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Abstract

In this work we present results for the structure of aerogels coming from the diffusion-limited cluster aggregation simulation method.
Pair distribution functions and striuze factors, resulting frm simulation, were considered as expeental input for everse Monte Carlo
modeling. The modeling yielded structural models with pair distribution functions and structure factors nearly identical to the results of
the simulations. Particle configurations from both the simulations and reverse Monte Carlo modeling have been analyzed in terms of the
distribution of the number of neighbors. It is suggested that the reverse Monte Carlo method, when applied to the structure factor, may be a
suitable technique for the interpretation of experimental scattering data on colloidal aerogels.

0 2004 Elsevier Inc. All rights reserved.
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1. Introduction approach may be justified. Note that even then, the micro-
scopic structure may be of interest on its own. Accordingly,
The microscopic (atomic level) structure of a material the experimental methodology for investigating the different
is undoubtedly its most basic property. Unfortunately, de- €ngth scales is splitiiffraction (X-ray or neutron) studies
termining the microscopic structure of disordered (noncrys- &€ aimed at the atomic level structure amdll-angle scat-
talline) systems, such as liquids and amorphous materials,!&1Nd (SAS)[1] is the technique for looking at larger length
is problematic, for there is no long-range ordering of well- Scales. Although the underlying phenomena are very similar
defined structural units to rely on. This feature introduces for diffraction and SAS (see, e.g., Rg2]), instrumentation
difficulties during diffraction measurements, as well as dur- nd. especially, methods for interpreting results are rather
ing their interpretation. In general, these problems become different. On the other hand, there are a number of instances
greater if the structure of a disordered material is charac- Where the larger length scale does not exceed very much the

terized by length scales that aseder than interatomic dis- interatomic distances, as in, for instance, some silica gels,

tances. However, important classes of materials such as gel®" POrous carboniS]. In such systems, the nearly complete
and other disordered poroussambents fall into this cate-  SPHting described above is, to say the least, questionable,
gory since one can only guess how important the coupling is

So far, studying the “structure” of such systems has al- between atomic and larger length scales. Another, related,

most exclusively meant considering the larger length scale iSSue is the way the microscopic structure is manifested in
only, with the notion that as far as the overall behavior of larger scale structural features. However, the knowledge of

the system is concerned, the microscopic length scale is notthe microscopic structure is necessary to study adsorption or

relevant. In some cases, where the length scales are ver)?] !ﬁuzlsr;::j F;?;?#g dn;?ct)?rt'?;;_?psecrgggp:]al Z;?:Z'g%;gﬁa h;lt
different (say, by at least two orders of magnitude), this lqu . Ny ng val
present do not make it possible to consider two different

length scales simultaneously.
* Corresponding author. Fax: +36-1-392-2589. With this study, we wish to undertake structural studies
E-mail address: Ip@szfki.hu (L. Pusztai). that go beyond present practice: we will attempt the deter-
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mination of both the microscopic and mesoscopic structure gregation has been developed by Witten and Sahtigr
by making large structural models that are consistent with (note that, strictly speaking, their method was not appropri-
experimental diffraction and SAS data. However, before at- ate for colloidal systems). Diffusion-limited cluster aggre-
tempting to consider real experimental data, it is necessarygation was originally proposed for lattice mod¢is3,19]
to validate our approach on model data which is free of sys- More recently an extension ohis simulation scheme for
tematic errors—and this is the main purpose of the presentcontinuous models has been applig€l]. A detailed analy-
contribution. sis of the DLCA simulation results and comparison with the
A principal element of the scheme we propose is the SAS experimental data for colloidal and basic aerogels has
so-called reverse Monte Carlo (RMC) modeling technique, shown the validity of the simulation method to describe both
which usually relies on a particular experimental output, the microscopic structure and larger scale correlations be-
such as diffraction data, and combines these data with simu-tween big aggregates in such systg@afd.
lation technique§b] (for reviews, see, e.g., Ref§,7]). The In this work the pdf coming from the DLCA simulation,
main goal of a reverse Monte Carlo calculation is to build according to our own code, is taken as an “experimental”
three-dimensional structural models of a system that are con-result and is applied as an input for the RMC procedure.
sistent with diffraction data. The algorithm of the reverse Also, the structure factor obtained as a result of the DLCA
MC modeling has been discussed in detail in REFs7]. It Fourier-transformed pdf is considered as the “experimental”
is just worth mentioning that in the RMC framework, series strycture factor. Both thepLca (r) andSpLca (Q) explicitly
of configurations (sets of particle coordinates) are gener- demonstrate structural features whose interpretation requires
ated randomly. Some of the configurations are accepted inthe microscopic and larger length scale of correlations be-
accordance with their compatibility with the experimental tween particles forming gel structure.
structure factorS(Q) (or with the corresponding “exper- In the following section, the generation of “experimental”
imental” pair distribution function (pdf)g(r), the inverse  ata via the DLCA algorithm for continuous mod¢2d] is
Fourier transform of the structure factor). This approach has gescribed. We comment very briefly on the principal steps
been applied to simple fluids and their mixtures, to molten of the simulation procedure and present selected pair dis-
salts and alloys, and to hydrogen-bonded and chemically re-ipytion functions obtained by our own simulations. Those
acting quids[8—.12]. Coming closer to the present subjept, are compared with the results of Hasmy et [all]. This
RMC was applied to the study of colloidal systems, fitting part of our study as well as discussion of the model aerogel
the small-angle scattering signgls3,14} and also to the  gyryctures has original elements and besides provide better
study of carbon aerogels, fitting the pair distribution func- understanding of the area by the reader.
tion obtained from electron diffraction dgB5]. The next section is dediaad to the description of RMC
The main point to clarify concerning the modeling is how  ,qqeling and to the detailed comparison of the RMC results
RMC behaves when it has to deal with features that appearyith the DLCA-generated structures. Finally, conclusions

as (sometimes, large) inhomogeneities of the atomic scalere given and possible future developments of the method
structure and as a result, scattering intensities may be dlf'fer-Seen by us are discussed.

ent by an order of magnitude for the small (SAS regime) and

wide-angle (diffraction regime) parts of the data. During the

RMC procedure, the difference between experimental and , ) )

simulated structure factors (or pair distribution functions) is 2: Ggl st.ructure('DLCA simulation and pair

being minimized,; if the intensity of the SAS signal is much distribution functions)

greater than that of the wideigle part (as expected from ex-

perience) then there is a danger that the wide-angle part, rep- The off-lattice diffusion-limited cluster aggregation

resenting the atomic scale structure, will be neglected. Con-(DLCA) algorithm is applied to gnerate gel structure via

versely, if modeling in the-space is done, as in R§L5], it simulation. Together with reaction-limited cluster aggrega-

is the larger scale structure which may be underrepresentedtion (RLCA), it is nowadays a widely used and successful

Added to this problem, it is obvious that simulations must be method to obtain gel-like structures.

applied to large systems, which may lead to a prohibitively ~ The initial configuration of the system is prepared by dis-

huge number of particles in the box. tributing randomly a given number of particléé, in a cubic
For assessing if an RMC-based scheme is feasible forsimulation box with edge.. The interaction between par-

achieving the main goal of considering atomic and supra- ticles is irrelevant in the DLCA algorithm. However, the

molecular length scales simultaneously within one struc- particles are considered to be spherical objects that cannot

tural model, we have undertaken this exploratory study on penetrate each other, i.e., haptheres. Essentially, the initial

a model system, in the spirit of Refd4.2,15,16] In order to configuration corresponds to nonoverlapping spheres. The

mimic experimental data for the structure of silica aerogels diameter of particlesy, is taken, without loss of general-

we have applied computer simulation. A particular method ity, as a length unit, i.eg = 1. The dimensionless number

useful for this purpose is the so-called diffusion-limited clus- density, No3/L, will be denoted simply by in what fol-

ter aggregation (DLCA). The model of diffusion-limited ag- lows.
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The initial configuration can be considered as a collection
of Nz aggregates, each containioge particle. In the course
of simulation one generates a collection 8 aggregates
where the'th aggregate will contain; particles, such that

Na
S =N, (1)
i=1

The formation of the aggregates is performed as follows.
Pick up an aggregate at random, according to the probability
distribution

P= nf‘/ Z ny, (2)
1<i<N; 10
wherea = —0.55 was taken to coincide with 1/ D, where log r

D - .1'78 IS th? fraCt?I dimension of the resulting aggregates Fig. 1. The pair distribution functiong,(r), of gels obtained by the DLCA
built in three dimensions.

. . simulation algorithm in the cubic box with = 50. The lines with symbols
One attempts t.O dISplaCl? the Chosen_ aggregate by Unitirom top to bottom (on the left axis) are at density= 0.05 (full circles),
length, at random in one of six directions, i£X, +Y,+Z. 0.075 (empty squares), 0.0875 (full triangles), and 0.1 (empty diamonds),

If the cluster (aggregate) does not collide (overlap) with any respectively. The logarithmic scale has been used to facilitate visualization
other cluster during displacement step, the movement is aC_of the details of the structure and comparison with the results of other au-
. . . . thors; see, e.g., ReR2].

cepted and another cluster is chosen to continue simulation.
On the other hand, if the cluster, e.g., 1, overlaps with an- ) . .
other cluster, e.g., 2, thendldisplacement again is accepted. their interpretation, t nonfractal regime at low describes
However, such displacement equals to the shortest distancdh€ short-range shell region, and in the intercluster regime,
ensuring that one of particles belonging to the cluster 1 is the minimum ofg(r) characterizes the intercluster correla-
tangent to any one particle of the cluster 2. Henceforth, the tions, whereas the fractal regime can be found in between
two clusters, 1 and 2, merge to form one cluster and the num-the two previous ones. The fractal regime is distinguished
ber of aggregates consequently is updated. As is commonbY the range of where theg(r) curve exhibits the most lin-
periodic boundary coritions are used in all directions. The ~€ar behavior in log—log coordinates.
DLCA process terminates when a single cluster is formed. N order to obtain better statistics for the pdf and also to
However, the box length and the number of particles must b€ able to perform calculations within a reasonable amount
be chosen with care, to provide that the final single cluster Of time, we have carried out DLCA simulations in a smaller
spans the simulation box along three axes. It has been arPox, L = 40, at our highest density; = 0.1. In Fig. 23
gued in Refs[20,21]that the distribution of particles in the  the pdf resulting from 20 independent calculations is given
system can be well characterized in terms of a common pairPy the solid line. The agreement of our result with that of
distribution functiong(r), in spite of the out-of-equilibrium ~ Ref.[21] (cf. Fig. 3 of that work) is very good. That is, the
structure of the formed gel. The distribution function in this value ofg(r) at the first minimum, the height of the second
simulation is calculatedccording to common countird], maximum, and the value at the cusprat 3 all agree, as
with grid of Ar =0.1. well as the position of the shallow minimum. A high max-

We have performed the DLCA simulation of gels at den- imum atr = 1 probabilistically describes contacts between
sities p = 0.05, 0.075, 0.0875, and 0.1. The box in all runs particles. Also, a discontinuity at= 2 is observed, which is
has been kept the same,= 50. The box then contained related to the filling of the coordination sphere of dimers.
6250, 9375, 138, and 1500 particles, respectively. We The shallow minimum of thepdf characterizes the mean
have performed (3 to 5) independent runs at each densitycluster size. For the purposes of our RMC studies, this sys-
to ensure reasonable statistics. Computations in such a largéem is convenient to deal with. Itis worth mentioning that for
box are demanding in terms of computer power. Each run atsmaller densities, particularly for = 0.05 and less, bigger
given density ends up with a gel. Moreover, a set of densi- boxes must be chosen both for the DLCA simulation and for
tiesand the box length used to obtain the pdf’s provide the RMC modeling. As a consequence, simulations would be-
structures denser than the gelling threshold. come slow.

Resulting pdf’s are shown iRig. 1, in the form that was
used in Ref.[22]. By comparing our results to Fig. 4 of
Ref.[22], whereg(r)'s for densities of 0.04, 0.08, and 0.12 3. Reverse Monte Carlo modeling: results
are presented, it is clear that the two sets of data are in good
agreement: the same trends are observed as a function of In order to mimic experimental diffraction data we have
density, in all the three regimes (nonfractal, fractal, and in- calculated the structural progies, such as the pair distrib-
tercluster) that were distinguished in Rgf2]. According to ution function as calculated from the particle configurations

log g(r)
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Fig. 2. (a) Reverse Monte Carlo fit with constraints (symbols) to the DLCA
pdf (solid line) atpo = 0.1. (b) A blowup of part (a) over a restrictedand
g(r) range, for emphasizing the region of the shallow minimum of the pdf.
Solid line: DLCA; dashed line: RMC witout constraints; dotted line: RMC
with constraints. (c) Distribution of the number of neighbors for DLCA
(empty bars), RMC fitting the pdf withowonstraints (full bars), and RMC
fitting the pdf with constraints (shaded bars).

provided by the DLCA algorithm, and then its Fourier trans-
form, the structure facto§(Q).

During the atomistic RMC procedure, each particle in
the simulation box (with pgodic boundary conditions) is

moved according to a Monte Carlo type algorithm, accept-
ing configurations that provide a decreasing difference be-
tween measured (experimental, or “pseudoexperimental” in
the present study) and calculated (from the particle coordi-
nates) structure factors, unthis difference reaches mini-
mum, and afterward oscillates around the minimum value.
A fraction of configurations which deviate from the experi-
mental data also are included in the course of a run. A set of
(representative) configurations then can be exploited for the
calculation of various structal and other properties. In the
present case, the distribution of the number of first neighbors
will be reported.

Most frequently, RMC is driven by the structure fac-
tor. However, one can idealize the picture by assuming that
error-free (“perfect”) data are available and use the pair dis-
tribution function,g(r), to drive the RMC procedure. This
possibility will be explored in the present study, besides the
procedure utilizinghie Fourier-transform as an input.

A rather useful feature of RMC is its capability for im-
posing coordination constraints on the structural models (for
more details, see, e.g., R§9)). In the following discussion
of the results, if specified, one constraint was imposed so
that the particles with no neighbors were not allowed to oc-
cur. Technically, this means that within a prespecified range,
particles were required to have at least one neighbor. A move
that resulted in a local coordination that did not satisfy this
requirement was immediatelgjected to avoid occurrence
of free particles.

Most of the RMC calculations were carried out on the
highest density system that was identical to the one used
in the DLCA simulations witho = 0.1 andL = 40. Some
calculations were performed at= 0.075 to test the capa-
bilities of the approach at lower densities, as well.

We start the discussion of RMC results by considering
the modeling inr-space.Fig. 2acompares the pair distri-
bution function for the DLCA system withh = 0.1 to its
constrained reverse Monte Carlo fit. We have also carried
outreverse Monte Carlo calculations without constraints; the
pdf from that calculation was not distinguishable from the
constrained one. It can be seen that RMC modeling of the
g(r) can reproduce every single detail of the DLCA pdf, in-
cluding the first and second maxima and minima, as well as
the cusp at = 3.

Fig. 2b gives the same comparison Bgy. 2g but the
emphasis is placed now on the shallow minimum around
r = 6.5, which is characteristic of the mean cluster size in the
DLCA gel. At this scale, constrained and unconstrained cal-
culations can be distinguished: the constrained one exhibits
somewhat larger statistical noise than the unconstrained ver-
sion. A possible explanation for this may be that algorithmi-
cally, in the fitting procedure with constraints, the emphasis
is placed on the number of the nearest neighbors rather than
the high# regime. The main features abowve- 3, the posi-
tion and depth of the minimum are essentially identical for
the two RMC runs and correspond very well to the DLCA-
values.



L. Pusztai et al. / Journal of Colloid and Interface Science 277 (2004) 327334 331

Now, we wish to investigate structural features of both
DLCA and RMC models beyond the level of the pair distrib-
ution function. For this purpose, the normalizdieribution
of the number of neighbor§ (n) =i,/N (wherei, is the o
number of particles having neighbors; recall thaV is the o
number of particles in the box) has been calculated. Count- =
ing of neighbors is performed by the evaluation of particles =
in contact. This distribution is not available from the pdf;
one must exploit the particle configurations Hig. 2¢ this 1
distribution is compared for the DLCA and RMC (with and P
without constraints). It is apparent that as a result of a re-
verse Monte Carlo run without constraints, there remained a 0.5 . .
significant fraction, about 10%, of particles with no neigh-
bors. In a gelated system, where all the particles belong to log Q
one single cluster, the presence of solitary particles is not @
allowed. This was the primary reason for introducing co- 107
ordination constraints into the RMC calculation and this is ]
why, in the later stages of this work, only constrained RMC
calculations will be considered.

The average number of neighboiis= )" C(n)n, has a
value of 24 (DLCA). From this, one may expect that two- =
and threefold coordinated particles are most likely to be =
present. Indeed, this is the case, as follows friig. 2c o
What is interesting is that the DLCA algorithm results in 2
a high concentration of onefold particles. This seems to be 11
a manifestation of the developed surface of blobs and its
“hairy” shape. On the other hand, we have seen already that
the minimum of the distribution function is shallow, such — 1
that the distribution of cluster sizes is expected to be wide.

The highest coordination number that is found in the DLCA-
structure is 6, with a frequency of abou8@b.

AS. it was mentioned above_’ .the unco'nstralned' RMC cal- Fig. 3. (a) Reverse Monte Carlo fit witonstraints (symbols) of the struc-
culation produces a nonnegligible fraction of neighborless tyre factor for the DLCA model ap = 0.1 (solid line) over the entire
particles and, therefore, it has to be abandoned. However scattering vector range, comprisibgth the small and the wide angle scat-
the occurrence of one-, two-, and threefold coordinated par- tering regions. (b) nge_as (a), but fitting the small-angle scattering region
ticles in the unconstrained model is in better agreement °"Y- (Note the logarithmic scale for both parts.)
with DLCA results than with those in the constrained RMC
model. This indicates that the constrained RMC algorithm, the large size of the box and large number of particles in-
when applied with only one constraint, the one that prohibits volved permit us to conclude that the observed behavior is
the presence of nonbonded particles, is too crude for the re-reasonable.
production of the finer details of the structure: the number  The next step was the application of the structure factor
of onefold coordinated particles should also be restricted. as input for the reverse Monte Carlo algorithm. T$1@2)

This has been attempted by applying two coordination con- was obtained by Fourier transformation of the (DLCA) pair
straints, with moderate success: in that case, it was not pos-distribution function, using the same minor correction for ac-
sible to make the zerofold coordinated particles vanish. The counting for the deviation of the plateau value of )
highest coordination number found in the RMC models was from unity as in Ref.[21]. This allowed us a similar ex-
11, but only particles with seven neighbors (or fewer) ap- tension of theS(Q) toward smaller scattering vector val-
peared with a frequency higher than 0.1%. The average co-ues[21]. Key features of the structure factor (seig. 39,
ordination number is 2.3, which agrees within 5% with the i.e., positions and(Q) values of maxima and minima, as
DLCA value. The occurrence of five-, six-, and sevenfold well as the overall shape, ain excellent agreement with
coordinated particles is much higher in the RMC models previous work on a system with very similar density, cf.
than in the DLCA system. One should have in mind that Fig. 6 of Ref.[21]. We would like to note that Fourier trans-
our analysis is based on a single configuration for DLCA formation was carried out on pdf’s calculated only up to
gel and single RMC configuration, both yielding reasonable distances smaller than half of the box size. In this way, any
g(r). We have not performed such an analysis for several conceivable effects of perdlic boundary contlons could
configurations and have not performed averaging. However,be avoided, since no correlations were considered between

~ OO N®O

»

log Q
(b)
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any particle and its image. Fourier transformation of the pdf
over finiter-ranges may lead to truncation errors; these may
be minimized by choosing large simulation boxes (as it is
done here).

As it can be seen ifrig. 33 RMC modeling (with con-
straints) of the (DLCA) structure factor provides very good
coincidence with the “experimental'(Q), over the entire 1
scattering vector range. Remember that in practice, no exper-
iment can provide similar c@rage of the reciprocal space—
one would need a SAS and a conventional diffraction exper-
iment to obtain the structure factor showrHig. 3a

For (aero)gels, it is the small-angle scattering experi- o
ment that has been carried out the most frequently; see, e.g.,
Refs.[21,23-25] For this reason, the “small-angle scatter-
ing” part of the DLCA structure factor has been constructed,
cutting the fullS(Q) (Fig. 39 at the position of its first min- 1.04
imum at Q = 3.5, and considering the region only below
this point. The RMC modeling of this “SAS(Q)” has also
been performed, with the aim of establishing to what extent

g(r)

1.02 4

the SAS region of the full structure factor can account for —

the structural properties of a DLCA gélig. 3bdisplays the > "7

excellent agreement bedwn DLCA and RMC (performed

with constraints) small angle scatteriSgQ)s. 098
A most stringent test of the reverse Monte Carlo approach 1

can be undertaken by comparing the pair distribution func- 0.96 -

tions resulting from fitting the (full and SAS) structure fac- ; :
tor(s) to the original DLCA pdf. This test would indicate ° 1 '
how well a given “gel-like” structure can be deduced on the
basis of scattering experiments. Such a comparison is made
in Figs. 4a and 4bthe former concentrating on the region
of the second maximum, aroumd= 2, whereas the latter
shows the region of the shallow minimum, aroung 6.5.
Around the second maximum, RMC modeling of the 0-304 2
full structure factor reproduces the DLCA curve satisfac-
torily, including the singularity points. Modeling only the
SAS part fails to retrieve these important features with the
desired accuracy, although the position of the second max-
imum and the cusp at = 3 are approached qualitatively, 0109
in a spread-out manndfig. 4amay be taken as an indica- 0.05
tion that small-angle scattering data alone are not sufficient 0.00 r& o
for a meaningful description of the short-range part of the 0 1 2 3 4 5 6 7
pdf. Abover = 3, the two RMC curves run together with the
DLCA g(r), through the shallow minimum and up to about ©
r =10. One may also note that the pdf from fitting the SAS Fig. 4. (a) Pair distribution functions as derived from RMC modeling of
part only clearly exhibits a higher level of statistical noise, the entires(Q) (dashed line) and of the small-angle scattering part of the
in accordance with # notion that this function is less well ~ $(Q) (dotted line), as compared to the pdf of the DLCA model (solid line)
determined comparing with the pof by fting the fllg). 27O ) Same s par ) bt entiesizng e region of e shalow
The distribution of coordination numbers was also calcu- of neighbors for the DLCA model at = 0.1 (empty bars), for the model
lated for the structure factor based RMC models. A compar- resulting from RMC modeling the pdf of the DLCA model, with constraints
ison between histograms for DLCA(r)-based RMC (with (shaded bars) and for the model resulting from RMC modeling the structure
constraints), and ful(Q)-based RMC (with constraints) is factor of the DLCA model, with constraints (full bars).
provided byFig. 4c Note that even though the onefold co-
ordinated particles are still overrepresented, agreement with  In order to demonstrate the applicability of the reverse
DLCA results is significantly better for the structure-factor- Monte Carlo approach at lower densities, the DLCA gel with
based RMC model. p = 0.075 was also considered.fig. 53 the RMC fit (with
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Fig. 5. (a) Reverse Monte Carlo fit wittonstraints (symbols) of the struc-
ture factor for the DLCA model ap = 0.075 (solid line) over the entire
scattering vector range. (b) Paisttibution function as derived from RMC
modeling of the entireS(Q) (dotted line), as compared to the pdf of the
DLCA model atp = 0.075, emphasizing the region of the second maxi-
mum of theg(r). (c) Same as (b), but emphasizing the region of the shallow
minimum of theg (r).

constraints) to the full structure factor is compared to the
DLCA S(Q) at this lower density. fie agreement is nearly

have been many indications (see, e.g., RE2]) that the
RMC algorithm usually finds greater difficulties when fitting
sharp features (such as the contact value and second maxi-
mum of DLCA pdfs) at lower density. The pair distribution
function resulting from fitting the DLCAS(Q) is compared

to the DLCA pdf inFig. 5b(low r) and5c (high r). Again,

the reproduction of important sharp features (second max-
imum and minimum) is nearly as successful as it was at
p =0.1, as can be seen Kig. 5h

4. Concluding remarks

It is demonstrated that by means of the reverse Monte
Carlo method for structural modeling, it is possible to re-
trieve important properties of a gel-like structure that had
been prepared by DLCA. Sie it is commonly accepted
that diffusion-limited cluster aggregation provides a good
model for the structure of colloidal and basic aerod21lq,
we suggest that the RMC approach can provide an equally
good representation of the aerogel structure. The advantage
of RMC, however, is that it can be applied directly to the
experimental structure factor.

It was also shown that for a DLCA structure, the wide-
angle region of the structure factor contains important infor-
mation, particularly about features of the pdf at lowalues.

Itis suggested that the SAS region is insufficient for a proper
characterization of the small scale structure, i.e., in the non-
fractal region. Larger scale faaks (the fractal region and
intercluster correlations), on the other hand, are described
with appropriate accuracy. To further clarify this issue, neu-
tron diffraction experiments at the Budapest Research Reac-
tor (Hungary) on different silica gels are underway.

Very recently, it has been proposed that for the accurate
determination of the fractal dimension from SAS data, one
has to have the pair distribution function of the system in
guestion[22]. We suggest that for this purpose, the reverse
Monte Carlo method may serve as convenient and reliable
tool with similar accuracy.

Throughout the present work, the RMC algorithm ap-
plied moves of individual particles only. An important future
extension of the algorithm may be the introduction of move-
ments of clusters, in a similar manner as it is done in the
DLCA method. This development seems to be necessary for
creating fully connected networks of particles.

For porous materials, like silica aerogels, the characteri-
zation of the network of pores is perhaps as important as the
characterization of the network of particles. For this purpose,
it may be feasible to apply the particle insertion method de-
scribed in Ref[26] for the models prepared by either DLCA
or RMC. This may enhance our understanding of the struc-
ture of silica aerogels.

Finally, it has to be mentioned that almost all real col-
loidal systems have some degree of polydispersity; for this

as good as for the higher density case, even though theraeason, a more elaborated code will have to deal with this
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difficulty. One possible way is to change the particle diame-
ters during the RMC calculation, in the fashion of Hé&#].
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