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Abstract

The localization and transport properties in quasiperiodic systems are quite different from those in crystalline and in disordered

materials. In this work, we study the electrical conduction in macroscopic Fibonacci lattices by using the Kubo–Greenwood formula

and a single-band tight-binding model. This study is carried out by means of the convolution technique and a novel renormalization

method, which allows iterative evaluation of the products of the Green�s function in an exact way. The results of the spectrally aver-
aged conductance show a power-law decay as the length of the quasiperiodic systems increases along the applied electric field. This

fact reveals the critical localization nature in quasicrystalline materials, contrary to the constant and exponencial decay behaviors

found in the periodic and randomly disordered systems, respectively.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Quasicrystals are materials that have a long-range

rotational symmetry and an aperiodic atomic order [1].

They possess unusual transport properties, e.g., extre-

mely low conductivity for alloys of metallic constituents

[2], which are believed to be consequence of the quasipe-

riodicity of the system. Nowadays, there is a consensus

that in the quasiperiodic systems the electronic wave
functions are critical, neither localized nor extended,

and the corresponding eigenvalue spectra are singular

continuous [3]. Hence, the transport properties of these

critically localized states are a fascinating and still un-

clear subject. Moreover, the level-spacing statistics show
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an inverse-power-law distribution of gaps [4,5] and a
semi-Poisson distribution of bands [6], both neither con-

ventional Poisson nor Wigner ones. In the last decade,

numerical studies of electron transport properties have

been carried out in approximants [7], due to the absence

of reciprocal lattice for quasiperiodic systems. Recently,

we have developed a new renormalization method for

the Kubo–Greenwood formula in Fibonacci chains [8],

in order to analyze transport behaviors in macroscopic
systems. This method can be extended to the bond prob-

lem [9].

In general, the Fibonacci sequence (Fn) of generation

n can be built by defining F1 = A, F2 = BA, and the addi-

tion rule, Fn = Fn�1�Fn�2, understood as the joining of

sequences. For instance, F4 = BAABA. For the bond

problem, studied in this paper, the on-site energies are

the same and the hopping integrals, tA (thick lines in
Fig. 1) and tB (thin lines in Fig. 1), are organized follow-

ing the Fibonacci sequence. On the other hand, a two-

dimensional (2D) Fibonacci superlattice can be built

by stacking periodically Fibonacci chains, connected
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(a) Fibonacci superlattice

(b) Doubly quasiperiodic lattice

Fig. 1. (a) Two-dimensional Fibonacci superlattice and (b) doubly

quasiperiodic lattice, both with null on-site energies and two kinds of

hopping integrals tA (thick lines) and tB (thin lines).
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by the same hopping integrals t = tA, as shown in Fig.

1(a). The doubly quasiperiodic lattices are constructed

following the Fibonacci sequence in both directions

(see Fig. 1(b)).

In the linear response theory, the real part of the elec-

trical conductivity (r) is given by the Kubo–Greenwood
formula [10]

rðl;x; T Þ ¼ lim
X!1
g!0þ

2e2�h
pXm2

Z 1

�1
dE

f ðEÞ � f ðE þ �hxÞ
�hx

	 Tr pImGþðE þ �hx þ igÞpImGþðE þ igÞ½ �;
ð1Þ

where X is the volume of the system, G+(E) is the re-
tarded one-particle Green�s function, p ¼ ima

�h

P
jftj;jþ1 j

jihjþ 1 j �tj;j�1 j jihj� 1 jg is the projection of the

momentum operator along the applied electric field with

frequency x, and f(E) = {1 + exp[(E � l)/kBT]} is the

Fermi–Dirac distribution with Fermi energy l and tem-
perature T.
In this paper, we report an analysis of the two- and

three-dimensional (3D) electrical conductance, g(l) =
r(l)W?/Lk, where W? = N?a2 and Lk = Nka are respec-

tively the cross-section area and the length of the system

in reference of the applied electric field, i.e., X =W?Lk.

In the Appendix A, we show that when the Hamiltonian
of the system (H) is separable, i.e.,H = Hk�I? + Ik�H?,

being I the identity matrix, the conductivity (r) can be
calculated by using the convolution technique

rðl;x; T Þ ¼ 1

W ?

X
b

rkðl � Eb;x; T Þ; ð2Þ

where rk is the single-chain one-dimensional (1D) con-
ductivity along the electric field and Eb are the eigen-

values of the 2D cross-section Hamiltonian (H?).

In the following section, the electric conductance

of different systems and its spectral averages as a func-

tion of the length of the quasiperiodic systems are
investigated.
2. Results

The dc conductances [g(l)] at zero temperature as a
function of the Fermi energy (l) are shown in Fig.
2(a) for a 2D periodic lattice with W? = 22 atoms, hop-
ping integrals t, null on-site energies and arbitrary value

of Lk, 2(b) for a 2D Fibonacci superlattice, which is peri-

odic along the applied electric field and quasiperiodic in

the other direction, and 2(c) for the same Fibonacci

superlattice, except the quasiperiodic order is now along

the applied electrical field. In Fig. 2(b) and (c), the 2D

lattice is built by 514230 (periodically ordered) ·
46369 (quasiperiodically ordered) atoms with null on-
site energies, hopping integrals tA = t and tB = st for

the quasiperiodic direction, being s ¼ ð
ffiffiffi
5

p
� 1Þ=2.

Along the applied electric field the systems are con-

nected to two semi-infinite periodic leads with hopping

integrals t, in order to simulate experimental conditions.

The imaginary part of the energy (g) in these figures is
10�11jtj. Fig. 2(b 0), inset of Fig. 2(b), shows an enlarged

portion of the g(l) curve.
In order to analyze global properties of the spectra,

an spectral average of the conductance (hgi) is defined as

gh i ¼
R
dEgðEÞDOSðEÞR
dEDOSðEÞ : ð3Þ

where DOS(E) is the density of states of the system. hgi
versus the system length (Lk) are shown in Fig. 3(a) for

Fibonacci superlattices with 1D cross sections of

W? = 35 atoms (open triangles) and of W? = 1225

atoms (open circles), and with a 2D cross section of

W? = 1225 atoms (open squares). Fig. 3(b) shows the
same graph as in Fig. 3(a), except for systems where

the quasiperiodic order is in every direction. In Fig. 3
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Fig. 2. The dc conductances [g(l)] at zero temperature as a function of
the Fermi energy (l) for (a) a 2D periodic lattice, (b) and (c) the same
2D Fibonacci superlattice, where the quasiperiodic order is perpen-

dicular and along the applied electrical field, respectively. In Fig. 2(b)

and (c) the Fibonacci chains have null on-site energies, hopping

integrals tA = t and tB = st. Along the applied electric field the systems

are connected to two periodic semi-infinite leads. An amplification of

the conductance spectrum is shown in Fig. 2(b 0).
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Fig. 3. Spectrally averaged conductance (hgi) as a function of the
number of atoms along the applied electric field (Nk) for Fibonacci

superlattices with 1D cross sections of W? = 35 atoms (n) and of

W? = 1225 atoms (�), and with a 2D cross section ofW? = 1225 atoms

(h). Fig. 3(b) shows the same graph as in Fig. 3(a), except that the

quasiperiodic order is in every direction. In Fig. 3 the Fibonacci

sequences are built by using the same parameters of Fig. 2.
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the Fibonacci sequences are built by using the same

parameters of Fig. 2.
3. Discussion

Observe that for 2D periodic lattices the dc conduct-

ance has well defined quantum steps in units of 2e2/h (see

Fig. 2(a)), as observed firstly in point contacts [11] and

recently in ballistic quantum wires [12]. When the quasi-

periodicity is introduced in the perpendicular direction

to the applied electric field, a self-similar stair structure

is observed (see Fig. 2(b) and (b 0)), despite that the

height of the steps remains the same unit of 2e2/h.
Now, if the electric field is applied to the same system

as in Fig. 2(b), but along the direction of quasiperiodic

order, the conductance spectra become totally different,

showing a spiky structure.

To analyze these �noisy� spectra an average of con-
ductance is introduced in Eq. (3) Notice in Fig. 3 that

hgi decays following a power law [hgi ¼ 2e2ðaN�m
k Þ=h]
when the system length increases, as reported for finite

Penrose lattices [13], contrary to the constant behaviors

in periodic systems. We found m = 0.32341 and
a = 198.76962 for 3D Fibonacci superlattices (open

squares), m = 0.3231 and a = 250.12667 for 2D Fibonacci
superlattices (open circles), m = 0.31889 and a = 7.2041
for 2D Fibonacci superlattices (open triangles),

m = 0.32375 and a = 224.00618 for 3D triply quasiperio-
dic lattices (open squares), m = 0.32189 and a =
292.94089 for 2D doubly quasiperiodic lattices (open

circles), m = 0.32374 and a = 8.75709 for 2D doubly qua-
siperiodic lattices (open triangles). Summarizing these

numerical data, it can be observed that for the same

number of atoms in the cross section less connection be-

tween chains leads to a larger spectrally-averaged con-

ductance. For instance, hgi of a 2D system (open

circles) is larger than those of a 3D one (open squares),

having the same cross-section area. Moreover, the aver-

aged conductance of Fibonacci superlattices are smaller
than those of doubly or triply quasiperiodic lattices,

possibly originated from the better structural coherence

in the multiply quasiperiodic systems.
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4. Conclusions

We have studied the electronic transport in macro-

scopic Fibonacci systems within the Kubo–Greenwood

formulation. This study is done by using a novel renor-

malization method and convolution technique for calcu-
lations of the electrical conductivity in two- and three-

dimensional systems. It would be important to stress

that these calculations have been carried out without

approximations within the Kubo–Greenwood formal-

ism. However, the convolution technique is applicable

only when the Hamiltonian of the system is separable.

On the other hand, the length dependence shows

power-law decays of the spectrally averaged conduct-
ance, revealing the critical localization nature of the

wave functions in quasiperiodic systems, contrary to

the constant and exponential decay behaviors in the

periodic and randomly disordered systems, respectively

[15].
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Appendix A. Convolution Method

For a given Hamiltonian H, the corresponding

Green�s function (G) can be expressed as

GlkðzÞ ¼
X

a

hl j aiha j ki
z� Ea

; ðA:1Þ
where the eigenstates (ja>) are determined by

Hja> = Eaja> and z = E + ig is complex number. Eq.
(A.1) cab be rewritten as
� 1
p
Im GlkðzÞ½ � ¼

X
a

hl j aiha j kidðE � EaÞ; ðA:2Þ
since
lim
g!0

1

x� ig
¼ P

1

x

� �
� ipdðxÞ: ðA:3Þ

If H is separable, i.e., H = Hk�I? + Ik�H?, its eigen-

values and eigenfunctions can be respectively written as

E = Ea + Eb and ja, b> = ja>jb>, where Hkja> = Ea ja>
and H?jb> = Ebjb>. Thus, the Green�s function is given
by
Gðr;jÞðk;lÞðzÞ ¼
X
a;b

< r j a >< a j k >< j j b >< b j l >
z� ðEa þ EbÞ

;

ðA:4Þ
where r and k are site coordinates in the parallel sub-

space, while j and l are site coordinates in the perpendic-

ular subspace. Moreover, using Eq. (A.2) we have

Gðr;jÞðk;lÞðzþ �hxÞ

¼
Z 1

�1
dy

X
a;b

< r ja >< a jk >< j jb >< b jl >
zþ �hx � ðEa þ yÞ

	 dðy � EbÞ

¼ � 1
p
lim
g0!0

Z 1

�1
dy

X
a

< r j a >< a jk >

zþ �hx � ðEa þ yÞ

	 Im G?
jlðy þ ig0Þ

h i
¼ � 1

p
lim
g0!0

Z 1

�1
dyGk

rkðzþ �hx � yÞIm G?
jlðy þ ig0Þ

h i
:

ðA:5Þ

In the Kubo–Greenwood formula (Eq. (1)), the pro-
jection of the momentum operator (p) is along the ap-

plied electric field, i.e., pðk;lÞðf ;sÞ ¼ pkkfdl;s is in the

parallel subspace. Using equations (A.5) and (A.2) one

obtains

Tr pImGþðzþ �hxÞpImGþðzÞ½ �

¼
X

r;j;k;l;f ;s;v;w

pðv;wÞðr;jÞIm Gðr;jÞðk;lÞðzþ �hxÞ

 �

pðk;lÞðf ;sÞ
n

	 Im Gðf ;sÞðv;wÞðzÞ

 �o

¼
X

r;j;k;l;f ;v

pkvrIm Gðr;jÞðk;lÞðzþ �hxÞ

 �

pkkf Im Gðf ;lÞðv;jÞðzÞ

 �n o

¼ 1

p2
X

r;j;k;l;f ;v

pkvr

Z 1

�1
dx Im Gk

rkðzþ �hx � xÞ
h i

	 Im G?
jlðxþ ig0Þ

h i
pkkf

Z 1

�1
dy Im Gk

fvðz� yÞ
h i

	 Im G?
ljðy þ ig00Þ

h i
¼

X
r;j;k;l;f ;v

Z 1

�1
dx

Z 1

�1
dy pkvrIm Gk

rkðzþ �hx � xÞ
h i

pkkf

	 Im Gk
fvðz� yÞ

h i

	
X

b0
< j j b0 >< b0 j l > dðx� Eb0 Þ

2
4

3
5

	
X

b

< l j b >< b j j > dðy � EbÞ
" #

¼
X
r;k;f ;v

Z 1

�1
dy pkvrIm Gk

rkðzþ �hx � yÞ
h i

pkkf

	 Im Gk
fvðz� yÞ

h i X
b

dðy � EbÞ
" #

: ðA:6Þ
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Therefore, considering DOS?ðyÞ ¼
P

bdðy � EbÞ, we
obtain the well known convolution relationship [14]

rðE;x; T Þ ¼ 1

X?

Z 1

�1
dyrkðE � y;x; T ÞDOS?ðyÞ; ðA:7Þ

where

rkðE;x; T Þ ¼ lim
X!1
g!0þ

2e2�h
pXkm2

Z 1

�1
dE

f ðEÞ � f ðE þ �hxÞ
�hx

	
X
r;k;f ;v

pkvrIm Gk
rkðzþ �hxÞ

h i
pkkf Im Gk

fvðzÞ
h i

:

ðA:8Þ

Finally, Eq. (9) can also be written as

rðE;x; T Þ ¼ 1

X?

X
b

rkðE � Eb;x; T Þ: ðA:9Þ

This last formulation could particularly be useful for

systems with a small cross section perpendicular to the

applied electric field, such as quantum wires and

nanotubes.
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