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A recent unification of the BCS theory with that of the Bose–Einstein condensation
(BEC) through a “complete” boson-fermion model is discussed as a generalization of
the “BCS-Bose crossover” picture of superconductivity. Good first-principles Tc pre-
dictions in 2D are calculated with no adjustable parameters for the so-called “exotic”
cuprate superconductors of the “Uemura plot”, without abandoning the phonon inter-
action mechanism. The only condition is that one depart moderately from the perfect
electron-/hole-Cooper-pair symmetry to which BCS (as well as the “crossover”) theory
are restricted by construction.

Efforts to unify both the Bardeen, Cooper & Schrieffer (BCS) and Bose–Einstein

condensation (BEC) pictures of superconductivity in terms of a “complete boson-

fermion (BF) model” (CBFM), that in essence is a generalized “BCS-Bose

crossover” theory,1 have recently been reviewed.2 The CBFM reduces in special

cases to all the main continuum (as opposed to “spin”) statistical theories of su-

perconductivity. We have found3 that the crossover theory, characterized by an

electron chemical potential µ which is not set equal to the Fermi energy EF as in

BCS theory, but solved for via the number equation along with the gap equation, is

a very minor improvement over BCS theory since it takes a dimensionless coupling

constant λ (to be defined below) as unphysically large as 8 in the crossover theory

for µ/EF to drop from 0.999 to 0.998.
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The CBFM, on the other hand, is “complete” in the sense that not only two-

electron (2e) but also two-hole (2h) Cooper pairs (CPs) are allowed in arbitrary

proportions, as opposed to equal proportions as in the BCS or crossover conden-

sates by construction. Unfortunately, there is apparently no experiment yet that

distinguishes between electron- and hole-CPs, nor that measures their relative pro-

portions, either above or below Tc. With two4,5 exceptions, moreover, all BF models

neglect the effect of hole CPs formulated on an equal footing with electron CPs to

give us a complete BF model (CBFM) consisting of both bosonic CP species coex-

isting with unpaired electrons. Here we apply the CBFM to exhibit how the BCS

model interaction for the electron-phonon dynamical mechanism is sufficient to pre-

dict the unusually high values6 of Tc (in units of the material Fermi temperature

TF ) of ' 0.01−0.1 of the so-called “exotic” superconductors7 — relative to the low

values of . 10−3 more or less correctly predicted by BCS theory for conventional,

elemental superconductors.

We first list several common “myths” in the theory of superconductivity that

we tacitly disbelieve (for the reasons given in parentheses) and which have severely

hindered theoretical progress in the field.

1. With the electron-phonon dynamical mechanism transition temperatures

Tc . 45 K at most. For higher Tc’s one needs magnons or excitons or plasmons

or other electronic mechanisms. (Fig. 1 below illustrates how this is not so).

2. Cooper pairs (CPs): (a) consist of negative-energy stable (i.e. stationary)

bound states8 (this neglects hole CPs which if included give positive-energy resonant

states9); (b) propagate in the Fermi sea with energy ~
2K2/2(2m) where ~K is the

total or center-of-mass momentum (CMM) of the composite pair (this is only true

in perfect vacuum10); (c) may have a linear dispersion E ∝ vF ~K, with vF the

Fermi velocity, but it is then merely the acoustic mode in the ideal Fermi gas (+

interactions) with sound speed vF /
√

d in any dimensionality d (the acoustic and

actual “moving CP” solutions are distinct9); (d) “... with K 6= 0 represent states

with net current flow”11 (true only for K in a definite direction to give a “drift”

velocity); (e) are not bosons (Ref. 12, p. 38) (BCS pairs are not bosons while CPs

are as they satisfy BE statistics). And most notoriously, that:

3. BEC is impossible in 2D.13

4. Superconductivity is unrelated to BEC (the opposite has now been shown to

be the case4).14

The CBFM4,5 is described by H = H0 + Hint where the unperturbed Hamilto-

nian H0 corresponds to an ideal (i.e. noninteracting) gas mixture of fermions and

both types of CPs, two-electron (2e) and two-hole (2h), namely

H0 =
∑

k1,s1

εk1
a+

K1,s1
ak1,s1

+
∑

K

E+(K)b+

K
bK −

∑

K

E−(K)c+

K
c+

K
cK , (1)

where K ≡ k1 + k2 is the CMM wavevector [k ≡ 1

2
(k1 − k2) is the relative

wavevector, to be referred to later] while εk ≡ ~
2k2/2m are the electron and E±(K)
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the 2e-/2h-CP energies. Here a+

k1,s1
(ak1,s1

) are creation (annihilation) operators for

fermions and similarly b+

K
(bK) and c+

K
(cK) for 2e- and 2h-CP bosons, respectively.

We distinguish between our CPs (which are Cooper’s original objects, characterized

only by K) that satisfy BE statistics and BCS pairs (characterized by both K and

k) which do not obey BE commutation relations. The interaction Hamiltonian

Hint consists of four distinct interaction vertices, each with two-fermion/one-boson

creation or annihilation operators, depicting how unpaired electrons (subindex +)

[or holes (subindex −)] combine to form the 2e- (and 2h-CPs) assumed in the

d-dimensional system of size L, namely

Hint = L−d/2
∑

k,K

f+(k){a+

k+ 1

2
K,↑

a+

−k+ 1

2
K,↓

bK + a−k+ 1

2
K,↓ak+ 1

2
K,↑b

+

K
}

+ L−d/2
∑

k,K

f−(k){a+

k+1

2
K,↑

a+

−k+ 1

2
K,↓

c+

K
+ a−k+ 1

2
K,↓ak+ 1

2
K,↑cK} , (2)

where the f±(k) are taken as step functions involving certain5 phenomenological

dynamical energy parameters Ef and δε (in addition to the positive coupling pa-

rameter f). The quantity Ef will serve as a convenient energy scale and is not

to be confused with the Fermi energy EF = 1

2
mv2

F ≡ kBTF where TF is the

Fermi temperature. The Fermi energy EF equals π~
2n/m when d = 2, with n the

total number-density of charge-carrier electrons. The quantities Ef and EF coin-

cide only when perfect 2e/2h-CP symmetry holds. The interaction Hamiltonian (2)

can be further simplified by keeping only the K = 0 terms. One then applies the

Bogoliubov “recipe” of replacing in the full hamiltonian H = H0 + Hint all zero

CMM creation and annihilation operators by c-numbers:
√

N0 and
√

M0 for 2e- and

2h-CP operators, where N0(T ) and M0(T ) are the number of zero-CMM 2e- and

2h-CPs, respectively. Minimizing the so-called thermodynamic (or grand) potential

associated with the full Hamiltonian H with respect to the independent variables

N0 and M0, as well as keeping the total number of electrons fixed and thereby

introducing the electron chemical potential µ(T ), yields a set of three coupled,

transcendental, integral equations [Ref. 4, Eqs. (7) and (8)]. These three equations

define the CBFM. Two of these are coupled “gap-like” equations involving the

2e-CP and 2h-CP BE-condensed boson number densities n0(T ) ≡ N0(T )/Ld and

m0(T ) ≡ M0(T )/Ld, linked together through an electron energy gap ∆(T ). The

third equation can be cast as a number equation of the form

2nB(T ) − 2mB(T ) + nf (T ) = n

involving both 2e and 2h boson number-densities but now for all energy states,

where nf (T ) is the number-density of unpaired electrons. Most significantly, these

three equations contain the five different statistical continuum theories of super-

conductivity (including the “BCS-Bose crossover” picture) as special cases; see flow

chart in Fig. 1 of Ref. 2.
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From the general BEC Tc-formula for noninteracting bosons in d-dimensions of

energy εK = CsK
s, s > 0, and recalling that

kBTF = ~
2k2

F /2m with kF = [2d−2πd/2dΓ(d/2)n]1/d ,

then, if mB = 2m and nB = n/2 (all electrons paired) for s = 2, one gets

Tc/TF =
1

2
[2/dΓ(d)gd/2(1)]2/d = 0 for d ≤ 2

since the “Bose integral” gd/2(1) = ∞ for d/2 ≤ 1. For d = 3 we arrive at the

familiar result

Tc/TF =
1

2
[2/3Γ(3/2)ζ(3/2)]

2/3 ' 0.218

since the Riemann Zeta function ζ(3/2) ' 2.612; see dashed line in “Uemura plot”

of Ref. 6 (Fig. 2). We now focus on s = 1 . For the boson excitation energy η to

be used the leading term in the many-body Bethe–Salpeter (BS) CP dispersion

relation is linear, i.e. η ' (λ/2π)~vF K [see Ref. 9 for the derivation in 3D which

gives η ' (λ/4)~vF K]. Here λ ≡ V N(EF ) where N(EF ) is the electron density of

states (DOS) (for one spin) at the Fermi surface. Note that the boson energy η is

linear in CMM K — and not the quadratic ~
2K2/4m appropriate for a composite

boson of mass 2m moving not in the Fermi sea but in vacuum. The quadratic holds

only when EF is strictly zero,10 i.e. when no Fermi sea is present. But the above

results with η ∝ λ~vF K in fact refer to actual “moving” (or “excited”) CPs in

the Fermi sea. Both kinds of distinct soundwave-like solutions — moving CPs and

ABH phonons — appear in the many-body BS ladder-summation scheme of Ref. 9.

Thus again with nB = n/2, for s = 1 and C1 = (λ/2π)~vF one gets in 2D that

Tc/TF = (
√

3/π2)λ since ζ(2) = π2/6, which for λ = 1/2 and 1/4 is ' 0.088 and

0.044, respectively. These two values for Tc/TF appear as the black squares in Fig. 1;

they mark the BEC limiting values if all electrons in our 2D many-electron system

were imagined paired into noninteracting bosons formed with the BCS model inter-

electron interaction.

We now apply the very general CBFM to exhibit the sizeable enhancements in

Tcs over BCS theory that emerge for moderate departures from perfect 2e/2h-pair

symmetry for the same interaction model. Remarkably, the pair-fermion interaction

(2) bears a one-to-one correspondence with the more familiar “direct” inter-fermion

electron-phonon interaction, mimicked, e.g. in the BCS model interaction (whose

double Fourier transform is a negative constant −V nonzero only within an en-

ergy shell 2~ωD about the Fermi surface, with ωD the Debye frequency) if we set

f 2/2δε ≡ V and δε ≡ ~ωD.4,5 The familiar dimensionless BCS model interaction

parameters ≡ N(EF )V and ~ωD/EF are then recovered. The three coupled equa-

tions of the CBFM determining the d-dimensional BE-condensate number-densities

n0(T ) and m0(T ) of 2e- and 2h-CPs, respectively, as well as the fermion chemical

potential µ(T ), were solved numerically in Ref. 5 in 3D for λ = 1/5 and ~ ωD/EF =

0.001 assuming a quadratic boson dispersion relation η = ~
2K2/4m. Besides the
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Fig. 1. Phase diagram in 2D for temperature (in units of TF ) and electron density (in units
of nf as defined in text) showing the phase boundaries of Tc’s for the pure 2e-CP BEC phases

(dashed curves) determined by ∆(Tc) = f
√

n0(Tc) ≡ 0, and the pure 2h-CP BEC phase given by
∆(Tc) = f

√

m0(Tc) ≡ 0 for λ = 1/4 and 1/2 with ~ωD/EF = 0.05. Intersections corresponding
to n0(Tc) = m0(Tc) locating the approximate BCS Tc are marked by black dots, while black
squares locate the linearly-dispersive BEC limit where all electrons are imagined paired into 2e-
CP bosons, as detailed in Ref. 2. The upper shaded region labelled “RTSC?” refers to Tc ' 300 K
superconductivity for materials with TF ≤ 1000 K.

normal phase consisting of the ideal BF gas described by H0, three different types

of stable (plus several metastable, i.e. of higher Helmholtz free energy) BEC-like

phases emerged. These are two pure phases of either 2e- or 2h-CP BE-condensates,

and a lower temperature mixed phase with arbitrary proportions of 2e- and 2h-CPs.

Of greater physical interest are the two higher-Tc pure phases so that we focus below

only on them. Note that Ref. 5 corrects a small discrepancy related to the correct

gap-to-Tc and specific heat jump universal ratios of 3.53 and 1.43, respectively, in

Figs. 3 and 4, which incidentally are switched, of Ref. 4. A more exhaustive study

within the CBFM is in progress of these ratios away from the BCS limit n = nf .

We examine the two extreme values of λ = 1/4 (lower set of curves in Fig. 1) and

λ = 1/2 (upper set of curves), and ~ωD/EF = 0.05 (a typical value for cuprates),

to compute the Tc/TF versus n/nf phase boundaries graphed in the figure for both

the 2e-CP (dashed curves) and 2h-CP (full curves) pure, stable BEC-like phases.

The value n/nf = 1 corresponds to perfect 2e/2h-CP symmetry characterizing, in

addition to weak coupling, BCS theory. The Tc value where both curves

n0(Tc) = m0(Tc) = 0

intersect is marked by the large dots in the figure; these values are consistent with

those gotten from the familiar BCS expression Tc/TF ' 1.134(~ωD/EF ) exp(−1/λ)

' 0.001 for λ = 1/4, and ' 0.008 for λ = 1/2, for ~ωD/EF = 0.05. Cuprate data

empirically15 fall within the range (shadowed in the figure) Tc/TF ' 0.03 − 0.09.
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Thus, moderate departures from perfect 2e/2h-CP symmetry enable the CBFM

to reach quasi-2D cuprate empirical Tc values, without abandoning electron-phonon

dynamics — contrary to popular belief. Compelling evidence for a strong, if not sole,

phonon dynamical component in cuprates has recently been reported16 from angle-

resolved-photoemission data. And room temperature superconductivity (labelled

rtsc in the figure) is allowed.

We conclude that the practical outcome of the BCS-BEC unification via the

CBFM, which is essentially a generalized “BCS-Bose crossover” theory and which

unlike BCS theory is not a priori limited to weak coupling, produces enhancements

in Tc over BCS values by more than an order-of-magnitude in 2D — provided only

that one departs moderately from the perfect 2e/2h-pair symmetry to which BCS

theory is intrinsically restricted. These enhancements in Tc fall within empirical

ranges for quasi-2D cuprate “exotic” superconductors.
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A. A. Valladares and O. Rojo, Phys. Rev. B62, 8671 (2000).
11. J. R. Schrieffer, Nobel Lecture, Dec. 1972.
12. J. R. Schrieffer, Theory of Superconductivity (Benjamin, New York, 1964).
13. A. A. Abrikosov, private communication.
14. J. Bardeen, Physics Today (Jan. 1963) p. 25.
15. C. P. Poole, Jr., H. A. Farach and R. J. Creswick, Superconductivity (Academic, NY,

1995) p. 599.
16. A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T.

Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z.
Hussain and Z.-X. Shen, Nature 412, 510 (2001).




