 k2

i +
∑δ

j=1 lj+�ωδ/2].

(4)

In the continuous limit where �
2/mL2 � kBT and �ω �

kBT (level spacing negligible compared to temperature),
the summations over ki and lj can be approximated by
integrals, namely

∑
ki

→ (2s+1)(L/2π)d−δ
∫

dd−δki and∑
lj
→ (2s + 1)(�ω)−δ

∫
dδlj . Thus

Ω(T, V, µ) = δa,−1Ω0 +
kBT (2s+ 1)(L/2π)d−δ(�ω)−δ

a

×
∞∑

l=1

(−aeβµ)l

l

∫ ∞

−∞
dk1 e−βl(�2/2m)k2

1

×
∫ ∞

−∞
dk2 e−βl(�2/2m)k2

2 ...

∫ ∞

−∞
dkd−δ e−βl(�2/2m)k2

d−δ

×
∫ ∞

0

dl1 e−βl(l1+1/2)...

∫ ∞

0

dlδ e−βl(lδ+1/2). (5)

where s is the particle spin, with fermions having s = 1/2
and bosons s = 0. The integrals are elementary and give

Ω(T, V, µ) =

δa,−1Ω0 +
2s + 1

a
β−[(d+δ)/2+1]

(
mL2

2π�2

)(d−δ)/2

× (�ω)−δ
∞∑

l=1

[−aeβ(µ−δ�ω/2)]l

l (d+δ)/2+1
· (6)

The infinite sum is expressible in terms of the polylog-
arithm function Liσ(z) (designated by PolyLog [σ, z] in
Ref. [39]), since

−aLiσ(−az) ≡ 1
Γ (σ)

∫ ∞

0

dx
xσ−1

z−1ex + a

= −1
a

∞∑
l=1

(−az)l

lσ
· (7)

For σ ≥ 1 this reduces to Bose-Einstein (BE) integrals
gσ(z) when a = −1 and to Fermi-Dirac (FD) integrals
fσ(z) when a = 1, as defined in Appendices D and E of
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reference [38], and z ≡ eβµ is the fugacity. Using (7) in (6)
leaves

Ω (T, V, µ) = δa,−1Ω0 − 1
a

Ad+δ

β(d+δ)/2+1
Li(d+δ)/2+1(−az1)

(8)
where

Ad+δ ≡ 2s + 1
(�ω)δ

(
mL2/2π�

2
)(d−δ)/2

(9)

and
z1 ≡ ze−βδ�ω/2 = eβ(µ−δ�ω/2). (10)

For d � 2 the problem with different frequencies ω in
different directions will be treated elsewhere, as well as
inclusion of interaction effects.

3 Thermodynamic properties

From (8) it is possible to find the thermodynamic proper-
ties for a monatomic gas using the relation

dΩ = −SdT − PdV − Ndµ. (11)

In this representation the grand potential Ω(T, V, µ) =
−PV is the fundamental relation leading to all the ther-
modynamic properties of the system since

N = −
(

∂Ω

∂µ

)
T,V

, S = −
(

∂Ω

∂T

)
V,µ

,

P = −
(

∂Ω

∂V

)
T,µ

= −Ω

V
· (12)

Next, consider only the excited states as the ground state
will be treated separately for the boson gas. Using (8)
and (12) the particle number is given by

N = − Ad+δ

aβ(d+δ)/2
Li(d+δ)/2(−az1), (13)

where we used the relation(
∂Li(d+δ)/2+1(−az1)

∂µ

)
T,V

= β Li(d+δ)/2(−az1). (14)

The entropy follows on substituting (8) in the first equa-
tion of (12), giving

S/kB = −[(d + δ)/2 + 1]

× Ad+δ

aβ(d+δ)/2
Li(d+δ)/2+1(−az1) − N ln z1, (15)

where we used the number equation (13) and the relation

(
∂Li(d+δ)/2+1(−az1)

∂T

)
V,µ

=

1
z1

(
∂z1

∂T

)
V,µ

Li(d+δ)/2(−az1). (16)

Thus (15) becomes

S/NkB =
[(d + δ)/2 + 1]Li(d+δ)/2+1(−az1)

Li(d+δ)/2(−az1)
− ln z1. (17)

The internal energy is obtained from (see p. 159 of
Ref. [38])

U(T, V ) = −kBT 2

[
∂

∂T

(
Ω

kBT

)]
V, z

. (18)

Substituting (8) here we find that

U(T, V ) = N
�ωδ

2
− d + δ

2
Ω, (19)

and since Ω = −PV then

PV =
2

d + δ
(U − N�ωδ/2). (20)

Using (9) and (13) the internal energy (19) can be rewrit-
ten as

U(T, V )
NkBT

=
[
β

�ωδ

2
+

d + δ

2
Li(d+δ)/2+1(−az1)
Li(d+δ)/2(−az1)

]
· (21)

The specific heat at constant volume CV then follows from

CV =
[

∂

∂T
U(T, V )

]
N,V

(22)

and gives

Cv
NkB

=
d + δ

2

[(
d + δ

2
+ 1

)
Li(d+δ)/2+1(−az1)
Li(d+δ)/2(−az1)

−d + δ

2
Li(d+δ)/2(−az1)

Li(d+δ)/2−1(−az1)

]
(23)

where we have used the relation

1
z1

(
∂z1

∂T

)
N,V

= −kBβ
d + δ

2
Li(d+δ)/2(−az1)

Li(d+δ)/2−1(−az1)
(24)

which can be extracted from the (vanishing) derivative
with respect to T of the number equation (13). Since

z1 ≡ eβ(µ−δ�ω/2)−−→
T→∞

0,

equation (7) then implies that −aLiσ(−az1) → z1, with
σ = (d + δ)/2 − 1, (d + δ)/2 or (d + δ)/2 + 1. Then (23)
reduces to

Cv
NkB

−−→
T→∞

d + δ

2

[
1 + a

z1

2(d+δ)/2+1

(
1 − d + δ

2

)]
, (25)

which for d = δ = 3 gives the classical Dulong-Petit law for
crystals when T → ∞ or z1 = 0, while for δ = 0 we obtain
the classical limit for ideal gases of bosons or fermions.
The first correction to unity in (25) for d+ δ < 2 is clearly
negative for a = −1 (bosons) and positive for a = +1
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(fermions), while for d + δ > 2 it is precisely the opposite.
Thus we obtain known results obtained for ideal gases for
δ = 0 (bosons [40], fermions [41]).

We now generalize the results obtained in refer-
ences [42–44] dealing with the identity of specific heats
as a function of T of ideal Bose and Fermi gases in two
dimensions. This identity is obtained here more gener-
ally for d + δ = 2. If both gases are at the same tem-
perature and have the same number density nB = nF,
where nB ≡ NB/V is the Bose and nF ≡ NF/V is the
Fermi density, taking d + δ = 2 in (13) gives

nB =
A2

V

Li1(z1B)
β

= −A2

V

Li1(−z1F)
β

= nF, (26)

where as before V was defined just below (3), z1B ≡
eβ(µB−�ωδ/2) and z1F ≡ eβ(µF−�ωδ/2) are the fugacities
with µB and µF the chemical potentials for bosons and
fermions, respectively. Using Landen’s relations [43] the
polylogarithm functions Liσ(z ) satisfy Li1(x ) = −Li1(y)
and Li2(x ) = −Li2(y) − 1/2 [Li1(y)]2, where x → y sat-
isfy the Euler transformation y ≡ −x/(1 − x) with x real
<1. Substituting these relations in (26), we obtain

z1F = z1B/ (1 − z1B) . (27)

The energy of the Bose gas U(T, V )B taking a = −1
in (21) with d + δ = 2, is

U(T, V )B
NkBT

=
[
β

�ωδ

2
+

Li2(z1B)
Li1(z1B)

]
· (28)

Substituting (27) in (28) we obtain

U(T, V )B
N

=
[

�ωδ

2
+ β−1 Li2(−z1F)

Li1(−z1F)
+ 1/2β−1Li1(−z1F)

]

=
[
U(T, V )F

N
+ 1/2β−1Li1(−z1F)

]
, (29)

where U(T, V )F is the Fermi gas energy. Substituting (26)
in (29) the last term in (29) is proportional to nF. Hence,
the energies of the Bose and Fermi gases differ only by a
T -independent term and so, from (22), the specific heats
for boson and fermion gases precisely coincide when d +
δ = 2, or

[Cv(N, T )]B = [Cv(N, T )]F . (30)

3.1 Mapping to higher-d and equivalent mass

Using (7) and (10), equation (13) can be rewritten as

N =
Ad+δ

Γ [(d + δ)/2]

∫ ∞

0

dε
ε(d+δ)/2−1

z−1
1 eβε + a

=
Ad+δ

Γ ([d + δ] /2)

∫ ∞

�ωδ/2

dε
(ε − �ωδ/2)(d+δ)/2−1

eβ(ε−µ) + a

≡
∫ ∞

�ωδ/2

dεN (ε)n (ε) , (31)

where n (ε) =
[
eβ(ε−µ) + a

]−1
is the BE (a = −1) or FD

(a = +1) distribution, and N (ε) is the density of states
(DOS). Substituting Ad+δ from (9) into (31) we identify
this generalized DOS N (ε) as

N (ε) = (2s + 1)
(

2π�

mωL2

)δ (
mL2

2π�2

)(d+δ)/2

× (ε − �ωδ/2)(d+δ)/2−1

Γ ([d + δ] /2)
· (32)

If δ = 0 we recover the DOS for a free gas confined in a
“box” of sides L

N0(ε) = (2s + 1)
(

mL2

2π�2

)d/2
εd/2−1

Γ (d/2)
· (33)

Comparing (32) with (33) in (d + δ)-dimensions

N0(ε) = (2s + 1)
(

mL2

2π�2

)(d+δ)/2
ε(d+δ)/2−1

Γ ([d + δ] /2)
, (34)

we observe that except for the (negligible) zero-point en-
ergy of �ωδ/2, (32) and (34) are identical if in (32) an
equivalent particle mass m∗ defined by

m∗ =
(
h/ωL2

)2δ/(d+δ)
m(d−δ)/(d+δ) (35)

is introduced. Then

N (ε) = (2s + 1) (m∗L2/2π�
2)(d+δ)/2 ε(d+δ)/2−1

Γ ([d + δ] /2)
· (36)

In general, therefore, the effect of trapping a quantum gas
renormalizes the particle mass m → m∗ in accordance
with (35) and increases the dimensionality d → d + δ by
the number of oscillators.

3.2 Thermodynamic limit

Substituting the coefficient Ad+δ from (9) into (31) gives

N = (2s + 1)
( m

2π�2

)(d+δ)/2
(

2π�

mω

)δ

× x−2δ
0 V

Γ ([d + δ] /2)

∫ ∞

�ωδ/2

dε
(ε − �ωδ/2)(d+δ)/2−1

eβ(ε−µ) + a
(37)

the volume V being defined just below (3). The proper
thermodynamic limit then holds if N → ∞, L → ∞,
ω → 0 while keeping the ratio N/V = N/Ld−δx2δ

0 ∝
Nωδ/Ld−δ = constant. This result was obtained for d = 3
and δ = 3 in reference [20]. For a free gas, i.e., δ = 0, we
recover the usual thermodynamic limit N → ∞, L → ∞
with N/Ld = constant.
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4 Trapped bosons

In this section we study a system of N noninteracting
bosons in d dimensions trapped by δ (≤ d) mutually-
perpendicular harmonic oscillators, and otherwise free in
the remaining d − δ directions. Let the boson number be

N = N0(T ) + Nk>0(T ) (38)

were N0(T ) = − (∂Ω0/∂µ)T,V is the number of bosons in
the lowest energy state, with Ω0 defined just below (3),
while Nk>0(T ) is given by (13) with a = −1. Thus

N = N0(T ) +
Ad+δ

β(d+δ)/2
g(d+δ)/2(z1), (39)

where from (7) we introduce the Bose function gσ(z) which
for z = 1 and σ > 1 is identical to the Riemann Zeta
function ζ(σ).

Since for T > Tc, N0(T ) is negligible compared with N ,
while for T < Tc, N0(T ) is a sizeable fraction of N, at
T = Tc, N0(Tc) 	 0. The critical temperature Tc of BEC
is found from the condition Nk>0(Tc, z1 = 1) 	 N , so that
(39) leads to

kBTc =
[

N

Ad+δg(d+δ)/2(1)

]2/(d+δ)

· (40)

From (39) and (40) one obtains for the condensate frac-
tion,

N0(T )/N ≡ 1 − Nk>0(T )/N (Tc)

= 1 − (T/Tc)
(d+δ)/2

. (41)

From (7) the infinite series gσ(1) diverges for σ ≤ 1 im-
plying from (40) that BEC will occur with critical tem-
perature Tc 
= 0 if and only if (d + δ)/2 > 1. For δ = 0
and d = 3 with n ≡ N/L3 (40) reduces to the familiar
formula Tc 	 3.31�

2n2/3/mkB of “ordinary” BEC, since
g3/2(1) = ζ(3/2) 	 2.612. On the other hand, substitut-
ing δ = 3 and d = 3 in (40) and (9) we recover the result
obtained in [20], since ζ(3) 	 1.202,

kBTc 	 0.94�ωN1/3. (42)

An apparent counterexample of our no-BEC result for d =
δ = 1 is reported in [13], but can be explained by taking
d = 2 and δ = 1.

The specific heat follows from (23) for a = −1 and
from −aLiσ(−az) [σ, z1] = gσ(z1). We obtain for T > Tc

Cv
NkB

=
d + δ

2

[(
d + δ

2
+ 1

)
g(d+δ)/2+1(z1)
g(d+δ)/2(z1)

−d + δ

2
g(d+δ)/2(z1)

g(d+δ)/2−1(z1)

]
, (43)

while for T ≤ Tc, z1 = 1 so that it follows directly
from (21) and (22) that

Cv
NkB

=
d + δ

2

(
d + δ

2
+ 1

)

× (T/Tc)
(d+δ)/2 g(d+δ)/2+1(1)

g(d+δ)/2(1)
· (44)

��� ��� ���

���

���

���

��� ���

���

δ δ

δ

�
��

�

�����δ

Fig. 1. Condensate fraction for a 3D boson gas trapped by
δ = 1, 2 or 3 harmonic oscillators.

The specific heat jump at Tc is then

∆Cv
NkB

=
CV (T−

c ) − CV (T +
c )

NkB

=
(

d + δ

2

)2 g(d+δ)/2(1)
g(d+δ)/2−1(1)

, (45)

which is nonzero if and only if (d + δ) > 4, since gσ(1)
diverges for σ ≤ 1.

The entropy for the boson case a = −1 follows
from (15). Since −aLiσ(−az) [σ, z1] = gσ(z1) and using
(13), in terms of the critical temperature Tc it becomes

S/NkB = [(d + δ)/2 + 1]

× (T/Tc)
(d+δ)/2 g(d+δ)/2+1(z1)

g(d+δ)/2(1)
− ln z1. (46)

For T ≤ Tc, z1 = 1, so that this becomes

S/NkB = [(d + δ)/2 + 1] (T/Tc)
(d+δ)/2

× g(d+δ)/2+1(1)
g(d+δ)/2(1)

−−→
T→0

0

which complies with the third law of thermodynamics.
For 3D bosons trapped by 1, 2 or 3 harmonic oscillators

we summarize our results in Table 1. Since for z1 = 1 the
series gσ(z1) for σ > 1 coincides with ζ(σ), we require the
following values: ζ(3/2) 	 2.612, ζ(2) = π2/6 	 1.645,
ζ(5/2) 	 1.341, ζ(3) 	 1.202, ζ(3/2) 	 1.127, and ζ(4) =
π4/90 	 1.082.

In Figure 1 we show the condensate fraction for
δ = 1, 2 and 3. In Figure 2 shows their internal energy;
specific heat at constant volume (having a jump discon-
tinuity if and only if d + δ > 4); entropy and chemical
potential.

An ideal Bose gas in d-dimensional space trapped by
δ ≤ d harmonic oscillators has its geometric dimension-
ality effectively reduced. The BEC temperature expres-
sion (40) for a trapped noninteracting Bose gas shows that
BEC can occur if and only if (d + δ) /2 > 1 as otherwise
the term g(d+δ)/2(1) diverges, forcing Tc to vanish. Thus
BEC is possible in 2D provided δ ≥ 1.

Experiments with dilute boson gases confined in the
realistic confining potentials of opto-magnetic traps in the
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Table 1. Thermodynamic quantities, as defined in text, for a 3D boson gas trapped by δ = 3, 2, 1 harmonic oscillators, with
the oscillator length parameter x0 ≡ (�/mω)1/2.

δ 3 2 1

N (ε)
1

2
(�ω)−3(ε − 3

2
�ω)2

23/2

3

L

πx0
(�ω)−5/2(ε − �ω)3/2 L2

2πx2
0

(�ω)−2(ε − 1

2
�ω)

N0/N 1 − (
T

Tc
)3 1 − (

T

Tc
)5/2 1 − (

T

Tc
)2

Tc
�ω

kB
[

N

ζ(3)
]1/3 �ω

kB

[
(2π)1/2N

ζ(3/2)

x0

L

]2/5
�ω

kB

[
2πN

ζ(2)

x2
0

L2

]1/2

U/NkBT
3

2

�ω

kBT
+ 3(

T

Tc
)3

g4(z1)

ζ(3)

�ω

kBT
+

5

2
(

T

Tc
)5/2 g7/2(z1)

ζ(5/2)

1

2

�ω

kBT
+ 2(

T

Tc
)2

g3(z1)

ζ(2)

Cv/NkB (T < Tc) 12

(
T

Tc

)3
ζ(4)

ζ(3)

35

4

(
T

Tc

)5/2
ζ(7/2)

ζ(3/2)
6

(
T

Tc

)2
ζ(3))

ζ(2)

Cv/NkB (T > Tc) 12
g4(z1)

g3(z1)
− 9

g3(z1)

g2(z1)

35

4

g7/2(z1)

g5/2(z1)
− 25

4

g5/2(z1)

g3/2(z1)
6
g3(z1)

g2(z1)
− 4

g2(z1)

g1(z1)

∆Cv/NkB 9
ζ(3)

ζ(2)
� 6.57

25

4

ζ(5/2)

ζ(3/2)
� 3.20 0

PV
1

3
(U − 3

2
N�ω)

2

5
(U − N�ω)

1

2
(U − 1

2
N�ω)

S/NkB 4

(
T

Tc

)3
g4(z1)

ζ(3)
− lnz1

7

2

(
T

Tc

)5/2 g7/2(z1)

ζ(5/2)
− lnz1 3

(
T

Tc

)2
g3(z1)

ζ(2)
− lnz1
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Fig. 2. Thermodynamic variables as functions of temperature T , as defined in text, for a 3D boson gas trapped by δ = 1, 2 or
3 harmonic oscillators.

region of small oscillations where (BEC) has been ob-
served, can be viewed as a Bose gas in 3D with δ = 3.
Table 2 shows some parameters in bosonic vapor systems
where BEC has thus far been observed. The ratio in last
row shows the kind of agreement obtained between the
experimental Tc and calculated T0 (42) where the good
agreement found by Ensher et al. [45] for 87

37Rb is also ob-
tained in this paper for 7

3Li, 85
37Rb, 4

2He and 41
19K. However,

for 27
11Na and 1

1H we find only moderate agreement.

5 Trapped fermions

Finally, consider a system of N noninteracting fermions in
d dimensions trapped by δ (≤ d) mutually perpendicular
harmonic oscillators, and otherwise free in the remaining
d − δ directions. Since

[
eβ{ε−µ(T )} + 1

]−1

−−→
T→0

θ (EF − ε) ,

with µ (0) ≡ EF ≡ �
2k2

F/2m the Fermi energy, kF being
the Fermi wavenumber, we see from (31) with a = +1 that

N −−→
T→0

2Ad+δ/ (d + δ)Γ ([d + δ] /2)

× (EF − �ωδ/2)(d+δ)/2

	 [2Ad+δ/ (d + δ)Γ ([d + δ] /2)] E(d+δ)/2
F (47)

where in the last step we neglected �ωδ/2 compared
with EF. The fermion number density with s = 1/2, if
δ = 0 is obtained [41,46], substituting (9) in (47), as

n ≡ N

Ld
=

kd
F

2d−2πd/2d Γ (d/2)
, (48)

which reduces to the familiar results n = 2kF/π, k2
F/2π

and k3
F/3π2 for d = 1, 2 and 3, respectively.

Recalling that −Liσ(−z) ≡ fσ(z) which are the FD
integrals, the internal energy from (21) can be expressed as

U(T, V )
NkBT

=
[
β

�ωδ

2
+

d + δ

2
f(d+δ)/2+1(z1)
f(d+δ)/2(z1)

]
· (49)
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Table 2. Some experimental parameters associated with trapped bosonic gases in which BEC has been observed to date, N
and N0 being the number of atoms in the initial cloud and in the condensate, respectively; Tc the BEC transition temperature;
n the boson number density, ν an average trap frequency; and T0 the BEC critical temperature calculated with (42) for a
harmonically trapped ideal boson gas.

Boson 87
37Rb 27

11Na 7
3Li 1

1H
85
37Rb 4

2He 41
19K

Year/Ref. 1995 [45] 1995 [2] 1995 [3] 1998 [4] 2000 [5] 2001 [6] 2001 [7]

N 4 × 104 5 × 105 2 × 105 - - 8 × 106 -

Nc 2 × 103 - - 109 104 5 × 105 104

Tc (µK) 0.28 2 0.4 50 0.015 4.7 0.16

n (cm−3) - 1.5 × 1014 2 × 1012 4.8 × 1015 1 × 1012 3.8 × 1013 6 × 1011

ν (Hz) 186.5 345.62 145.94 786.97 12.8 515 232.17

T0 (µK) 0.29 1.4 0.4 36 0.012 4.6 0.12

Tc/T0 0.97 1.4 1 1.4 1.25 1.02 1.33
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Fig. 3. Same as Figure 2 but for a fermion gas.

Table 3. Thermodynamic quantities, as defined in text, for a 3D fermion gas trapped by δ = 1, 2, 3 harmonic oscillators.

δ 3 2 1

N
2

3
(�ω)−3E3

F

4

5

(
mL2

2π�2

)1/2

(�ω)−2E
5/2
F

(
mL2

2π�2

)
(�ω)−1E2

F

U/NkBT
3�ω

2kBT
+

3f4(z1)

f3(z1)

�ω

kBT
+

5f7/2(z1)

2f3/2(z1)

�ω

2kBT
+

2f3(z1)

f2(z1)

CV /NkB 12
f4(z1)

f3(z1)
− 9

f3(z1)

f2(z1)

35

4

f7/2(z1)

f5/2(z1)
− 25

4

f5/2(z1)

f3/2(z1)
6
f3(z1)

f2(z1)
− 4

f2(z1)

f1(z1)

PV/NkBT
f4(z1)

f3(z1)

f7/2(z1)

f5/2(z1)

f3(z1)

f2(z1)

S/NkB
4f4(z1)

f3(z1)
− lnz1

7f7/2(z1)

2f5/2(z1)
− lnz1

f3(z1)

f2(z1)
− lnz1

Using (47) and the asymptotic expansion for fd/2(z) for
T → 0 (Ref. [41], Appendix B), (49) becomes

U(T ) − N�ωδ/2
NkBTF

−−→
T→0

(d + δ)
(d + δ + 2)

[
1 + (d + δ + 2)

π2

12

(
T

TF

)2
]
· (50)

From (23) the specific heat as T → 0 is then

CV (T )
NkB

−−→
T→0

(d + δ)
π2

6

(
T

TF

)
· (51)

Note that this is identical for (d + δ) = 2 with the T → 0
limit in the Bose expression (43), since there vanishing

Tc makes µ1 ≡ (µ − �ωδ/2) → 0, so that z1 → 1,
while g0(1) → ∞, and (39) was used along with (47)
for nB = nF. Clearly, this is a special case of the general
result (30). In the same T → 0 limit the fermion entropy
S =

∫ T

0 dT ′CV (T ′)/T ′ using (51) immediately becomes

S/NkB −−→
T→0

(d + δ)
π2

6

(
T

TF

)
(52)

which again is in agreement with the third law of thermo-
dynamics. These results are displayed in Figure 3. Table 3
summarizes results for 3D fermions with δ = 1, 2, 3 har-
monic oscillators.
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6 Conclusions

After constructing the grand potential, thermodynamic
properties were determined along with the densities of
states for ideal boson and fermion gases in d dimensions
trapped by δ mutually perpendicular harmonic oscilla-
tors (HO). Trapping maps the system into a free gas with
a new dimensionality increased by the number of trapping
oscillators, specifically, d → d + δ, and renormalizes the
particle masses m → m∗ according to (35). In particu-
lar, we detailed how 3D boson and fermion gases trapped
by 1, 2 or 3 mutually-perpendicular HO wells map into a
free gas in 4, 5 and 6 dimensions, respectively. Also, it was
found that in a trapped boson gas Bose-Einstein conden-
sation with critical temperature Tc 
= 0 occurs if and only
if d + δ > 2 so that for δ ≥ 1, d need not be restricted
to d > 2. Finally, for d = δ = 3 the critical temperature
formula reproduces the experimental values of 87

37Rb 7
3Li,

85
37Rb, 4

2He and 41
19K quite well, but only moderately so for

27
11Na and 1

1H.
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(México) # 27828 E. MG thanks CONACyT for a scholarship.

References

1. M.H. Anderson, J.R. Ensher, M.R. Wieman, E.A. Cornell,
Science 269, 198 (1995)

2. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J.
van Drutten, D.S. Durfee, D.M. Kurn, W. Ketterle,
Phys. Rev. Lett. 75, 3969 (1995)

3. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys.
Rev. Lett. 75, 1687 (1995)

4. D.G. Fried, T.C. Killian, L. Willmann, D. Landhuis, S.C.
Moss, D. Kleppner, T.J. Greytak, Phys. Rev. Lett. 81,
3811 (1998)

5. S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell,
C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)

6. F. Pereira Dos Santos, J. Léonard, Junmin Wang, C.J.
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