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Based on the Kubo formalism, electronic transport in macroscopic quasiperiodic systems is studied by
means of an efficient renormalization method, and the convolution technique is used in the analysis of two- and
three-dimensional lattices. For the bond problem, we found a transparent state located at a center of self-
similarity and its ac conductivity is qualitatively different from that observed in mixing Fibonacci chains. The
conductance spectra of multidimensional systems exhibit a quantized behavior when the electric field is applied
along a periodically arranged atomic direction, and it becomes a devil’s stair if the perpendicular subspace of
the system is quasiperiodic. Furthermore, the dc conductance maintains a constant value for small imaginary
partsshd of the energy and decays whenh.hc, wherehc is proportional to the inverse of the system length.
Finally, the spectrally averaged conductance shows a power-law decay as the system length grows, neither
constant as in periodic systems nor exponential decays occurred in randomly disordered lattices, revealing the
critical localization nature of the eigenstates in quasicrystals.
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I. INTRODUCTION

Since the discovery of quasicrystalline alloys in 1984, the
electronic transport in quasiperiodic systems has been a con-
troversial subject, because it is not expected to be ballistic as
in periodic lattices neither diffusive as in randomly disor-
dered ones.1 These alloys possess an extremely low conduc-
tivity for their metallic constituents, and become more resis-
tive when they are more perfect, which are believed to be a
consequence of the quasiperiodicity of the system.2 Their
optical conductivity is also unusual, showing a linear fre-
quency dependence and no Drude peaks.3 Nowadays, there is
a consensus that the eigenvalue spectrum produced by a qua-
siperiodic potential is singular continuous and the associated
eigenfunctions are critical.4 The relationship between this ex-
otic localization of states and the anomalous transport phe-
nomena is not fully understood.

In quasiperiodic systems, concepts like the reciprocal
space become useless, and then the real-space renormaliza-
tion technique seems to be the unique medium to investigate
truly macroscopic lattices.5–9 Recently, we have developed a
novel renormalization method for the Kubo-Greenwood for-
mula in mixing Fibonacci chains, finding scale invariances in
the dc and ac conductivity spectra around the transparent
state.10 It is important to mention that this renormalization
procedure is difficult to be extended to multidimensional sys-
tems, since for each generation only the interior sites of the
lattice can be renormalized and all the border sites should be
explicitly kept in order to calculate the Green’s function of
next generations, i.e., for ad-dimensional system, the num-
ber of border sites increases as a system ofd−1
dimensions,11 exceptd=1 where the number of border sites
is always two. An alternative way to address the multidimen-
sional quasiperiodic systems is through the convolution tech-
nique, when the Hamiltonian of the system is separable.12

For instance, the decagonal quasicrystals can be visualized as
a periodic stacking of quasiperiodic layers and their Hamil-
tonian can be expressed as a sum of the periodic and quasi-
periodic parts within the nearest-neighbor tight-binding ap-
proximation. In this paper, we report an extension of the
previously developed renormalization method to the bond
problem and an analysis of the electronic conductance in
two- and three-dimensional quasiperiodic systems by using
the convolution technique.

This article is organized as follows: Sec. II defines the
system and introduces the renormalization method. Its itera-
tive formulas are given in Appendix A. In Sec. III, the dc and
ac conductivity spectra of a Fibonacci chain with two kinds
of bonds are analyzed in comparison with those of the mix-
ing problem. In particular, their scaling behaviors are studied
in detail. In Sec. IV, the electrical conductances of two- and
three-dimensional quasiperiodic systems are investigated by
means of the convolution method, which is carefully ad-
dressed in Appendix B. Quantized conductance spectra are
obtained for periodic systems and these spectra become frac-
tal ones when in the perpendicular direction to the applied
electric field the atoms are quasiperiodically arranged. The
spectral average of the conductance reveals a power-law de-
cay as the system length grows. The effects of the imaginary
part shd of the energy on the Kubo conductivity is also ana-
lyzed. An analytical solution of this analysis for the periodic
case is given in Appendix C. Finally, Sec. V summarizes the
results and provides some conclusive remarks.

II. THE FIBONACCI CHAINS

There are various manners to build a Fibonacci chain, for
example, by using two sorts of bonds(bond problem), two
kinds of atoms(site problem) or a combination of both(mix-
ing problem).13 In this paper, we study the bond problem, in
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which two bond strengths,tA andtB, are organized following
the Fibonacci sequence and the nature of the atoms are as-
sumed to be the same, i.e., their self-energiesa j =0. This
problem has the advantage of being easily extendible to mul-
tidimensional quasiperiodic lattices, as shown in next sec-
tions. Let us define the first and the second generations of the
Fibonacci sequence asF1=A andF2=BA, respectively. The
next generations are given byFn=Fn−1 % Fn−2, containing
Nsnd atoms for a chain of generationn. For instance,F5

=BAABABAA. For the sake of simplicity, a uniform bond
length sad is taken. Along the applied electric field all the
systems considered in this paper are connected to two semi-
infinite periodic leads with null self-energies, hopping inte-
grals t and a lattice constanta, in order to resemble the
measurement conditions. The effects of different boundary
conditions on the electrical conductivity have been analyzed
in Ref. 10.

In order to isolate the quasicrystalline effects on the
physical properties of the system, we consider a simple
s-band tight-binding Hamiltonian,

H = o
j

htj ,j+1u jlk j + 1u + tj−1,ju jlk j − 1uj, s1d

where tj ,k is the hopping integral between nearest-neighbor
sitesj andk. The analysis of the electrical conductivityssd is
carried out by using the Kubo-Greenwood formula,14

ssm,v,Td = lim
V→`

2e2"

pVm2E
−`

`

dE
fsEd − fsE + "vd

"v

3Trfp Im G+sE + "vdp Im G+sEdg, s2d

whereV is the volume of the system,G+sEd is the retarded
one-particle Green’s function, fsEd=h1+expfsE
−md /kBTgj−1 is the Fermi-Dirac distribution with Fermi en-
ergy m and temperatureT, and p is the projection of the
momentum operator along the applied electric-field direc-
tion. The latter can be determined by using the relationsp
=sim/"dfH ,xg and x=o jxju jlk j u, being xj the coordinate of
site j . Thus, in the Wannier representation it is

p =
ima

"
o

j

htj ,j+1u jlk j + 1u − tj−1,ju jlk j − 1uj. s3d

As a limit case, let us consider an infinite periodic linear
chain with a lattice constanta, null self-energies and hopping
integralst. The conductivity of its segment ofN atoms atT
=0 can be analytically calculated, as shown Eq.(C5),

ssm,v,0d =
8e2t2a

psN − 1d"3v2F1 −S m

2t
D2G

3H1 − cosFsN − 1d
"v/s2td

Î1 − fm/s2tdg2GJ , s4d

whereumuø2utu and the system length isV=sN−1da. In the
limit of v→0, the dc conductivity is

sp = ssm,0,0d =
e2a

p"
sN − 1d. s5d

For the quasiperiodic case, we have developed an efficient
renormalization method for the Kubo-Greenwood formula.10

In particular, the recursion formulas corresponding to the
bond problem are given in Appendix A, which allow us to
evaluate the trace of Eq.(2) in an iterative way. For direct
calculations of Eq.(2) the computing time grows as a third
power of the system size, whereas using the renormalization
procedure it grows linearly with the number of generation,
i.e., grows logarithmically with the system size. For ex-
ample, for a system with 988 atoms the direct-calculation
time is 3932891 ms versus 27 ms if the renormalization
method is used. It would be worth emphasizing that the re-
sults obtained by both methods are exactly the same. There-
fore, in the rest of this paper we will use the renormalization
method to evaluate the Kubo-Greenwood formula.

Figures 1(a)–1(c), respectively show the dc conductivities
aroundm=0 of a periodic, a mixingsn=41d and a bondsn
=40d Fibonacci chains. The on-site energies are null in these
three systems and the hopping-parameter ratiosgd are g=1
for the periodic, g= tAA/ tAB=0.88 for the mixing andg
= tB/ tA=0.88 for the bond problem, beingtAB= tA= t. The
imaginary part of the energy in the Green’s function is
10−11utu. Notice that in Fig. 1(c) ss0,0,0d=sP, i.e., there is a
transparent state in the bond problem. It can be analytically
proved by means of the Landauer formula, in which the con-
ductivity is proportional to the transmittancestd of the
system.15 In particular, form=0 the transmittance is given
by13

tsm = 0d =
4

sm21 − m12d2 + sm11 + m22d2 , s6d

wheremij are elements of the transfer matrixfMsndg defined
by

FIG. 1. The dc and ac Kubo conductivitiesfssm ,v ,0dg for a
periodic chain[(a) and (a8)] of generationn=41 with g=1.0, a
mixing Fibonacci chain[(b) and (b8)] with n=41 andg= tAA/ tAB

=0.88, and a bond Fibonacci chain[(c) and (c8)] with n=40 and
g= tB/ tA=0.88. All the systems are connected to two periodic linear
leads of 1020 atoms and the imaginary part of the energy is 10−11utu.
The transparent state is located atm=0. The ac conduction behav-
iors for m=−1.88348utu in the three systems are illustrated by gray
lines.

V. SÁNCHEZ AND C. WANG PHYSICAL REVIEW B70, 144207(2004)

144207-2



Msnd = MNsndMNsnd−1¯ M1, s7d

being

Mi = 1m − ai

ti,i+1

ti,i−1

ti,i+1

1 0
2 . s8d

It has been shown that for mixing Fibonacci systems with
aA=aB=0 there is a transparent state atm=0 for generations
n=3i −1, beingi =1,2, . . ..16 Now, for the bond problem, the
elements of the transfer matrix evaluated atm=0 can be
written as

mi,jsnd = fSbx
2

c + ui − j uDhfsxdss− 1dbz/5cfsn + i − 1dg−1

− s− 1dby/5cfsn + idgd − fsx + 1dj, s9d

where i =1,2, j =1,2, g= tB/ tA, fskd=f1+s−1dkg /2, and the
integer numbers x=n mod 3P f0,2g, y=sn+2d mod 6
P f0,5g, and z=sn+5d mod 6P f0,5g. Therefore, the trans-
mittance[Eq. (6)] is given by

tsm = 0d =
4

fsxdsg + g−1d2 + 4fsx + 1d
. s10d

Notice that the transmittance is one whenx=1, i.e., there is a
transparent state atm=0 in the bond problem for generations
n=3i +1, beingi =1,2, . . ..

On the other hand, the ac conduction involves not only
states at the Fermi level, but also those within an interval of
"v around the Fermi energy, wherev is the angular fre-
quency of the applied electric field. In Figs. 1sa8d, 1sb8d , and
1sc8d , the ac conductivities atm=0 (black lines) and atm
=−1.88348utu (gray lines) are shown for periodic, mixing and
bond problems, respectively. Observe that the ac conductiv-
ity evaluated at the transparent states of periodic and mixing
systems have a quite similar behavior, which is totally dif-
ferent from that of the bond problem, since in the latter the
transparent state is located at a fractal center17 and sur-
rounded by nontransparent states, instead of transparent and
almost transparent states in periodic and mixing cases,
respectively.10 For nontransparent states a noisy behavior is
found in both mixing and bond problems. Moreover, all the
dc and ac conduction spectra in Fig. 1 scale with the inverse
of system size by means ofC=sN−1dfbsgdgs3−nd/6, where
bsgd is one for the periodic and mixing problems.10 For the
bond problem,bsgd (open circles) is plotted in Fig. 2 and
compared with the scaling indexfdsgdg of the density of
states(DOS) at m=0 given by17

dsgd =
lnfsÎ5 + 1d/2g6

lnhÎ1 + 4f1 + sg − g−1d2/4g2 + 2f1 + sg − g−1d2/4gj2
.

s11d

Notice that these two scaling indexes have a similar depen-
dence ong= tB/ tA, since they are tightly related through the
diffusivity, as given in the Einstein relation.

In the next section, we will analyze the electronic trans-
port in two- and three-dimensional quasiperiodic lattices.

III. MULTIDIMENSIONAL SYSTEMS

Let us consider a multidimensional lattice, in which one
or more directions are quasiperiodic, and their Hamiltonian
sHd is separable, i.e.,H=Hi ^ I'+ I i ^ H', whereHi sI id and
H' sI'd respectively stand for the Hamiltonian(the identity
of Hilbert space) of the parallel and perpendicular subsystem
with respect to the applied electric field. Taking the advan-
tage of the convolution theorem,12 the electrical conductivity
(2) of this multidimensional system can be written as(see
Appendix B),

ssm,v,Td =
1

V'
E
−`

`

dysism − y,v,TdDOS'syd, s12d

or

ssm,v,Td =
1

V'
o
b

sism − Eb,v,Td, s13d

where si is the electrical conductivity of the parallel sub-
system;V', DOS' andEb are, respectively, the volume, the
density of states, and the eigenvalues of the perpendicular
subsystem, i.e.,H'ubl=Ebubl. In Figs. 3(a) and 3(b), we
show the dc electrical conductances at zero temperature, de-
fined asgsm ,0 ,0d=ssm ,0 ,0d V' /Vi, for 2D and 3D peri-
odic lattices, respectively. Figures 3(c) and 3(d) exhibit the
electrical conductances of the same systems as in Figs. 3(a)
and 3(b) except that in the perpendicular directions to the
applied electric field the atoms are arranged following the
bond Fibonacci sequence withg= tB/ tA=0.88. The magnifi-
cations of Figs. 3(a)–3(d) are, respectively, illustrated in
Figs. 3sa8d–3sd8d . The size in each direction of these lattices
is of 165580142 atoms, corresponding to the generationn
=40, and along the electric field the system is connected to
two semi-infinite periodic leads with hopping integralst.
These spectra are calculated by using Eq.(12) and the imagi-

FIG. 2. The conductivity scaling factor(defined in the text) for
the bond problem,bsgd (open circles), and the scaling index of the
density of states atm=0, dsgd (dashed line).
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nary partshd of the energy takes 10−11utu for si and 10−3utu for
DOS'. The energy mesh of these spectra has a spacingsDmd
of 10−4utu and for the insets a mesh of 10000 energies is used.
Notice that for 2D periodic systems there are perfect quan-
tum steps in units ofg0=2e2/h, as observed in 2D electron
gas devices.18 However, in 3D periodic lattices the quantum
steps are not uniform, due to the degeneracy and distribution
of eigenvaluesEb in Eq. (13). For partially quasiperiodic 2D
systems[see Fig. 3(c)], self-similarly distributed quantum
steps are observed. In Figs. 3(e) and 3(f), we respectively
show the electrical conductances of 2D and 3D totally qua-
siperiodic systems, i.e., the bond Fibonacci sequence is
obeyed in every direction of the system. Observe that these
noisy spectra are one order of magnitude smaller than those
of partially quasiperiodic systems and the quantum steps are
disappeared.

In order to analyze global behaviors of the spectra in fig-
ure 3, a spectral average of the conductance, defined as

kgl =
E dmgsm,0,0dDOSsmd

E dm DOSsmd
,

is investigated and it is plotted in Fig. 4(a) versus the width
sV',N'd and in Fig. 4(b) versus the system lengthsLi

=Niad for 2D periodic lattices(open circles) and doubly qua-
siperiodic lattices(solid circles), with the same parameters as
in Fig. 3. Observe thatkgl grows linearly withN', that is
kgl=g0swN'+dd, where for the periodic latticesw
=0.56533 andd=0.77847, and for the doubly quasiperiodic
latticesw=0.12923 andd=−0.10234. These values ofd are
essentially zero if they are compared with the system width
s,108d, and the slopeswd is expected to be 1 for the periodic
case if the parallel linear chains(or conducting channels) are
totally independent. Moreover, when the system length
grows,kgl is a constant for the periodic case and it decays as
a power lawfkgl=g0jNi

−yg for the quasiperiodic system, as
reported for finite Penrose lattices.19 We foundy=0.0847 and
j=103745674.8369 for doubly quasiperiodic case. Figures
4(c) and 4(d) present the averaged conductances for three-
dimensional systems, with the same parameters as 2D sys-
tems shown in Figs. 4(a) and 4(b). These conductances have
a very similar behavior as 2D-system ones, except that for
periodic casew=0.44612 andd=−2.847763108 and for
quasiperiodic systemw=0.10324, d=9.159143107, y
=0.08492, andj=13747698529064202. Again,d is negli-
gible in comparison with the cross section areas,1016d,
therefore, we obtain a general relationship as

kgl = g0zN'Ni
−y,

wherez=j /N'=wNi
y.0.5.

FIG. 3. The dc electrical conductances at zero
temperature for(a) 2D and (b) 3D periodic lat-
tices, (c) 2D and (d) 3D lattices with quasiperi-
odic ordersg= tB/ tA=0.88d in the perpendicular
directions to the applied electric field, and(e) 2D
and (f) 3D totally quasiperiodic systems, i.e. the
bond Fibonacci sequence is obeyed in every di-
rection of the systems. The magnifications of
figures (a–d) are, respectively, illustrated in
3sa8d–3sd8d. Each direction of these lattices has
165580142 atoms and along the electric field the
system is connected to two semi-infinite periodic
leads with hopping integralst. The imaginary part
shd of the energy is 10−11utu for si and 10−3utu for
DOS'.
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Another interesting and not widely studied feature of the
dc-conductance spectrum is its dependence on the imaginary
part shd of the energy in the Green’s function. In Fig. 5 we
show the variation ofgsm ,hd /g0 versush and m, for the
same 3D system shown in Fig. 3(f). Observe that ash grows
the conductance spectrum decreases keeping its shape. Fig-
ure 6 exhibits the spectral integral of the conductance

fedmgsm ,hdg in units of the perpendicular-subsystem size as
a function ofh for a 3D periodic lattice(open circles), and
3D bond Fibonacci lattices withg= tB/ tA=0.88(solid circles)
andg= tB/ tA=0.75(solid triangles). Notice the existence of a
critical valueshcd, i.e., the integrals maintain the same value
for h,hc and diminish following a power lawsh−«d when
h.hc, being «=1 for the periodic lattice,«=0.90353 and
0.7585 for bond Fibonacci systems withg=0.88 and 0.75,
respectively. It is interesting to contrast with the DOS spec-
trum, whose spectral integral is always a constant, indepen-
dent fromh. Furthermore, we have observed thathc,Ni

−1

and for largeh the integrals converge a unique value. These
facts could be interpreted as the inelastic-scattering effects
represented byh: when h,hc the inelastic-scattering free
path is larger than the system length and then the conduc-
tance is independent ofh; for h.hc the conductances of
different systems reduce to the same minimum value ash
increases, where the lattice-order participation is overcome
by inelastic scattering effects. For 1D periodic systems, we
found an analytical solution of the dc conductivity at zero
temperaturefssm ,hdg for finite values ofh, as shown in Eq.
(C6), and it has a simple form[Eq. (C7)] for m=0.

IV. CONCLUSIONS

In summary, we have extended the renormalization
method to the Kubo-Greenwood formula in bond Fibonacci
systems. Combining with the convolution technique we are
able to analyze the electronic transport in multidimensional
macroscopicquasiperiodic systems, when their Hamiltonian
is separable. It would be important to mention that this
analysis has been performed in anexact way within the
Kubo-Greenwood formalism.

For the one-dimensional case, the results of the bond
problem show a qualitatively different dc and ac conductivity
spectra with respect to those of mixing Fibonacci systems.
We found a new kind of transparent state, which is located at

FIG. 4. Spectral average of the conductancekgl versus the width
sV',N'd and the lengthsLi=Niad of the system are, respectively,
shown in (a) and (b) for 2D, (c) and (d) for 3D, periodic (open
circles) and totally quasiperiodic lattices(solid circles), with the
same parameters as in Fig. 3.

FIG. 5. The variation of dc electrical conductance at zero tem-
peraturefgsm ,hd /g0g as a function of the imaginary part of the
energyshd and of the Fermi energysmd for a 3D totally quasiperi-
odic system, as shown in Fig. 3(f).

FIG. 6. The spectral integral of the conductancefedmgsm ,hdg as
function of h for a 3D periodic lattice(open circles) and 3D bond
Fibonacci lattices withg= tB/ tA=0.88 (solid circles) and g=0.75
(solid triangles).
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a fractal center and its transfer matrices do not commute as
in the mixing case.20

The dc electrical conductance of two- and three-
dimensional Fibonacci systems show a quantized behavior
when the system is periodic along the direction of the ap-
plied electric field, and these steps are redistributed in a self-
similar structure when the system becomes quasiperiodic in
the perpendicular direction to the electric field. The spec-
trally averaged conductance shows a power-law decay as the
system length increases, similar to that happened in Penrose
lattices. This power-law decay reveals the critical localiza-
tion nature in quasiperiodic systems, contrary to the constant
and exponential decay behaviors in the periodic and ran-
domly disordered systems, respectively.21

The imaginary partshd of the energy has a relevant par-
ticipation in the Kubo-Greenwood formula. We find a critical
value shcd and it is inversely proportional to the system
length. Forh,hc the dc conductance is independent from
specific values ofh and for h.hc the conductance decays
with h, which can be understood ifh is interpreted as the
inelastic scattering strength in the system. This analysis sug-
gests the use ofh,hc for electric conductance calculations
if the inelastic scattering is neglected.

Finally, this renormalization method can be extended to
analyze other physical properties, such as the lattice thermal
conductance22 in quasiperiodic systems. This study is cur-
rently in progress.
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APPENDIX A: RENORMALIZATION FORMULAS FOR
THE BOND PROBLEM

The trace in the Kubo-Greenwood formula[Eq. (2)] for a
Fibonacci chain(FC) with two kinds of bonds can be written
as

Trfp Im G+sE + "vdp Im G+sEdg = SsEv
+,E+,nd − SsEv

+,E−,nd

− SsEv
−,E+,nd + SsEv

−,E−,nd,

whereE±=E± ih, Ev
± =E+"v± ih with h→0+, and

SsEv
n ,Ek,nd = o

j ,k=1

Nsnd−1

tj ,j+1tk,k+1f2Gj+1,ksEv
n dGk+1,jsEkd

− Gj+1,k+1sEv
n dGk,jsEkd − Gj ,ksEv

n dGk+1,j+1sEkdg,

being n and k either 1 or 2. These partial sums,
SsEv

n ,Ek ,nd, may be expressed in terms of the Green’s func-
tions evaluated at the extreme sites of the FC as

SsEv
n ,Ek,nd = AsEv

n ,Ek,ndGL,LsEv
n dGL,LsEkd

+ BsEv
n ,Ek,ndGL,RsEv

n dGL,RsEkd

+ CsEv
n ,Ek,ndGR,RsEv

n dGR,RsEkd

+ DsEv
n ,Ek,ndGL,LsEv

n dGL,RsEkd

+ DsEk,Ev
n ,ndGL,LsEkdGL,RsEv

n d

+ FsEv
n ,Ek,ndGL,LsEv

n dGR,RsEkd

+ FsEk,Ev
n ,ndGL,LsEkdGR,RsEv

n d

+ IsEv
n ,Ek,ndGL,RsEv

n dGR,RsEkd

+ IsEk,Ev
n ,ndGL,RsEkdGR,RsEv

n d

+ JsEv
n ,Ek,ndGL,LsEv

n d + JsEk,Ev
n ,ndGL,LsEkd

+ KsEv
n ,Ek,ndGL,RsEv

n d + KsEk,Ev
n ,ndGL,RsEkd

+ LsEv
n ,Ek,ndGR,RsEv

n d + LsEk,Ev
n ,ndGR,RsEkd

+ ZsEv
n ,Ek,nd,

where the subindexesL andR denote the left- and the right-
end atoms, respectively. The coefficientsAsE1,E2,nd,
BsE1,E2,nd , . . ., ZsE1,E2,nd in the last equation, beingE1

andE2 eitherEv
n or Ek, can be iteratively obtained from those

of generationsn−1 andn−2, as given in the following:

AsE1,E2,nd = − fAcsE1,E2,nd − AcsE2,E1,ndg2,

BsE1,E2,nd = 2fAcsE1,E2,nd − AcsE2,E1,ndgfBcsE2,E1,nd

− BcsE1,E2,ndg + 2fCcsE1,E2,nd − DcsE2,E1,ndg

3fCcsE2,E1,nd − DcsE1,E2,ndg,

CsE1,E2,nd = − fBcsE1,E2,nd − BcsE2,E1,ndg2,

DsE1,E2,nd = 2fAcsE1,E2,nd − AcsE2,E1,ndgfDcsE2,E1,nd

− CcsE1,E2,ndg,

FsE1,E2,nd = − fCcsE1,E2,nd − DcsE2,E1,ndg2,

IsE1,E2,nd = 2fBcsE1,E2,nd − BcsE2,E1,ndgfDcsE2,E1,nd

− CcsE1,E2,ndg,

JsE1,E2,nd = JsE1,E2,n − 1d + u0sE2,ndFsE1,E2,n − 1d

+ u1sE1,ndKsE1,E2,n − 1d + u1
2sE1,ndu0sE2,nd

3fCsE1,E2,n − 1d + AsE1,E2,n − 2d

+ AosE1,E2,ndg + u0sE2,ndu1sE1,nd

3fIsE1,E2,n − 1d + BosE1,E2,ndg + u1
2sE1,nd

3fLsE1,E2,n − 1d + JsE1,E2,n − 2dg,
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KsE1,E2,nd = 2u0sE2,ndu1sE1,ndu2sE1,ndfCsE1,E2,n − 1d

+ AsE1,E2,n − 2d + AosE1,E2,ndg

+ u0sE2,ndCosE1,E2,nd + 2u1sE1,ndu2sE1,nd

3fLsE1,E2,n − 1d + JsE1,E2,n − 2dg + u0sE2,nd

3hu1sE1,ndfDsE2,E1,n − 2d + DosE2,E1,ndg

+ u2sE1,ndfIsE1,E2,n − 1d + BosE1,E2,ndgj

+ u2sE1,ndKsE1,E2,n − 1d

+ u1sE1,ndKsE1,E2,n − 2d,

LsE1,E2,nd = LsE1,E2,n − 2d + u0sE2,ndFsE2,E1,n − 2d

+ u2sE1,ndKsE1,E2,n − 2d + u2
2sE1,ndu0sE2,nd

3fCsE1,E2,n − 1d + AsE1,E2,n − 2d

+ AosE1,E2,ndg + u0sE2,ndu2sE1,ndfDsE2,E1,n

− 2d + DosE2,E1,ndg + u2
2sE1,ndfLsE1,E2,n − 1d

+ JsE1,E2,n − 2dg,

ZsE1,E2,nd = u0sE1,ndfLsE1,E2,n − 1d + JsE1,E2,n − 2dg

+ ZsE1,E2,n − 1d + u0sE1,ndu0sE2,nd

3fCsE1,E2,n − 1d + AsE1,E2,n − 2d

+ AosE1,E2,ndg + u0sE2,ndfLsE2,E1,n − 1d

+ JsE2,E1,n − 2dg + ZsE1,E2,n − 2d,

where

u0sE,nd = fE − ERsE,n − 1d − ELsE,n − 2dg−1,

u1sE,nd = tsE,n − 1du0sE,nd, u2sE,nd = tsE,n − 2du0sE,nd,

AcsE1,E2,nd = AcsE1,E2,n − 1d + u1sE1,ndu1sE2,nd

3fAcsE1,E2,n − 2d + BcsE1,E2,n − 1dg

+ u1sE2,ndCcsE1,E2,n − 1d

+ u1sE1,ndDcsE1,E2,n − 1d,

BcsE1,E2,nd = BcsE1,E2,n − 2d + u2sE1,ndu2sE2,nd

3fAcsE1,E2,n − 2d + BcsE1,E2,n − 1dg

+ u2sE1,ndCcsE1,E2,n − 2d

+ u2sE2,ndDcsE1,E2,n − 2d,

CcsE1,E2,nd = u1sE1,ndu2sE2,ndfAcsE1,E2,n − 2d

+ BcsE1,E2,n − 1dg + u2sE2,ndCcsE1,E2,n − 1d

+ u1sE1,ndCcsE1,E2,n − 2d,

DcsE1,E2,nd = u1sE2,ndu2sE1,ndfAcsE1,E2,n − 2d

+ BcsE1,E2,n − 1dg + u2sE1,ndDcsE1,E2,n − 1d

+ u1sE2,ndDcsE1,E2,n − 2d,

AosE1,E2,nd = 2fAcsE1,E2,n − 2d − AcsE2,E1,n − 2dg

3fBcsE2,E1,n − 1d − BcsE1,E2,n − 1dg,

BosE1,E2,nd = 2fAcsE1,E2,n − 2d − AcsE2,E1,n − 2dg

3fDcsE2,E1,n − 1d − CcsE1,E2,n − 1dg,

CosE1,E2,nd = 2fDcsE1,E2,n − 2d − CcsE2,E1,n − 2dg

3fDcsE2,E1,n − 1d − CcsE1,E2,n − 1dg,

DosE1,E2,nd = 2fBcsE1,E2,n − 1d − BcsE2,E1,n − 1dg

3fDcsE2,E1,n − 2d − CcsE1,E2,n − 2dg,

being E either E1 or E2. The effective hopping integral,
tsE,nd, and the effective self-energies of the left and right
extreme sites,ELsE,nd andERsE,nd, are given by

tsE,nd = tsE,n − 1dtsE,n − 2du0sE,nd,

ELsE,nd = ELsE,n − 1d + t2sE,n − 1du0sE,nd,

ERsE,nd = ERsE,n − 2d + t2sE,n − 2du0sE,nd.

For the case of free boundary conditions, the Green’s
functions at the ends of the system are

GL,LsEd = fE − ERsE,ndg/gG,

GR,RsEd = fE − ELsE,ndg/gG,

GL,RsEd = tsE,nd/gG,

wheregG=fE−ELsE,ndg fE−ERsE,ndg− t2sE,nd, and for the
case of finite-lead boundary conditions, they are

GL,LsEd = HE − ELsE,nd − ERPsE,md −
tP
2sE,md

E − ELPsE,md
−

t2sE,nd
E − ERsE,nd − ELPsE,md − tP

2sE,md/fE − ERPsE,mdgJ−1

,

GR,RsEd = HE − ERsE,nd − ELPsE,md −
tP
2sE,md

E − ERPsE,md
−

t2sE,nd
E − ELsE,nd − ERPsE,md − tP

2sE,md/fE − ELPsE,mdgJ−1

,

GL,RsEd =
GR,RsEdtsE,nd

hE − ELsE,nd − ERPsE,md − tP
2sE,md/fE − ELPsE,mdgj

,
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wherem is the generation number of theperiodic leads built following the Fibonacci procedure, and their effective self-
energies and effective hopping are given by

ELPsE,md = ELPsE,m− 1d + tP
2sE,m− 1d/gPsE,md,

ERPsE,md = ERPsE,m− 2d + tP
2sE,m− 2d/gPsE,md,

tPsE,md = tPsE,m− 1dtPsE,m− 2d/gPsE,md,

being

gPsE,md = fE − ERPsE,m− 1d − ELPsE,m− 2dg.

Finally, the initial conditions for the iterative procedure
are

tsE,1d = tA, ELsE,1d = ERsE,1d = 0, tPsE,1d = t,

ERPsE,1d = ELPsE,1d = 0,

tsE,2d = tAtB/E, ELsE,2d = tB
2/E, ERsE,2d = tA

2/E,

tPsE,2d = t2/E, ELPsE,2d = ERPsE,2d = tPsE,2d,

AsE1,E2,1d = CsE1,E2,1d = DsE1,E2,1d = IsE1,E2,1d

= 0, BsE1,E2,1d = 2tA
2 ,

JsE1,E2,1d = KsE1,E2,1d = LsE1,E2,1d = ZsE1,E2,1d

= 0, FsE1,E2,1d = − tA
2 ,

AsE1,E2,2d = − ftsE1,2d − tsE2,2dg2tB
2/tA

2, BsE1,E2,2d

= 4ft2sE1,2d + t2sE2,2dg,

CsE1,E2,2d = − ftsE1,2d − tsE2,2dg2tA
2/tB

2,

DsE1,E2,2d = 2ft2sE1,2d − t2sE2,2dgtB/tA,

FsE1,E2,2d = − ftsE1,2d + tsE2,2dg2,

IsE1,E2,2d = 2ft2sE2,2d − t2sE1,2dgtA/tB,

JsE1,E2,2d = − tsE2,2dtB/tA, KsE1,E2,2d = 2tsE2,2d,

LsE1,E2,2d = − tsE2,2dtA/tB, ZsE1,E2,2d = 0,

AcsE1,E2,1d = BcsE1,E2,1d = CcsE1,E2,1d = 0,

DcsE1,E2,1d = tA,

AcsE1,E2,2d = tB
2/E1, BcsE1,E2,2d = tA

2/E2,

CcsE1,E2,2d = 0, DcsE1,E2,2d = tAtB/E1 + tAtB/E2.

For the case of the density of states(DOS), the renormal-
ization procedure is much simpler, since only a sum of diag-
onal elements of Green’s functions is involved, instead of

products of them in the Kubo-Greenwood formula. In this
case, we have

DOSsEd = −
1

p
Imo

j

Gj ,jsE+d

= −
1

p
ImhD1sE+,ndGL,LsE+d + D2sE+,ndGR,RsE+d

+ D3sE+,ndGL,RsE+d + D4sE+,ndj, sA1d

where

D1sE+,Nd = D1sE+,N − 1d + u1
2sE+,ndfD1sE+,N − 2d

+ D2sE+,N − 1d − 1g + u1sE+,ndD3sE+,N − 1d,

D2sE+,Nd = D2sE+,N − 2d + u2
2sE+,ndfD2sE+,N − 1d

+ D1sE+,N − 2d − 1g + u2sE+,ndD3sE+,N − 2d,

D3sE+,Nd = u2sE+,ndD3sE+,N − 1d

+ u1sE+,ndD3sE+,N − 2d + 2u2sE+,ndu1sE+,nd

3fD1sE+,N − 2d + D2sE+,N − 1d − 1g,

D4sE+,Nd = D4sE+,N − 1d + D4sE+,N − 2d + u0sE+,nd

3fD1sE+,N − 2d + D2sE+,N − 1d − 1g,

and the initial conditions are

D1sE+,1d = D2sE+,1d = 1, D3sE+,1d = D4sE+,1d = 0,

D1sE+,2d = 1 +
tB
2

sE+d2, D2sE+,2d = 1 +
tA
2

sE+d2,

D3sE+,2d =
2tBtA
sE+d2, D4sE+,2d =

1

E+ .

This renormalization method is very efficient, as dis-
cussed in Section II, and it is recommended to usequadruple
precision for the numerical evaluations.

APPENDIX B: CONVOLUTION FORMULA

For a given HamiltonianH, the corresponding Green’s
function sGd can be expressed as
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Glkszd = o
a

kl ualkaukl
z− Ea

, sB1d

wherez=E+ ih is a complex number, the eigenstatessua.d
are determined byHual=Eaual, ull and ukl are Wannier’s
functions of sitesl andk, respectively. Equation(B1) can be
rewritten as

−
1

p
ImfGlkszdg = o

a

kl ualkaukldsE − Ead, sB2d

since

lim
h→0

1

x ± ih
= PS1

x
D 7 ipdsxd.

If H is separable, i.e.,H=Hi ^ I'+ I i ^ H', its eigenvalues
and eigenfunctions can be respectively written asE=Ea

+Eb and ua ,bl= ualubl, whereHiual=Eaual, H'ubl=Ebubl,
I' and I i respectively stand for the identities of the perpen-
dicular and parallel subsystem with respect to the applied
electric field. Thus, the Green’s function is given by

Gsr,jdsk,ldszd = o
a,b

kr ualkauklk j ublkbull
z− sEa + Ebd

,

wherer and k are site coordinates in the parallel subspace,
while j and l are site coordinates in the perpendicular sub-
space. Moreover, using Eq.(B2) we have

Gsr,jdsk,ldsz+ "vd =E
−`

`

dyo
a,b

kr ualkauklk j ublkbull
z+ "v − sEa + yd

dsy − Ebd

= −
1

p
lim

h8→0
E
−`

`

dyo
a

kr ualkaukl
z+ "v − sEa + yd

3ImfGjl
'sy + ih8dg

= −
1

p
lim

h8→0
E
−`

`

dyGrk
i sz+ "v − yd

3ImfGjl
'sy + ih8dg. sB3d

In the Kubo-Greenwood formula[Eq. (2)], the projection of the momentum operatorspd is along of the applied electric
field, i.e.,psk,ldsf,sd=pkf

i dl,s is in the parallel subspace. Using Eq.(B3) and (B2) one obtains

Trfp Im G+sz+ "vdp Im G+szdg = o
r,j ,k,l,f,s,v,w

hpsv,wdsr,jd ImfGsr,jdsk,ldsz+ "vdgpsk,ldsf,sd ImfGsf,sdsv,wdszdgj

= o
r,j ,k,l,f,v

hpvr
i ImfGsr,jdsk,ldsz+ "vdgpkf

i ImfGsf,ldsv,jdszdgj

=
1

p2 o
r,j ,k,l,f,v

pvr
i E

−`

`

dx ImfGrk
i sz+ "v − xdgImfGjl

'sx + ih8dg

3 pkf
i E

−`

`

dy ImfGfv
i sz− ydgImfGlj

'sy + ih9dg

= o
r,j ,k,l,f,v

E
−`

`

dxE
−`

`

dypvr
i ImfGrk

i sz+ "v − xdgpkf
i ImfGfv

i sz− ydg

3 Fo
b8

k j ub8lkb8ulldsx − Eb8dGFo
b

kl ublkbu jldsy − EbdG
= o

r,k,f,v
E
−`

`

dypvr
i ImfGrk

i sz+ "v − ydgpkf
i ImfGfv

i sz− ydg 3 Fo
b

dsy − EbdG . sB4d

Therefore, considering DOS'syd=obdsy−Ebd, we obtain the well known convolution relationship12

ssE,v,Td =
1

V'
E
−`

`

dysisE − y,v,TdDOS'syd, sB5d

where
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sisE,v,Td = lim
h→0+

2e2"

pVim2E
−`

`

dE
fsEd − fsE + "vd

"v
3 o

r,k,f,v
pvr

i ImfGrk
i sz+ "vdgpkf

i ImfGfv
i szdg.

Finally, Eq. (B4) can also be written as

ssE,v,Td =
1

V'
o
b

sisE − Eb,v,Td. sB6d

This last formulation could particularly be useful for systems with a small cross section perpendicular to the applied electric
field, such as quantum wires and nanotubes.

APPENDIX C: KUBO CONDUCTIVITY OF PERIODIC
CHAINS

In this appendix we present an analytical solution of the
Kubo-Greenwood formula for a periodic chain ofN atoms,
with lattice constanta, null self-energies and hopping inte-
grals t, saturated by two semi-infinite periodic chains with
the same parameters. The linear momentum operator for this
case is given by

p =
imat

"
o

j

hu jlk j + 1u − u jlk j − 1uj,

and then the trace in the Kubo-Greenwood formula[Eq. (2)]
can be written as

Trfp Im G+sE + "vdp Im G+sEdg

= − Smat

"
D2

o
j ,k=1

Nsnd−1

fIm Gj+1,ksEv
+dIm Gk+1,jsE+d

+ Im Gj+1,ksE+dIm Gk+1,jsEv
+d

− Im Gj+1,k+1sEv
+dIm Gk,jsE+d

− Im Gj ,ksEv
+dIm Gk+1,j+1sE+dg, sC1d

beingE+=E+ ih, Ev=E+"v, and thenEv
+ =E+"v+ ih with

h→0+. For a periodic chain, the Green’s function is given
by23

Gj ,ksEl
+d =

fsEl
+ − ÎsEl

+d2 − s2td2d/s2utudgu j−ku

ÎsEl
+d2 − s2td2

,

where El
+=El + ih, El =E or Ev, and the imaginary part of

ÎsEl
+d2−s2td2 should have the same sign as ImhEl

+j=h. Now,
let us define

cosfl =
El

2 − h2 − s2td2

Al
, sinfl =

2uEluh
Al

,

cosul =
uElu − ÎAl cossfl/2d

2utuBl
, and sinul =

h − ÎAl sinsfl/2d
2utuBl

,

where

Al = ÎsEl
2 − h2 − 4t2d2 + 4h2El

2,

and

Bl =ÎFuElu − ÎAl cossfl/2d
2t

G2

+ Fh − ÎAl sinsfl/2d
2t

G2

.

Hence

Gj ,ksEl
+d =

Bl
u j−ku

ÎAl

expfisu j − kuul − fl/2dg. sC2d

Substituting Eq.(C2) in Eq. (C1) and taking advantage of the dumb indexes, we obtain

Trfp Im G+sE + "vdp Im G+sEdg = − Smat

"
D2 2

ÎAvA
o
j ,k=1

Nsnd−1

hBv
u j+1−kuBuk+1−j u sin su j + 1 −kuuv − fv/2dsinsuk + 1 − j uu − f/2d

− Bv
u j−kuBuk−j u sinsu j − kuuv − fv/2dsinsuk − j uu − f/2dj

= − Smat

"
D2 2

ÎAvA
HsN − 1dfBvB sinsuv − fv/2dsinsu − f/2d − sinsfv/2dsinsf/2dg

− 2 o
m=1

Nsnd−2

sBvBdmsN − 1 −mdsinfmuv − fv/2gsinfmu − f/2g

+ o
m=1

Nsnd−2

Bv
m+1Bm−1sN − 1 −mdsinfsm+ 1duv − fv/2gsinfsm− 1du − f/2g
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+ o
m=1

Nsnd−2

Bv
m−1Bm+1sN − 1 −mdsinfsm− 1duv − fv/2gsinfsm+ 1du − f/2gJ . sC3d

Using the following relations:

sinsxd =
eix − e−ix

2i
,

o
j=1

Nsnd−2

sN − 1 − jdcoss jal − gld = ReH o
j=1

Nsnd−2

sN − 1 − jdexpfis jal − gldgJ ,

o
j=1

Nsnd−2

sN − 1dexpfis jal − gldg = sN − 1dexps− igldF1 − expfisN − 1dalg
1 − expsiald

− 1G ,

and

o
j=1

Nsnd−2

j expfis jal − gldg = exps− igld
− sN − 1dexpfisN − 1dalg + sN − 2dexpsiNald + expsiald

f1 − expsialdg2 .

Then, Eq.(C3) is reduced to

Trfp Im G+sE + "vdp Im G+sEdg = −
2smatd2

"2ÎAvA
HsN − 1dfBvB sinsuv − fv/2dsinsu − f/2d − sinsfv/2dsinsf/2dg

+ ReHexpfisa1 − g1dgfBvB − sBv
2/2dexpsia2d − sB2/2dexps− ia2dg

f1 − BvB expsia1dg2

3fsN − 2d − sN − 1dBvB expsia1d + sBvBdN−1 expfisN − 1da1ggJ
− ReHexpfisa2 − g2dgfBvB − sBv

2/2dexpsia1d − sB2/2dexps− ia1dg
f1 − BvB expsia2dg2

3fsN − 2d − sN − 1dBvB expsia2d + sBvBdN−1 expfisN − 1da2ggJJ , sC4d

wherea1=uv+u, a2=uv−u, g1=sfv+fd /2, andg2=sfv−fd /2.
In the limit of h→0+, we have B=Bv=sinsf /2d=sinsfv /2d=1 and cossf /2d=cossfv /2d=0. Defining VsNd=1

−cossNudcossNuvd andSsNd=sinsNudsinsNuvd, and using Eq.(C4), Eq. (2) can written as

ssm,v,Td =
8e2t2a

psN − 1d"3v2E
−`

`

dE
fsEd − fsE + "vd

"v
H1

2
VsN − 1dSV2s1d

Ss1d
+ Ss1dD − SsN − 1dVs1dJ ,

as obtained in Ref. 13. Furthermore, whenT→0, we havefsEd− fsE+"vd=usE−md−usE+"v−md, hence

ssm,v,0d =
8e2t2a

psN − 1d"4v3 E
m−"v

m

dEH1

2
VsN − 1dSV2s1d

Ss1d
+ Ss1dD − SsN − 1dVs1dJ

=
8e2t2a

psN − 1d"3v2F1 −S m

2t
D2GH1 − cosFsN − 1d

"v/s2td
Î1 − fm/s2tdg2GJ . sC5d

On the other hand, using Eq.(C4) and in the limits ofv→0 andT→0, Eq. (2) for finite h can be written as
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ssm,0,0d = −
4e2a2t2

pV"A
HsN − 1dfB2 sin2su − f/2d − sin2sf/2dg − 2 sin2sudF sB2dN − sN − 1dsB2d2 + sN − 2dB2

s1 − B2d2 GJ
= −

4e2a2t2

pV"A
H sN − 1dfAsh2 + m2 − 4t2d − 8t2s2t2 + h2 − m2d − sh2 + m2d2g

8t2A

−
fh − ÎsA − m2 + h2 + 4t2d/2g2fsB2dN−1 − sN − 1dsB2d + sN − 2dg

2t2s1 − B2d2 J , sC6d

and in the limitm→0,

ss0,0,0d =
e2a

p"f1 + sh/2td2gHÎ1 +S2t

h
D2

+
2t2

h2sN − 1d
FSh − Îh2 + 4t2

2t
D2N−2

− 1GJ . sC7d

This formula reveals the existence of a critical value ofhshcd, wherehc,utu /N. For h,hc, s is essentially a constant and it
decays following a power law forh.hc.
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