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Based on the Kubo formalism, electronic transport in macroscopic quasiperiodic systems is studied by
means of an efficient renormalization method, and the convolution technique is used in the analysis of two- and
three-dimensional lattices. For the bond problem, we found a transparent state located at a center of self-
similarity and its ac conductivity is qualitatively different from that observed in mixing Fibonacci chains. The
conductance spectra of multidimensional systems exhibit a quantized behavior when the electric field is applied
along a periodically arranged atomic direction, and it becomes a devil’s stair if the perpendicular subspace of
the system is quasiperiodic. Furthermore, the dc conductance maintains a constant value for small imaginary
parts(#n) of the energy and decays whem> 7., where . is proportional to the inverse of the system length.
Finally, the spectrally averaged conductance shows a power-law decay as the system length grows, neither
constant as in periodic systems nor exponential decays occurred in randomly disordered lattices, revealing the
critical localization nature of the eigenstates in quasicrystals.

DOI: 10.1103/PhysRevB.70.144207 PACS nuniber71.23.Ft, 72.15-v, 05.10.Cc

I. INTRODUCTION For instance, the decagonal quasicrystals can be visualized as
a periodic stacking of quasiperiodic layers and their Hamil-
Since the discovery of quasicrystalline alloys in 1984, thetonian can be expressed as a sum of the periodic and quasi-
electronic transport in quasiperiodic systems has been a coperiodic parts within the nearest-neighbor tight-binding ap-
troversial subject, because it is not expected to be ballistic agroximation. In this paper, we report an extension of the
in periodic lattices neither diffusive as in randomly disor- previously developed renormalization method to the bond
dered oned.These alloys possess an extremely low conducproblem and an analysis of the electronic conductance in
tivity for their metallic constituents, and become more resistwo- and three-dimensional quasiperiodic systems by using
tive when they are more perfect, which are believed to be ge convolution technique.
consequence of the quasiperiodicity of the systeTineir This article is organized as follows: Sec. Il defines the
optical conductivity is also unusual, showing a linear fre-system and introduces the renormalization method. Its itera-
quency dependence and no Drude péakewadays, there is  tive formulas are given in Appendix A. In Sec. Il the dc and
a consensus that the eigenvalue spectrum produced by a qug conductivity spectra of a Fibonacci chain with two kinds
siperiodic potential is singular continuous and the associategf bonds are analyzed in comparison with those of the mix-
eigenfunctions are criticdiThe relationship between this ex- ing problem. In particular, their scaling behaviors are studied
otic localization of states and the anomalous transport phen detail. In Sec. 1V, the electrical conductances of two- and
nomena is not fully understood. three-dimensional quasiperiodic systems are investigated by
In quasiperiodic systems, concepts like the reciprocameans of the convolution method, which is carefully ad-
space become useless, and then the real-space renormaligeessed in Appendix B. Quantized conductance spectra are
tion technique seems to be the unique medium to investigatgbtained for periodic systems and these spectra become frac-
truly macroscopic lattices® Recently, we have developed a tal ones when in the perpendicular direction to the applied
novel renormalization method for the Kubo-Greenwood for-glectric field the atoms are quasiperiodically arranged. The
mula in mixing Fibonacci chains, finding scale invariances inspectral average of the conductance reveals a power-law de-
the dc and ac conductivity spectra around the transparemfay as the system length grows. The effects of the imaginary
statel© It is important to mention that this renormalization part () of the energy on the Kubo conductivity is also ana-
procedure is difficult to be extended to multidimensional sys{yzed. An analytical solution of this analysis for the periodic

tems, since for each generation onIy the interior sites of th@ase is given in Appendix C. Fina”y' Sec. V summarizes the
lattice can be renormalized and all the border sites should b@suhs and pro\/ides some conclusive remarks.

explicitly kept in order to calculate the Green'’s function of
next generations, i.e., for &dimensional system, the num-
ber of border sites increases as a system dfl
dimensions;! exceptd=1 where the number of border sites  There are various manners to build a Fibonacci chain, for
is always two. An alternative way to address the multidimen-example, by using two sorts of bondsond probleny two
sional quasiperiodic systems is through the convolution techkinds of atomgsite problem or a combination of botkmix-
nique, when the Hamiltonian of the system is separdble. ing problem.® In this paper, we study the bond problem, in

Il. THE FIBONACCI CHAINS
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which two bond strengths, andtg, are organized following 119 o Perdn oo s s
the Fibonacci sequence and the nature of the atoms are ¢ 1951 ' M .
sumed to be the same, i.e., their self-energigs0. This 100 1

problem has the advantage of being easily extendible to mu 45
tidimensional quasiperiodic lattices, as shown in next sec

0.90

tions. Let us define the first and the second generations of trg> | () Miing.o=0 (6) Mixing, w=0 ] 10°
Fibonacci sequence &5=A andF,=BA, respectively. The & '°f T | P
next generations are given Wy,=F,,®F, , containing 5 O_QQWWV\MAN\NVW\MNUE i
N(n) atoms for a chain of generatiom For instancefs & 10
=BAABABAA For the sake of simplicity, a uniform bond 0.98 ——————+—— ' ' ' ' 10°
length (a) is taken. Along the applied electric field all the T i 110

systems considered in this paper are connected to two sen
infinite periodic leads with null self-energies, hopping inte- 05 =
gralst and a lattice constara, in order to resemble the

0.0 1 1 1 1 1

measurement conditions. The effects of different boundan -60 40 -20 0 20 40 50
conditions on the electrical conductivity have been analyze: Cu/it Chollt
in Ref. 10.

In order to isolate the quasicrystaliine effects on the FIG. 1. The dc and ac Kubo conductivitigs(u, »,0)] for a

physical properties of the system, we consider a simpl@eriodic chain[(a) and (@)] of generationn=41 with y=1.0, a

nd tiaht-bindina Hamiltonian mixing Fibonacci chairf(b) and (b")] with n=41 and y=taa/tag

sband tight-binding Hamiltonian, =0.88, and a bond Fibonacci chdift) and (c')] with n=40 and
H= 2 {t 42D+ 2]+ oy liDG - 2P (1) é;:st/%leoéggiﬁr:stkfnzytitgrinr:aar'e connectefd Lo two penp_cilc linear

i ginary part of the energy i5'4@.

The transparent state is locatedwat 0. The ac conduction behav-

wheret; is the hopping integral between nearest-neighbokyrs for ,,=-1.88344] in the three systems are illustrated by gray
sitesj andk. The analysis of the electrical conductivily) is  |ines.

carried out by using the Kubo-Greenwood formtfla,

For the quasiperiodic case, we have developed an efficient

o]

 2e% f(E) - f(E + ho) renorm_allzatlon method for the Kubo-Greenwood _forrrﬁ?la.
o(w,»,T) = lim 5| dE In particular, the recursion formulas corresponding to the
Qe M ho bond problem are given in Appendix A, which allow us to

—00

evaluate the trace of E@2) in an iterative way. For direct
XTrpIm G (E+Zw)pImGH(E)], (2 calculations of Eq(2) the computing time grows as a third

) P power of the system size, whereas using the renormalization
where() is the volume of the systenG*(E) is the retarded rocedure it grows linearly with the number of generation,

one-particle ~ Green's  function, f(E)={1+exd(E je. grows logarithmically with the system size. For ex-
-m)/kgT]} ™ is the Fermi-Dirac distribution with Fermi en- ample, for a system with 988 atoms the direct-calculation
ergy u and temperaturd, and p is the projection of the time is 3932891 ms versus 27 ms if the renormalization
momentum operator along the applied electric-field direcimethod is used. It would be worth emphasizing that the re-
tion. The latter can be determined by using the relatipns sults obtained by both methods are exactly the same. There-
=(im/#)[H,x] and x:ijj|j><j , beingx; the coordinate of fore, in the rest of this paper we will use the renormalization

site j. Thus, in the Wannier representation it is method to evaluate the Kubo-Greenwood formula.
ima. Figures 1a)—1(c), respectively show the dc conductivities
P= 72 {tj,j+1|j><j +1| —tj_l'j|j><j -1} (3) aroundu=0 of a periodic, a mixingn=41) and a bondn
i

=40) Fibonacci chains. The on-site energies are null in these
As a limit case, let us consider an infinite periodic Iinearthree systems and the hopping-parameter riagjoare y=1

chain with a lattice constamt null self-energies and hopping Or the periodic, y=tx,/t,5=0.88 for the mixing andy

integralst. The conductivity of its segment & atoms afT =1a/1,=0.88 for the bond problem, be'ng\B_,tA_t' The

=0 can be analytically calculated, as shown Ezp), imaginary part of the energy in the Green’s function is
10"14t|. Notice that in Fig. {c) 0(0,0,0=0p, i.e., there is a

o(w,0,0) = 8et’a _ (ﬁ)z transparent state in the bond problem. It can be analytically
pr @ (N - 1)#3w? 2t proved by means of the Landauer formula, in which the con-

bl (2 ductivity is proportional to the transmittancer) of the

x{41-cod (N-1 __hol(Zt) systemt® In particular, for =0 the transmittance is given
(N-1)— 1 @
V1-[ul(20)] by?3
where|u|<2|t| and the system length @=(N-1)a. In the _0)= 4 5
limit of w— 0, the dc conductivity is nu=0)= (Myy = Myo)2 + (Mg + Myy)?’ (6)
_ _ é‘ _ wherem; are elements of the transfer matfiM(n)] defined
0p=0(1,0,0 =—(N-1). (5) j
1 1 7Tﬁ by
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M(n):MN MN _l"'Ml, (7) ' ' I ' I ' I
| S 101 e f(1) = d(y) -
being I ge) o O fy)=b(y |
/O o
U= a t||_—1 0.9 /,o o\\ 1
Mi=| G e | (8) | ,/'O o ™.
1 0 %8 jo o I
.. . . . 3 i "’o O .
It has been shown that for mixing Fibonacci systems with+=" | / o T
ap=ag=0 there is a transparent stateuat O for generations ' o o )
n=3i—1, beingi=1,2,...18 Now, for the bond problem, the o
elements of the transfer matrix evaluated st0 can be 067 o o 1
written as - o o]
X 05F0
m(n) = f{ [Z [+ i = j| {0 (- D (n+i- 1)yt T
(1) (2 | J|){ 0= 2754 Y 05 1.0 15 2.0 25
— (- DS (n+1)y) - F(x+ D), (9) r=t/t,
wherei=1,2,j=1,2, y=tg/ts, f(k)=[1+(-1)¥]/2, and the FIG. 2. The conductivity scaling factgdefined in the teytfor

integer numbers x=nmod 3e[0,2], y=(n+2)mod6 the bond problemb(y) (open circley and the scaling index of the
€[0,5], and z=(n+5) mod 6< [0,5]. Therefore, the trans- density of states at=0, d(y) (dashed ling
mittance[Eqg. (6)] is given by

4 I1l. MULTIDIMENSIONAL SYSTEMS

. 10
fx)(y+ y‘1)2+ 4f(x+ 1) (10 Let us consider a multidimensional lattice, in which one

or more directions are quasiperiodic, and their Hamiltonian
(H) is separable, i.,eH=H;®I , +I;®H , whereH, (I,) and

(u=0)=

Notice that the transmittance is one whenl, i.e., there is a
transparent state at=0 in the bond problem for generations H, (I,) respectively stand for the Hamiltoniathe identity

n=3i+1, beingi=1,2,.... . .
On the other hand, the ac conduction involves not onlyoft;mrbeesrtsga;?g;h: p?;ﬂlzlléi;?.cp?gsn?_:;fr fﬁgsﬁt(;?.
states at the Fermi level, but also those within an interval o ! P appil IC hield. 1aking aav
age of the convolution theoretithe electrical conductivity

fiw around the Fermi energy, wheee is the angular fre- 2 of this multidimensional tem can be written
guency of the applied electric field. In Figgal), 1(b’) , and (A;pc;ndi;B) u ensional system can be en @ase

1(c’) , the ac conductivities ai=0 (black liney and atu
=-1.88348] (gray lines are shown for periodic, mixing and L *
bond problems, respectively. Observe that the ac conductiv- _ T o L
ity evaluated at the transparent states of periodic and mixing ol = Qlf dyo'(u =y, HDOS (),  (12)
systems have a quite similar behavior, which is totally dif- -
ferent from that of the bond problem, since in the latter theg,
transparent state is located at a fractal céhtand sur-
rounded by nontransparent states, instead of transparent and 1

almost transparent states in periodic and mixing cases, ‘T(M’“"T)‘Q_lz o(u-Ego,T), (13
respectively)® For nontransparent states a noisy behavior is p

found in both mixing and bond problems. Moreover, all thewhere ¢ is the electrical conductivity of the parallel sub-
dc and ac conduction spectra in Fig. 1 scale with the inverssystem;() ;, DOS" andE; are, respectively, the volume, the

of system size by means @&@=(N-1)[b(y)]®™6, where density of states, and the eigenvalues of the perpendicular
b(y) is one for the periodic and mixing problerffsFor the ~ subsystem, i.e.H |8)=Eg-B). In Figs. 3a) and 3b), we
bond problemb(y) (open circleg is plotted in Fig. 2 and show the dc electrical conductances at zero temperature, de-
compared with the scaling inded(y)] of the density of fined asg(x,0,0=0(x,0,0 Q, /€, for 2D and 3D peri-

states(DOS) at =0 given by’ odic lattices, respectively. Figuregc3 and 3d) exhibit the
~ . electrical conductances of the same systems as in Figs. 3
d(y) = In[(v5 + 1)/2] and 3b) except that in the perpendicular directions to the
IN{VL+4[1+(y— y )4+ 2[1 +(y— y HZ4]1? applied electric field the atoms are arranged following the

(11) bond Fibonacci sequence with=tz/t,=0.88. The magnifi-
cations of Figs. @&)—3(d) are, respectively, illustrated in
Notice that these two scaling indexes have a similar deperfigs. 3a')-3(d’) . The size in each direction of these lattices
dence ony=tg/t,, since they are tightly related through the is of 165580142 atoms, corresponding to the generation
diffusivity, as given in the Einstein relation. =40, and along the electric field the system is connected to
In the next section, we will analyze the electronic trans-two semi-infinite periodic leads with hopping integréls
port in two- and three-dimensional quasiperiodic lattices. These spectra are calculated by using @8) and the imagi-
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2x10° ———1————1—1— 2x10"°
(a)2D (b)3D
8 16
1x10" - \ ; T o -1 1x10
0 ,amglmgfq" :D e /A ,smfmfmﬁl“ . M. T 0 FIG. 3. The dc electrical conductances at zero
L L temperature foa) 2D and(b) 3D periodic lat-

o (C) 2D (d) 3D tices, (c) 2D and(d) 3D lattices with quasiperi-
(®)) - T . odic order(y=tg/t,=0.88 in the perpendicular
= directions to the applied electric field, atg) 2D
Q 1x1 08 B 41 =4 1x1 016 and (f) 3D totally quasiperiodic systems, i.e. the
o & RN g bond Fibonacci sequence is obeyed in every di-
=. g ‘ 3 rection of the systems. The magnifications of
\6)’ i @ T A T figures (a—d are, respectively, illustrated in

sodia s stz saoomes 3(a’)-3(d’). Each direction of these lattices has

0 O 0 165580142 atoms and along the electric field the

;| (e)2D (f) 3D 15 system is connected to two semi-infinite periodic
4x10° - 4x10 leads with hopping integrats The imaginary part

. 15 () of the energy is 10*Yt| for ¢" and 103[t| for
3x10° | T 3x10 DOS".
2x10" - + 2x10'°
1x107 - -+ 1x10™

0 1 I 1 I 1 I 1 1 1 I 1 1 I 1 1 I 1 1 O

4 2 0 2 4 -3 0 3 6

w/t| wlt]

nary part(») of the energy takes I&4t| for o' and 10°3|t| for ~ =N,a) for 2D periodic latticegopen circlegand doubly qua-
DOS*. The energy mesh of these spectra has a spagipg  siperiodic latticegsolid circle9, with the same parameters as
of 1074t| and for the insets a mesh of 10000 energies is usedn Fig. 3. Observe thatg) grows linearly withN , that is
Notice that for 2D periodic systems there are perfect quan<d)=go(¢N, +6), where for the periodic latticese
tum steps in units ofj,=2¢€?/h, as observed in 2D electron =0.56533 and$=0.77847, and for the doubly quasiperiodic
gas deviced® However, in 3D periodic lattices the quantum lattices ¢=0.12923 and5=-0.10234. These values ofare
steps are not uniform, due to the degeneracy and distributiossentially zero if they are compared with the system width
of eigenvalues, in Eq. (13). For partially quasiperiodic 2D (~10%), and the slopéy) is expected to be 1 for the periodic
systems[see Fig. &)], self-similarly distributed quantum case if the parallel linear chaiitsr conducting channelsire
steps are observed. In FigseBand 3f), we respectively totally independent. Moreover, when the system length
show the electrical conductances of 2D and 3D totally quag'ows.(9) is a constant for the periodic case and it decays as
siperiodic systems, i.e., the bond Fibonacci sequence & Power law[(g)=goéN;"] for the quasiperiodic system, as
obeyed in every direction of the system. Observe that theseported for finite Penrose latticé¥We foundv=0.0847 and
noisy spectra are one order of magnitude smaller than thoge=103745674.8369 for doubly quasiperiodic case. Figures
of partially quasiperiodic systems and the quantum steps aC) and 4d) present the averaged conductances for three-
disappeared. dimensional systems, with the same parameters as 2D sys-
In order to analyze global behaviors of the spectra in figiéms shown in Figs.(4) and 4b). These conductances have

ure 3, a spectral average of the conductance, defined as @ very similar behavior as 2D-system ones, except that for
periodic casee=0.44612 and5=-2.84776<1C% and for

quasiperiodic system=0.10324, §=9.15914x 10', v

=0.08492, andt=13747698529064202. Agair, is negli-
: gible in comparison with the cross section areal0'),

therefore, we obtain a general relationship as

<g> = gOé’NLNr}’
wheref=&/N; =oN/=0.5.

f dug(u,0,0DOS(w)

(9=
J du DOS(w)

is investigated and it is plotted in Fig(a} versus the width
(2, ~N,) and in Fig. 4b) versus the system lengty,
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FIG. 6. The spectral integral of the conductahfeéug(x, )] as
function of » for a 3D periodic latticgopen circleg and 3D bond
Fibonacci lattices withy=tg/t,=0.88 (solid circleg and y=0.75
(solid triangles.

[fdug(w, )] in units of the perpendicular-subsystem size as
a function of  for a 3D periodic latticqopen circley and
3D bond Fibonacci lattices with=tg/t,=0.88(solid circleg
I andy=tg/t,=0.75(solid triangle$. Notice the existence of a
critical value(,), i.e., the integrals maintain the same value
FIG. 4. Spectral average of the conductat@eversus the width  for 7< 7, and diminish following a power laws ?¢) when
(@, ~N,) and the lengthfL;=Nja) of the system are, respectively, 5> 5,  beinge=1 for the periodic latticeg=0.90353 and
shown in(a and (b) for 2D, (¢) and (d) for 3D, periodic(open 0 7585 for bond Fibonacci systems wit=0.88 and 0.75,
circles and totally qu_asiperiodic latticesolid circleg, with the respectively. It is interesting to contrast with the DOS spec-
same parameters as in Fig. 3. trum, whose spectral integral is always a constant, indepen-

her i . q idel died f fth dent from 5. Furthermore, we have observed that- N[l
Another interesting and not widely studied feature of the,, o, largen the integrals converge a unique value. These

de-conductance spectrum is its dependence on the imaginapy.s could be interpreted as the inelastic-scattering effects
part(») of the energy in the Green’s function. In Fig. 5 We \ohresented byy: when 7< 7, the inelastic-scattering free

show the variation ofy(u,7)/gp versusz and u, for the ot s |arger than the system length and then the conduc-

the conductance spectrum decreases keeping its shape. Fiifferent systems reduce to the same minimum value;as
ure 6 exhibits the spectral integral of the conductancgncreases, where the lattice-order participation is overcome
by inelastic scattering effects. For 1D periodic systems, we
found an analytical solution of the dc conductivity at zero
temperaturé¢o(u, 5)] for finite values ofz, as shown in Eq.
(C6), and it has a simple forrfEq. (C7)] for ©=0.

IV. CONCLUSIONS

In summary, we have extended the renormalization
method to the Kubo-Greenwood formula in bond Fibonacci
systems. Combining with the convolution technique we are
able to analyze the electronic transport in multidimensional
macroscopicquasiperiodic systems, when their Hamiltonian
is separable. It would be important to mention that this
analysis has been performed in aractway within the
Kubo-Greenwood formalism.

FIG. 5. The variation of dc electrical conductance at zero tem- FOr the one-dimensional case, the results of the bond
perature[g(x, 7)/go] as a function of the imaginary part of the Problem show a qualitatively different dc and ac conductivity
energy(7) and of the Fermi energgu) for a 3D totally quasiperi- Spectra with respect to those of mixing Fibonacci systems.
odic system, as shown in Fig(f3 We found a new kind of transparent state, which is located at
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a fractal center and its transfer matrices do not commute as
in the mixing casé?

The dc electrical conductance of two- and three-
dimensional Fibonacci systems show a quantized behavior
when the system is periodic along the direction of the ap-
plied electric field, and these steps are redistributed in a self-
similar structure when the system becomes quasiperiodic in
the perpendicular direction to the electric field. The spec-
trally averaged conductance shows a power-law decay as the
system length increases, similar to that happened in Penrose
lattices. This power-law decay reveals the critical localiza-
tion nature in quasiperiodic systems, contrary to the constant
and exponential decay behaviors in the periodic and ran-
domly disordered systems, respectiv@ly.

The imaginary partn) of the energy has a relevant par-
ticipation in the Kubo-Greenwood formula. We find a critical
value (7,) and it is inversely proportional to the system

PHYSICAL REVIEW B70, 144207(2004)

+D(E,,EX,n)G, (E})G_r(E¥)
+D(E“,E;,nNG_ ((ENG R(E;)
+F(E,, E NG (E,)Grr(E")
+F(E",E,, NG (E)GrR(E,)
+1(E,,E NG r(E;)Grr(E")
+1(E“,E,,n)G_r(E")Grg(E;)
+ J(EZ, EX Gy (E) + J(EX,
+K(E, E )Gy n(E”) +K(EX,
+L(EY, E* n)Grr(E") + L(EE
+Z(E!,E“,n),

1=

wvn)GL,L(EK)
E. MG r(EY)

N GrR(EY)

length. For»n< 7, the dc conductance is independent fromWwhere the subindexdsandR denote the left- and the right-
respectively. The coefficien&&(E;,E,,n),

specific values ofy and for »> 7, the conductance decays end atoms,
with 7, which can be understood i is interpreted as the B(E;,Ez,n),...,
inelastic scattering strength in the system. This analysis sugndE, eitherE; or E*, can be iteratively obtained from those

Z(E;,E,,n) in the last equation, being;

gests the use ofy< 7, for electric conductance calculations of generationsi—1 andn-2, as given in the following:

if the inelastic scattering is neglected.

Finally, this renormalization method can be extended to
analyze other physical properties, such as the lattice thermal
conductanc® in quasiperiodic systems. This study is cur-
rently in progress.

A(ElaEZ:n) == [AC(El!EZ!n) - AC(EZIElvn)]zl

B(E1, Ez.n) = 2[A(Ey, Ex,n) — Ad(Ep, Eq,n) [Be(Ep Eq,N)
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APPENDIX A: RENORMALIZATION FORMULAS FOR
THE BOND PROBLEM

D(Eq, Ezn) = 2[A(Ey, Bz n) — Al(E,Eq,n)

The trace in the Kubo-Greenwood formig. (2)] for a
Fibonacci chaifFC) with two kinds of bonds can be written
as

TrlpIm G*(E + w)p Im G*(E)]=S(E,,E*,n) - S(E. ,E",n)
- sE;1E+1n) + gE;a E_an)y
whereE*=E+i», E,=E+hwtiy with »— 0%, and

N(n)-1

SELESN= 2t a1 261 k(EL) Gyt j(EY)
k=1

Gj+1x+1(EL) Gy j(EY) — Gj ((E) Gy j+1(EN],

being v and « either + or —. These partial sums,
S(E!,E*,n), may be expressed in terms of the Green’s func-
tions evaluated at the extreme sites of the FC as

S(E..E“,n) =A(E,,EX,n)G_ | (E;)G (E")
+B(E,,E",nN)G_r(E;)G r(E")
+ C(E,,E*,n)GrR(E,)Grr(E")

144207-6

Bc(Eq, Ezn)] + 2[C(E,Epn) —
X [CC(EZ Ela n) - DC(Elv E21n)]y

= Ce(Eg,Exn)],

- C(Ey,Exn)],

DC(EZIElvn)]

C(Ey,Ezn) = = [B(Ey, Epn) = Bo(Ep, Eg,n) %,

][DC(E21 Elin)

F(E1,Ezn) = =[Ce(Ey, Bz n) = D(Ep, By, )2,

I(E1,Ez,n) = 2[Bo(Ey, Ez,n) = Bo(Ep, Eq,n)J[De(Ep, Eq,N)

J(E1,Epn) =J(Ep,Exn—1) + 6p(E,nF(Ey, Exn—1)

+ 0, (E;,MK(Ey, Ep,n — 1) + 62(E1,n) G(E, 1)

X[C(E]JEZ!” - 1) + A(E11E21n -

2)

+Ao(E1, Eo n)] + 6p(Eo,n) 61(Eq,N)
X[1(Eq,Ez,n— 1) + By(Eq, Ep,n)] + 62(Eq,0)
><[L(E1, E,,n-1) +J(E;,Esn— 2)],
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K(Ey, Ez,n) = 2600(E2,n) 61(E1, ) O2(Eq, N[ C(Ey, Epn - 1) + 0(E2,n)Dc(Eq, Ezn = 2),
+A(Ey, Epn—2) + Ay(Ey, Ep,n)]
+ 0p(E2,n)Co(Ey, Ep,N) + 260,(Eq,n) 05(E4,N)
X[L(Ey,Ezn—1) + J(Ey, Epn = 2)] + 65(Ez,N)
X{01(Eq,m[D(ExEy,n—2) + Do(Ey, Eq,n)]

Cc(E1,Ezn) = 61(Eq,n) 0x(Ex N[ A(EL, Ezn = 2)
+ BC(E]J Ez, n- 1)] + 02(E2,n)CC(El, Ez,n - 1)
+ 6,(E1,n)C(Ey, Exn—-2),

+ 02(E1,n)[| (El,Ez,n - 1) + BO(El,Ez,n)]} DC(EIIEZIn) = 01(E21n) 92(E11n)[AC(E11 E21n - 2)
+ 05(E1, N)K(Ey, Ex,n— 1) + Bo(Eq, Ep,n = 1) ]+ 65(Eq,n)D(Eq, Ezn - 1)
+ 0,(E;,nK(E;,Epn—2), + 01(Ex,n)De(Eq, Epn—2),
L(Ey,E,,N) = L(Ey,Epn— 2) + 6y(E,,n)F(Ey Ep,n = 2) Ao(E1, Ep,n) = 2[A(Eq, Epn— 2) — Al(Ep, Eq,n - 2)]
+ 0(E1,NK(Ey, Bz n = 2) + 65(E4,1) (E,N) X[Bu(Ez Ey,n = 1) = B(Ey, Epn = 1)],
X[C(E Epn =) + AlBL Epin—2) Bo(E1,Ez.N) = AA(Ey, Epn - 2) ~ A(E, Epn - 2)]
+ Ao(Eq, Ep,n) ] + 00(E,n) 0(E1,n)[D(E, E1 0 X[Du(EpEpn— 1) - C(Ey, Epn—1)],

= 2) + Dgo(Ep, Eq,n)] + 65(Ey,n)[L(Ey, E;n— 1)

+ JELEnn-2)], Co(E1,Ezn) = 2 D(Ey,Ex,n—2) - C(Ep Eqn - 2)]

X[De(Eg Eq,n—1) = C(Eq, Ezn—1)],
Z(E1,Exn) = 6o(Ep,n)[L(Ey, Epn—1) + J(Ey,Epn—2)]

+ Z(El, Ez,n _ 1) + GO(Elvn) 00(E2,n) DO(Ell E21 n) = 2|:BC(E11 E21 n- 1) - BC(E21 Elvn - 1)]

X[DC(EZlElln - 2) - CC(EZL! E2!n - 2)]:

X[C(ElIEZIn - 1) + A(E11E21n - 2)
_ being E either E; or E,. The effective hopping integral,
+ Ao(Er, B+ 6B MIL(E2 B0 = 1) t(E,n), and the effective self-energies of the left and right
+J(EpEq,n—2)]+ Z(Ey,Epn - 2), extreme sitesE, (E,n) andEx(E,n), are given by
where t(E,n) =t(E,n— Dt(E,n - 2)6y(E,n),

- _ _ _ _ -1
bEW =[E-EEn-D-EEN-2]7, EL(E,n) = E (E,n— 1) + t3(E,n - 1) 6,(E,n),

6:(E,n) =t(E,n—1)6y(E,n), 6,(E,n) =t(E,n—2)6o(E,N), EL(E.n) = En(E.n - 2) + 2(E,n - 2)6(E.1)
rIE,N) =ER(E,N— n-— o(E,N).

Ad(Eq, Bz n) = A(Ey, Epn— 1) + 61(Eq,n) 61(Ep,N) For the case of free boundary conditions, the Green’s
X[ALEy,Epn = 2) +By(Ey,Epn—1)] functions at the ends of the system are
+ 01(E,n)Cy(E1,Ep,n— 1) G L(E) =[E - Er(E,m]/ye,
+ 0y(EumD(Ey Ean = 1), GralE) =[E-E(EN s,
Bo(E1,E2,n) = Bo(Ey, Ez,n = 2) + 65(E1,n) 2(E,N) G, /(E) = t(E,n)/ ye,
X[A(E1,Eon—2) + Bo(Ey,Epn - 1)] whereys=[E-E, (E,n)] [E-ER(E,n)]-t3(E,n), and for the
+ 6,(E1,n)C(Eq,Epn—2) case of finite-lead boundary conditions, they are

t3(E,m) t%(E,n) }‘1

G_L(E) =1 E-EL(E,n) - ExelE,m) - -
LL(B) { LB = Erel B = ) T E— EEn) — ELo(Em) — B(E m)/LE - EneEm)]

t2(E,m) t4(E,n) }‘1

Crr(E) = {E BN B B - e Em T E—EL(En) - ExeEm) - BEMIE - ELp(E.m)]

_ Grr(E)(E,n)
{E - EL(E,n) - Erp(E,m) — t3(E,m)/[E - E_p(E,m) ]}

GLRr(E)
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wherem is the generation number of theeriodic leads built following the Fibonacci procedure, and their effective self-
energies and effective hopping are given by

ELp(E,m) = ELp(E,m— 1) + t3(E,m— 1)/yp(E,m),
Erp(E,M) = Egp(E,m = 2) + t5(E,m~ 2)/yp(E,m),

tp(E,m) = tP(Evm - 1)tP(E1m_ 2)/7P(E1m)1
being
')/p(E,m) = [E - ERP(Eim_ 1) - ELP(EIm - 2)]

Finally, the initial conditions for the iterative procedure products of them in the Kubo-Greenwood formula. In this
are case, we have

t(E,1) =tn, EL(E,1) =ERr(E,1) =0, tp(E,1) =t,

DOSE)=- = Im3, Gjj(E")
Erp(E,1) =E_p(E,1) =0, L

1
t(E,2) = tate/E, EL(E,2) =t3/E, Eg(E,2) = ti/E, = Im{D41(E",n)G | (E") + Do(E",n)Gr(E")

tp(E,2) =t¥/E, E p(E,2) = Exo(E, 2) = tp(E, 2), +D3(E*,n)G r(E") + D4(E*,n)}, (A1)
where
D1(E*,N) = D;(E*,N - 1) + ¢2(E*,n)[D4(E*,N - 2)
+D,(E*,N-1) - 1]+ 6,(E*,n)D5(E*,N - 1),

A(E;,Ey 1) = C(E,Ep, 1) =D(Ey,Ep 1) = 1(Ey,Ep D)
=0, B(Ey,Ep 1) = 213,

‘J(Elv EZ! 1) = K(Eb E21 1) = L(Ela E21 l) = Z(E]_1 E21 l)

=0, F(E,E, D)=L, D,(E*,N) = D,(E*,N - 2) + ¢5(E*,n)[D,(E*,N - 1)

+D(E",N-2) — 1]+ 6,(E*,n)D3z(E*",N - 2),
A(Ey,Ez,2) = —[t(Ey, 2) - t(Ep, 2) JAt3/13, B(EL,E,,2)

= 4[t2(E1,2) +t2(E2,2)], DS(E ,N) = 02(E -n)DS(E 1N - 1)

+ 01(E+,n)D3(E+, N - 2) + 202(E+,n) 01(E+,n)
C(Ey, B, 2) = —[t(Ey, 2) — t(E,, 2 JHA/S, X[D4(E*,N = 2) + D,(E*,N-1) - 1],

D(E1, B2 2) = 21EL ) =~ (B Do/t DA(E*,N) = D4(E*,N - 1) + D,(E*,N - 2) + 6,(E*,n)
4 ’ — Y4 ’ 4 ’ 0 ’

F(E1LE22 =—[t(E,2) +t(E 2% X[D4(E*,N-2) + Do(E*,N-1) - 1],
1(Ey, Ep, 2) = 2tA(E,, 2) — t2(Ey, 2) Italts, and the initial conditions are
+ —_ + —_ + —_ + -
IELEy2) = — t(Ey tglta, K(ELE,2) = 2(Ey, 2), Dy(E", 1) =D,(E",1) =1, D5(E",1) = D4(E",1) =0,
2 2
L(E11E212) == t(E212)tA/tB! Z(E15E252) = Ol D E+ 2)=1+ —tB D E+ 2)=1+ tA
l( ’ ) (E+)21 2( ’ ) (E+)21
Ac(Eli Ey, 1= BC(ElaEZa 1= CC(ELEZ! 1) =0, 2tgta 1
D3(E+12) = D4(E+12) =i

Dc(Ey, BEp 1) =ta, (E"?’ E*
This renormalization method is very efficient, as dis-
cussed in Section I, and it is recommended to gisadruple

precision for the numerical evaluations.

AJ(E1,Ey,2) = t3/E;, By(Ey,Ey,2) = t2/E,,

CuE1,E2) =0, D(Ey,Ep 2) = tate/Ey + tata/Ep.

For the case of the density of sta{@&0S), the renormal- APPENDIX B: CONVOLUTION FORMULA

ization procedure is much simpler, since only a sum of diag- For a given HamiltoniarH, the corresponding Green'’s
onal elements of Green’s functions is involved, instead offunction (G) can be expressed as
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(Ila)alk)
e (B1)

Gk(2 = 2 —E

wherez=E+i7 is a complex number, the eigenstatas>)
are determined byH|a)=E,|a), |I) and |k) are Wannier’s

functions of sited andk, respectively. Equatio(B1) can be
rewritten as

- 7—17 IM[G(2)] = X (|a)alkdE-E,),  (B2)

since

1
lim — = P(—) Fimd(X).
7—0 Xt 17 X
If His separable, i.eH=H;®1, +I;®H , its eigenvalues
and eigenfunctions can be respectively written BsE,

+Eﬁ and|a!B>:|a>|B>r WhereHH|a>:Ea|a>l HJ.|B>:EB|B>|

I, andl, respectively stand for the identities of the perpen-

PHYSICAL REVIEW B 70, 144207(2004)

s (rla)alk)i|BXAl)
a,B Z_(Ea+ EB)

G(r,j)(k,l)(z) =

wherer andk are site coordinates in the parallel subspace,
while j and| are site coordinates in the perpendicular sub-
space. Moreover, using E¢B2) we have

(rla)}alk)(j|B)BIh
% z+ho—(E,+Y)

G(r,n(k,l)(”ﬁw):fd oy —Ep)

o

_ 1 f oS, (e

T -0 o Z+ho—(E,+y)
XIm[Gj (y +i7')]

o

1
=-= lim fdyd,'k(z+ﬁw—y)
77,,7/_>0

—o0

dicular and parallel subsystem with respect to the applied

electric field. Thus, the Green’s function is given by

XIm[Gj (y +in')]. (B3)

In the Kubo-Greenwood formulgEq. (2)], the projection of the momentum operat@ is along of the applied electric
field, i.e.,p(k,,)(f,s)zp{‘(fdvs is in the parallel subspace. Using E&3) and(B2) one obtains

TrpIm G*(z+Ahw)pIMG*(2]= 2,

rjklLfsv,w

r.j.klfo
oo

1

r.jklfo

—00

oo

Powrj) MG jywn(Z+ w) Py t.9 MGt 90w (21}

> ol IM[G j)(Z+ fw) 1Pkt IM[Gt1)w,jy(D ]}

— > pvrf dxIm[Gy(z+ fiw = ) IM[Gj (x +i77')]

X Pt f dy Im[Gy, (= Y)IM[Gjj (y +i7)]

—00

oo

r.kl.fo

—00

B/

s}

r.kfo
—0

> | dyd, Im[Gly(z+%w~y)]pis IM[G, (z- y)] X [E 8y - Eﬁ)} :
B

> dx [ dyp, Im[Gly(z+ fiw = x)]ps IM[G}, (- y)]

X {2 1B B |1y ox Egr)][E (118) i)y - Eﬁ)}
B

(B4)

Therefore, considering DG$y):Eﬁ5(y— Ep), we obtain the well known convolution relationsHip

o(E,0,T) = Qij dyd'(E-y,», T)DOS (y),

where

(BS)
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o

(BT = lim :eiﬁ dEf(E)_;(f th) S ol Im[G (2 + o ol MG 2]
n— r.k,fu

—0o0

Finally, Eqg.(B4) can also be written as

o(E,0,T) = QLE dE-Epgo,T). (B6)
1B

This last formulation could particularly be useful for systems with a small cross section perpendicular to the applied electric
field, such as quantum wires and nanotubes.

APPENDIX C: KUBO CONDUCTIVITY OF PERIODIC (& - VENZ= 202)i2lt)]'*
CHAINS G (Ef) = !

. . _ _ V(ED? - (202

In this appendix we present an analytical solution of the
Kubo-Greenwood formula for a periodic chain Kfatoms, where E/=E,+i», E,=E or E,, and the imaginary part of
with lattice constant, null self-energies and hopping inte- /(E;)?-(2t)? should have the same sign as{Ef}=». Now,
gralst, saturated by two semi-infinite periodic chains with |et us define
the same parameters. The linear momentum operator for this

case is given b E2- 72— (2t)2 2|E
s given by cosg BT L dEly
imat . Ny A A
p=——2lii+ 1= liXi - 1l},
. _[El-Acos#) g (A sin(i2)
and then the trace in the Kubo-Greenwood forniig. (2)] cos = oltB » and sing = olt[B ,
can be written as ! !
Tr[p Im G*(E + fiw)p Im G*(E)] where
mat 2N(ﬂ)—l A| - \/(Elz_ 772_ 4t2)2+ 47]2E2,
== (7) > [im Gj+1k(Ex)IM Gyyqj(EY)
jk=1 and
1M Gjaq ((EN)IM Gy (E,) 5 - \/ |- VA cod¢/2) 2+ - VA sin(¢i/2) |2
-1Im Gj+1'k+1(E:))|m Gk,j(E+) = 2t 2t )
= Im G K(E;)IM Gyyq j21(EN], (€D Hence
beingE*=E+i7, E,=E+fiw, and thenE, =E+#iw+in with Bl
g);so . For a periodic chain, the Green’s function is given G (E) = |’r exdi(lj - K6 - 4/2)]. (c2)
VA

Substituting Eq(C2) in Eqg. (C1) and taking advantage of the dumb indexes, we obtain

mat\2 2 Mot .
_> —— > (BB lsin(|j + 1-K 6, - ¢/2)sin(k+1-j]6- ¢I2)
fi ] NAA k1

-8 X8I sin(lj =K, ~ g./2sin(k ][0~ ¢/2)}

TrpIm G*(E+%Aw)pIm G*(E)] = - (

=- (m—at)zi_{m - 1)[B,B sin(6, — ¢,/2)sin(0 - ¢I2) — sin(¢,/2)sin($/2)]
h ) NAA ¢ ¢ ¢
N(n)-2
-2 > (B,B)™(N-1-m)sinmd, - ¢,/2]sifms- ¢/2]
m=1
N(n)-2
+ > B™B™YN-1-m)sin(m+1)6, - ¢,/2]si(m-1)0- ¢/2]
m=1
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N(n)-2
+ > Bw”HB"“(N -1-m)sin(m-1)6,- ¢,/2]sif(m+1)0- ¢/2]}. (C3)

m=1
Using the following relations:
X — g ix
2i

sin(x) =

N(n)-2 n)-2
> (N-1-jcogjo-y)=Rey > (N-1-jexdi(je— (.
j=1 =1

N(n)-2 .
1- N-1

and

N(”E)‘Zj exili(ja — )] = expl= iy) = DEXHIN = D] + (N~ DexpliNey) + explia)

ot [1-exfia)]?

Then, Eq.(C3) is reduced to

2
TH{pIm G*(E + hw)p Im G*(E)] = - simﬂ{m D[B,B sin(0, - ¢,/2)sin(6— $/2) - sin,/2)sin(/2)]

e{ exili(ay ~ 7)1[B,B - (B/2)expliay) - (BU2)ex- iay)]
+R
[1-B,Bexpia)]?

X[(N=2) = (N - 1)B,B expliay) + (B,B)N texti(N - 1)y ]]

e{ exili(az - ) [B,B - (B2/2)expliay) — (BY2)exp-iay)]
-R .
[1-B,Bexpiay)]?

nm—a—m—Dmsam%wwmawwnmN—mmﬁ}, (C4)

wherea;=60,+6, ay=60,- 6, 11=(p,*+$)/2, andy,=(p,~ ¢)/2.
In the limit of »—0", we have B=B,=sin(¢/2)=sin(¢,/2)=1 and coép/2)=cog¢,/2)=0. Defining V(N)=1
—-cogN6H)cogN6,,) and S(N)=sin(NF)sin(NF,,), and using Eq(C4), Eq. (2) can written as

o

8e’%a f f(E)—f(E+ﬁw){ Lne 1)(V2(1)

o) = e ho 1)

—o0

+ S(l)> SN~ 1)V(l)},

as obtained in Ref. 13. Furthermore, whEn: 0, we havef(E)-f(E+%w)=0(E—u)— HE+hAw—u), hence

2 ’ 2
auummz—iﬁii——f { ZV(N - D( L) ab)—aN—Dwn}

m(N - Dhtw? (1)
pu—ho
__ 8ta _(ﬁﬂ . { L hel(2y) ]
_w<N—1)h3w2{1 2) || 1N o fwaor | (©9

On the other hand, using E¢C4) and in the limits ofw —0 andT— 0, Eq.(2) for finite » can be written as
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4e%a%t?
7QhA

o(u,0,0 = -

{(N - 1)[B?sir?(6— ¢/2) — sir(pl2)] - 2 sir?(a)[

PHYSICAL REVIEW B70, 144207(2004

(#W—m—n®¥+m—m¥}
(1-B??

:_4é¥€{m—1nanhwf—m%—a%a?+%—u5—<f+u%ﬂ

7QhA 8t2A

_in—«A—u%wf+mwa%®%WLwN—nm%+m—zn}

2t%(1-B?)?
and in the limitu—0,

#(0,0,0 = ca

_ da /T(a)i
mh[1 +(9/2t)?] 7

(C6)
2t2 - \W) o2 }
n%N—n[< 2 T €7

This formula reveals the existence of a critical valuen6f.), wherez.~ [t|//N. For < 7., o is essentially a constant and it

decays following a power law fon> 7.
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