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A Bethe–Salpeter treatment of Cooper pairs (CPs) based on an ideal Fermi gas (IFG)
“sea” produces unstable CPs if holes are not ignored. Stable CPs with damping emerge
when the BCS ground state replaces the IFG, and are positive-energy, finite-lifetime
resonances for nonzero center-of-mass momentum with a linear dispersion leading term.
Bose–Einstein condensation of such pairs may thus occur in exactly two dimensions as
it cannot with quadratic dispersion.
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Shortly after the appearance of the BCS theory of superconductivity, charged

Cooper pairs1 (CPs) observed in magnetic flux quantization experiments with 3D

conventional, and much later with quasi-2D cuprates, superconductors, suggested

CPs as a fundamental ingredient of this phase. Although BCS theory only consid-

ers the presence of Cooper “correlations,” several boson-fermion (BF) models with

real, bosonic CPs have been introduced after the pioneering work of Schafroth;2 for

a superb review see Ref. 3. However, with one exception,4–6 all such models neglect

the effect of two-hole (2h) CPs taken on an equal footing with two-particle (2p) CPs

— as Green’s functions can naturally guarantee. Strong physical motivation for this

paper comes from the unique but unexplained role played by holes in the normal

state of superconductors in general. Additional motivation stems from the fact that

the “complete (in that both 2h- and 2p-CPs are allowed) BF model” of Refs. 4–6

is able to “unify” both BCS and Bose–Einstein condensation (BEC) theories as

special cases, and predict substantially higher Tc’s than BCS theory without aban-

doning electron-phonon dynamics. Compelling evidence for a significant presence
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of the latter in high-Tc cuprate superconductors from angle-resolved photoemission

spectroscopy data has recently been reported.7

Here, the Bethe–Salpeter (BS) many-body equation (in the ladder approxima-

tion) treating both particles and holes on an equal footing is used to recall that:

(i) The CP problem [based on an ideal Fermi gas (IFG) ground state (the usual

“Fermi sea”)] does not possess stable energy solutions, i.e. with nonzero real

energies.

(ii) CPs based not on the IFG-sea but on the BCS ground state survive as positive

energy resonances.

(iii) Their dispersion relation in the total (or center-of-mass) momentum (CMM)

~K ≡ ~(k1 +k2) in leading order is linear rather than the quadratic ~
2K2/4m

of a composite boson (e.g., a deuteron) of mass 2m moving not in the Fermi

sea but in vacuum.

(iv) This latter “moving CP” solution, though often confused with it, is physically

distinct from another more common solution sometimes called the Anderson–

Bogoliubov–Higgs (ABH),8 (Ref. 9, p. 44) collective excitation.

The ABH sound mode is also linear in leading order and goes over into the IFG

ordinary sound mode in zero coupling. Though most of our results hold in 3D,10 they

are here detailed in 2D because of its interest for quasi-2D cuprate superconductors,

and will be seen to be crucial in Bose–Einstein condensation (BEC) scenarios with

BF models of superconductivity, as well as for neutral-atom superfluidity, in exactly

2D. In general, for free bosons with energy εK = CsK
s + o(Ks) (for small enough

CMM K, with Cs a constant) BEC occurs in a box if and only if d > s, since

Tc ≡ 0 for all d ≤ s as it is then given by an expression with an integral in the

denominator which diverges in its lower limit. We distinguish between CPs and

BCS pairs since the former satisfy BE statistics while the latter do not obey BE

commutation relations.

In dealing with the many-electron system we assume an s-wave BCS-like

electron-phonon model interelectron interaction, whose double Fourier transform

ν(|k1 − k′

1|) is just

ν(k1, k
′

1) = −(kF /k
′

1)V (1)

if kF − kD < k1 < kF + kD , and = 0 otherwise, where V > 0, ~kF ≡ mvF the

Fermi momentum, m the effective electron mass, vF the Fermi velocity, and kD ≡
ωD/vF with ωD the Debye frequency. The usual condition ~ωD � EF then implies

that ~ωD/2EF ≡ kD/kF � 1. The BS wavefunction equation10 in the ladder

approximation for the IFG-based CP problem using (1), with both particles and

holes, leads to an equation for the wavefunction ψk in momentum space for zero

CMM CPs, with k ≡ 1

2
(k1 − k2) the relative wavevector of the pair, namely

(2ξk − E0)ψk = V
∑

k′

′

ψk′ − V
∑

k′

′′

ψk′ . (2)
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Here ξk ≡ ~
2k2/2m − EF and E0 is the eigenvalue energy. The single prime over

the first (2p-CP) summation term denotes the restriction 0 < ξk′ < ~ωD while

the double prime in the last (2h-CP) term signifies −~ωD < ξk′ < 0. Without

this latter term we have the Cooper Schrödinger-like equation1 for 2p-CPs whose

implicit solution is clearly

ψk = (2ξk − E0)
−1V

∑

k′

′

ψk′ .

Since the summation term is constant, performing that summation on both sides

allows canceling the ψk-dependent terms, leaving the eigenvalue equation

∑

k′

′

(2ξk − E0)
−1 = 1/V

with the familiar solution (exact in 2D and to a very good approximation otherwise

if ~ωD � EF ):

E0 = −2~ωD/(e
2/λ − 1) ,

where λ ≡ V N(EF ) with N(EF ) the electronic density of states (DOS) for one spin.

This corresponds to a negative-energy bound pair. Without the first summation in

(2) the same result for E0 (apart from a sign change) follows for 2h-CPs. However,

solving by similar techniques the full equation (2) — which cannot be derived from

an ordinary (non-BS) Schrödinger-like equation in spite of its simple appearance

— gives the purely-imaginary E0 = ±i2~ωD/
√
e2/λ − 1, thus implying an obvious

instability. This was reported in Refs. 9 (p. 44) and 11, Sec. 33 — without men-

tioning the pure 2p and 2h cases just discussed. The CP problem is thus unstable

and hence meaningless if particles and holes are treated on an equal footing.

However, a BS treatment not about the IFG sea but about the BCS ground

state vindicates the CP problem, and adds something new. In either 3D or 2D it

yields two distinct solutions, the usual ABH sound solution and a highly nontrivial

“moving-CP” solution. These wavefunction equations are too lengthy, and will be

derived in detail elsewhere. The ABH collective excitation mode energy EK is found

to give for small λ:

±EK ' ~vF√
2
K +O(K2) . (3)

Note that the leading term is just the IFG ordinary sound mode whose sound

speed c = vF /
√
d in d dimensions follows trivially from the zero-temperature

IFG pressure P = n2[d(E/N)/dn] = 2nEF /(d + 2) on applying the familiar

thermodynamic relation dP/dn = mc2. Here E is the ground-state energy and

n ≡ N/Ld = kd
F /d2

d−2πd/2Γ(d/2) the fermion-number density.

The second moving-CP solution in the BCS-ground-state-based BS treatment

has a pair energy EK which in 2D is contained in
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1

2π
λ~vF

∫ kF +kD

kF −kD

dk

∫ 2π

0

dϕuK/2+kvK/2−k{uK/2−kvK/2+k − uK/2+kvK/2−k}

× EK/2+k +EK/2−k

−E2
K + (EK/2+k +EK/2−k)2

= 1 , (4)

where ϕ is the angle between K and k; λ ≡ V N(EF ) as before with N(EF ) ≡
m/2π~

2 the constant 2D DOS; Ek ≡
√

ξ2k + ∆2 with ∆ the familiar BCS T = 0

gap which for interaction (1) is ∆ = ~ωD/ sinh(1/λ); while u2
k ≡ 1

2
(1 + ξk/Ek)

and v2
k ≡ 1 − u2

k are the Bogoliubov functions. In addition to the pp and hh

wavefunctions (depicted diagrammatically in Ref. 10, Fig. 2), diagrams associated

with the ph channel give zero contribution at T = 0. A third equation for the ph

wavefunction describes the ph bound state but turns out to depend only on the

pp and hh wavefunctions. Using a Taylor expansion of EK in powers of K around

K = 0 in (4) and on introducing a damping factor by adding an imaginary term

−iΓK in the denominator, a direct integration yields, to order K2 and for small λ

±EK ' 2∆ +
λ

2π
~vFK +

1

9

~vF

kD
e1/λK2

− i

[

λ

π
~vFK +

1

12

~vF

kD
e1/λK2

]

+O(K3) , (5)

where the upper and lower sign refers to 2p- and 2h-CPs, respectively. A linear

dispersion in leading order again appears which, unlike the sound mode in (3),

now vanishes in zero coupling as expected. The positive-energy 2p-CP resonance
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Fig. 1. Exact “moving Cooper pair” energy EK (in units of EF ) (full curve) extracted from
(44), compared with its linear leading term (upper short-dashed line) and its linear plus quadratic
expansion (long-dashed curve) from (5), vs CMM wavenumber K (in units of kF ), for BCS model

interfermion interaction with parameters λ = 1

2
and ~ωD/EF = 0.05. For reference, the leading

linear term (3) of the ABH sound mode is also plotted (lower short-dashed line).
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has a lifetime τK ≡ ~/2ΓK = ~/2[(λ/π)~vFK + (~vF /12kD)e1/λK2] diverging

only at K = 0, and falling to zero as K increases. Figure 1 graphs the exact

moving CP (mCP) solution, along with its leading linear-dispersion term, and this

plus the next, quadratic, term. The interaction parameter values used in (4) were

~ωD/EF = 0.05 (a typical value for cuprates) and λ = 1

2
, which give 2∆/EF =

2~ωD/EF sinh(1/λ) ' 0.028. For reference we also plot the linear term ~vFK/
√

2

of the ABH sound solution (3).

To conclude, we see that holes treated on a par with electrons play a vital

role in determining the precise nature of CPs even at zero temperature, but only

when based not on the usual ideal-Fermi-gas (IFG) “sea” but on the BCS ground

state. Their treatment with a BS equation gives purely-imaginary energies based on

the IFG and positive-energy resonant-state CPs with a finite lifetime for nonzero

CMM when based on the BCS ground state, instead of the more familiar negative-

energy stationary states emerging from the original IFG-based CP problem that

neglects holes, as sketched just below (2). The BS moving-CP dispersion relation

is gapped by twice the BCS gap energy, followed by a linear leading term in the

CMM expansion. This linearity is distinct from the better-known one associated

with the sound or ABH collective excitation mode whose energy vanishes with zero

total pair momentum. Thus, BF models accounting for this CP linearity in the

boson component can give rise to BEC in d > 1, including exactly 2D, and thus in

principle addressing not only quasi-2D cuprate but also quasi-1D organo-metallic

superconductors.
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