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The Effect of Torsion Stress on the Circumferential
Permeability of CoFeBSi Amorphous Wires

I. Betancourt and R. Valenzuela

Abstract—In this paper, a domain model and the complex in-
ductance formalism are employed to study the effect of torsion
stress on the low-frequency magnetoimpedance (MI) response of
CoFeBSi amorphous wires (125 m in diameter). In particular,
the torsional dependence of the calculated circumferential perme-
ability is found to be very sensitive to the wire’s scalar per-
meability dc which, in turn, depends inversely on the wire’s in-
duced anisotropy . Calculated exhibited a marked increase
for increased dc and a decrease for reduced dc . Experimental
spectroscopic plots of under various torsion stresses (counter-
and clockwise-oriented) which resulted in various helically induced
anisotropies are consistent with an enhancement/counterbal-
ancing effect of through the addition/subtraction of to .

Index Terms—Complex inductance, induced anisotropy, magne-
toimpedance, torsion stress.

I. INTRODUCTION

M AGNETOIMPEDANCE (MI) refers to the variations in
the impedance response of soft magnetic materials (sub-

jected to a high-frequency current of small amplitude) when
a dc magnetic field is applied. Considerable interest has been
raised in MI materials due to their sensing technology applica-
tions [1]. This phenomenon is large in vanishing negative mag-
netostriction amorphous wires because of their particular do-
main structure: an axially oriented core, surrounded by circum-
ferential domains (bamboo-like structure). This domain config-
uration is afforded by the wire’s induced anisotropy, which
arises from the coupling between magnetostriction and internal
stresses during the fabrication process [2], [3]. Due to this mag-
netoelastic coupling, MI is strongly sensitive to both tensile
stress [4] and torsional strain [5]. The frequently used mag-
netoimpedance ratio for monitoring MI response em-
ployed in most reports does not allow a simple physical inter-
pretation, since at a low-frequency regime, no varia-
tion is observed [6]. In contrast, the complex inductance for-
malism [7] affords a more clear physical insight into the mag-
netization process, since magnetization mechanisms at low fre-
quencies (e.g., reversible domain wall bulging and unpinning
displacement of domain walls) can be resolved through the cal-
culation of the complex permeability from
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the complex impedance, via the following
transformation [8]:

(1)

where is the angular frequency of (and, hence, of )
and is a geometrical factor henry [8]. In (1),

corresponds to the wire circumferential permeability
(since the applied field has also a circumferential character),
whereas is associated with dissipative processes. In addi-
tion, it is also possible to calculate circumferential magnetiza-
tion curves by means of [6]

(2)

On the other hand, a domain model reported recently for the
MI of ferromagnetic wires [9], [10] establishes exact analytical
expressions for the real and imaginary components of the com-
plex impedance . An important parameter for calculation is
the scalar dc permeability , which depends inversely on the
restoring pinning force coefficient per unit wall area

. This restoring coefficient is proportional
to the domain wall energy, which, in turn, depends on [11]
and, thus, . By using the , exact expres-
sions and (1), we study the effect of variations on and
compare with experimental subjected to various torsional
stresses which affect directly .

II. EXPERIMENTAL TECHNIQUES

As-cast amorphousCo Fe B Si wires, 10-cm
length and 125-m diameter, prepared by the in-rotating-water
spinning method, were used for spectroscopic measurements.
Samples were mounted in a special sample holder with firm
electrical contacts that enabled the application of controlled
torsional stresses both in the clockwise and in the coun-
terclockwise directions. The measuring system includes
an HP 4192 A impedance analyzer controlled by a PC. Our
measuring software allows the determination of the com-
plex impedance for 94 discrete frequencies within the range
5 Hz–13 MHz.

III. RESULTS AND DISCUSSION

Calculated and plots are shown in Fig. 1. The vari-
ations for an initial value of H/m (determined
for a torsion-free 10-cm-length CoFeBSi amorphous wire) are
taken as 2 and 0.5 . The low-frequency initial constant
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Fig. 1. Calculated spectroscopic plots of a)� and b)� for various�
values.

dependence (which corresponds to[7]) increases with
increased and decreases with diminished . On the other
hand, the maximum in (associated with the relaxation fre-
quency for which the domain bulging mechanism is no longer
active and for which manifest a relaxation dispersion when

[7]) shifts to lower frequencies with enhanced and
moves forward with smaller values.

As mentioned above, is inversely proportional to
. Therefore, it is reasonable to ascribe variations to

a varying , which can be affected directly by helically
induced anisotropies produced by torsion stresses. This
assumption is in agreement with Fig. 2 for which experimental
spectroscopic and plots corresponding to and

torsion angles are shown. The90 curve exhibits an
enhancement of together with a decreased in ,
while for the 90 curve, a reduced accompanies higher

values in . This enhancement/detrimental behavior on
is consistent with a counterbalancing effect of on

for torsion angles, whereas torsion angles produce
, which reinforce . Notice the remarkable agreement

between calculated and experimental plots (Figs. 1 and 2) on
both real and imaginary components. In addition, calculated

plots merge into a single curve for as their
measured counterpart. On the other hand, calculated at

Fig. 2. Experimental spectroscopic plots of a)� and b)� for various
torsion angles.

Fig. 3. Measurements of circumferential magnetization as a function ofh

field at f = 1 MHz, for various torsion angles.

original exhibits a maximum at 100 kHz, which agrees
very well with the experimental one. The effect of the torsion
stress on wire’s anisotropy is also manifested in Fig. 3, where
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circumferential magnetization, , is plotted as a function of
the applied ac field at a frequency of 1 MHz, well above .
At this frequency, the domain wall displacement mechanism is
no longer active and spin rotation remains as the only magneti-
zation process, leading to a linear dependence of . As
the torsion stress compensates at angles, the slope of
the plot increases, which affords higher ; conversely, for (-)
torsion angles, the decreasing slope reflects an increment in.

IV. CONCLUSION

By using a model for MI in ferromagnetic wires, we have
shown that torsion stresses add (or subtract) to the helically in-
duced anisotropy in a CoFeSiB wire, leading to a decrease (or
an increase, depending on the torsion direction) on its scalar dc
permeability and, thus, to an enhanced/reduced circumferential
permeability.
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