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Together with ionization potentials, cross sections provide valuable information for the
interpretation of photoelectron spectra. We have developed a program to performab initio
calculations of photoionization cross sections within the electric dipole approximation using
electron propagator theory. Applications to the first-row hydrides CH4, NH3, H2O, and HF, using
several approximations for the propagator self-energy and the plane-wave and
orthogonalized-plane-wave approximations to represent the photoelectron, as well as comparison to
experimental data, are presented. This program is implemented within the quantum chemistry
packageGAUSSIAN. © 2004 American Institute of Physics.@DOI: 10.1063/1.1773135#

I. INTRODUCTION

Photoelectron spectroscopy is a powerful tool for prob-
ing the electronic structure of atoms and molecules and is
used in a wide variety of areas ranging from atmospheric and
space to biomedical and biophysical sciences.1–3 Electron
binding energies and corresponding intensities provide di-
verse insights into chemical bonding. The variation of photo-
ionization intensities with the energy of the incoming radia-
tion and the character of both the initial and final states
provide ample opportunities for probing electronic structure.

From a chemist’s perspective, it is valuable to discern
patterns of chemical bonding and reactivity from spectro-
scopic experiments, especially if they can be mapped onto
familiar one-electron concepts. Hartree-Fock molecular or-
bital theory provides such an interpretation, where Koop-
mans’s theorem4 enables the use of orbital energies as esti-
mates of the ionization energies and electron affinities. This
picture has been used for qualitative interpretation of photo-
electron spectra. However, at this level of theory the effects
of orbital relaxation in the final state and electron correlation,
which are often required for the correct assignment of the
spectra, are ignored.

To improve quantitative agreement with experiment,
generalization of wave functions and energy functionals to
include those effects, such as configuration interaction and
many-body perturbation theory, can be applied.5 However,
accompanying this improvement in energy comparisons
there is often a complex structure of many-electron wave
functions and energies that sacrifices the one-electron pic-
ture, thus obscuring the qualitative interpretation of the spec-
tra.

Electron propagator theory~EPT! provides an alternative
approach for this problem.6–19 This formalism can, in prin-
ciple, provide exact electron binding energies that include
final-state orbital relaxation as well as electron correlation
effects. To each electron binding energy calculated in this
way, there is an associated one-electron function that is rig-
orously related to the many-electron wave functions of the
initial and final states. This association enables the interpre-
tation of spectra in terms of one-electron concepts, without
necessarily compromising the quality of quantitative results.

Routine, accurate calculations of ionization energies are
already feasible using propagator theory in the most recent
versions of quantum chemical software packages such as
GAUSSIAN.20 Unfortunately, the situation is not quite the
same with the corresponding cross sections. Although a con-
siderable quantity of theoretical work has been devoted to
the calculation of photoionization cross sections,21–34 com-
monly used quantum mechanical packages available today
still lack this ability.

We have developed a program, implemented as part of
the quantum chemistry packageGAUSSIAN,20 to performab
initio calculations of photoionization cross sections using
EPT, within the electric dipole approximation. Applications
to a test set of molecules composed of the first-row hydrides
CH4, NH3, H2O, and HF are presented, using different EPT
approximations and the plane-wave21 and ortho-
gonalized-plane-wave25 approximations to represent the pho-
toelectron.

II. THEORY

A. Electron propagator theory

The physical significance of the propagator lies in its
poles, i.e., the energiesE where singularities lie, which cor-a!Electronic mail: ortiz@ksu.edu
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respond to ionization energies,En(N21)2E0(N) and elec-
tron affinities,E0(N)1Em(N11). In spectral form, ther, s
element of the electron propagator matrix is

Grs~E![^̂ ar
† ;as&&

5 lim
h→0

F(
n

^C0
Nuar

†uCn
N21&^Cn

N21uasuC0
N&

E1En~N21!2E0~N!2 ih

1(
m

^C0
NuasuCm

N11&^Cm
N11uar

†uC0
N&

E2Em~N11!1E0~N!1 ih G , ~1!

where the indicesr and s are general, orthonormal spin-
orbitals,uC0

N& is theN-electron reference state,ar
† andas are

field operators that change the number of electrons by one,
and the limit is taken with respect toh because of the inte-
gration required in a Fourier transform from the time-
dependent representation of the propagator. Associated to
each pole is a residue~the numerator of the term responsible
for the singularity! which can be written in terms of the
Feynman-Dyson amplitudes~FDAs!,

Ui ,n
IE 5^Cn

N21uai uC0
N& ~2!

and

Ub,m
EA 5^Cm

N11uab
†uC0

N&. ~3!

The superscripts indicate whether the respective pole
pertains to an ionization energy~IE! or an electron affinity
~EA!. The FDAs can be used to build the Dyson Orbitals
~DO! that, in the case of IEs, are expressed as

ugn&5(
i 51

N

uf i&Ui ,n
IE 5(

i 51

N

uf i&^Cn
N21uai uC0

N&5(
i 51

N

binf i .

~4!

These orbitals may be considered to be overlaps between
the initial N-electron state and the final (N21)-electron
state. The integral is over the coordinates of all electrons
except one (x1), yielding a one-electron function that can be
written as a linear combination of HF canonical molecular
orbitals (f i). It can also be shown that finding the poles of
the propagator is equivalent to solving a pseudoeigenvalue
problem that reads13

@F1S~E!#ugn&5enugn&, ~5!

where the Fock operatorF is supplemented by the energy-
dependent, nonlocal self-energy operator,S(E), which in-
cludes relaxation and correlation effects. The eigenvalues of
this equation are the electron binding energies~IEs and EAs!,
while the eigenfunctions are the respective DOs.

The propagator matrix can be defined in a more conve-
nient way by the use of a superoperator metric defined by6

~mun!5^C0
Nu@m†,n#1uC0

N&, ~6!

wherem andn are field operators that change the number of
electrons by one~X! and by the introduction of the identity
( Î ) and Hamiltonian (Ĥ) superoperators, defined by the re-
lations

Î X5X ~7!

and

ĤX5@X,Ĥ#2 . ~8!

The r, s element of the electron propagator can thus be
written as

^̂ ar
† ;as&&[Grs~E!5~ar u~EÎ2Ĥ !21as!, ~9!

which, in matrix notation, reads

G~E!5~au~EÎ2Ĥ !21a!. ~10!

After definingu to be the vector of allX field operators
and partitioning it into the primary operator spacea ~with
holeh and particlep subspaces! and an orthonormal second-
ary operator spacef ~with products of two annihilators and
one creator of the 2ph and 2hp types!, the propagator matrix
can be written as

G~E!5@1 0#FE12~auĤa! 2~auĤf!

2~ fuĤa! E12~ fuĤf!
G21F10G . ~11!

Poles of the propagator will occur at values ofE that are
equal to the eigenvaluesvn of the superoperator Hamiltonian
matrix

vnFUa,n

Uf ,n
G5F ~auĤa! ~auĤf!

~ fuĤa! ~ fuĤf!
G FUa,n

Uf ,n
G ~12!

or

Uv5ĤU. ~13!

The eigenvectors of the superoperator Hamiltonian ma-
trix are normalized in the space containing theh, p, 2ph, and
2hp operators such that

(
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v irt
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i
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In this formulation, the Dyson orbital can be written as

ugn&5(
i

occ

Ui uf i&1(
a

v irt

Uaufa&. ~15!

The sum of the squared coefficients of the DO defines
the pole strength. Pole strengths above 0.9 indicate that the
Koopmans one-electron description is qualitatively valid. Di-
agonal approximations~see below! should provide accurate
representations of the ionization process if there is a single,
dominant term in Eq.~15!. Lower pole strengths~below 0.8!
are generally an indication that shake-up states are to be
expected, and nondiagonal approximations are recommended
to accurately describe the ionization.

After a few elementary matrix manipulations, the inverse
propagator matrix can be expressed as

G21~E!5E12~auĤa!2~auĤf!@E12~ fuĤf!#21~ fuĤa!.
~16!

Writing the zeroth order inverse propagator as

G0
21~E!5E12~auĤ0a!, ~17!

and the self-energy matrix as
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S~E!5~auV̂a!1~auĤf!@E12~ fuĤf!#21~ fuĤa!, ~18!

one may write the Dyson equation as

G21~E!5G0
21~E!2S~E!. ~19!

The inverse in the self-energy matrix expression of Eq.
~18! is calculated through an infinite expansion by the recur-
sion formula

~A2B!215A211A21B~A2B!21. ~20!

Because (fuĤf) includes nondiagonal terms in first order or
higher, terms of all orders in the self-energy matrix can be
generated.

Each of the blocks of the superoperator Hamiltonian ma-
trix may be evaluated to various orders, and several approxi-
mate propagators are defined in terms of this matrix. Poles to
second order are obtained by the choice

Ĥ~Second Order!5F ~auĤa!~0! ~auĤf!~1!

~ fuĤa!~1! ~ fuĤf!~0! G . ~21!

The 2p-h TDA ~two-particle, one-hole Tamm-Dancoff
approximation! approximation is complete only through sec-
ond order. The secondary states are now treated consistently
through first order, providing access to inner-valence states
where contributions from shake-up configurations are impor-
tant. Here the approximate superoperator Hamiltonian matrix
reads

Ĥ~2p-h TDA!5F ~auĤa!~0! ~auĤf!~1!

~ fuĤa!~1! ~ fuĤf!~1! G . ~22!

To improve the treatment of the main~valence! states,
the 2p-h TDA can be extended by a self-consistent treatment
of the (auĤa) block, resulting in an infinite partial summa-
tion for the self-energy that is complete through third order,
and by inclusion of second-order terms in the couplings be-
tween the primary and secondary ionization operators. This
is the basis for the extended 2p-h TDA or third-order alge-
braic diagrammatic construction, or ADC~3!, methods.8

In the so-calledquasiparticlemethods, off-diagonal ele-
ments in the self-energy matrix are explicitly neglected. This
approximation is justified on the basis that experimental re-
sults on the valence ionization energies~and also electron
affinities! indicate that the contribution from these elements
is small, often having a negligible effect on the binding en-
ergies and DOs. As a result, the DOs will be proportional to
the original ~HF canonical! molecular orbitals~MOs!, the
electrons being subject to an effective potential described by
the self-energy matrix. The eigenvalues of Eq.~5! can be
calculated iteratively by

E5ep1Spp~E!, ~23!

whereep is the canonical MO energy. In many applications,
the self-energy matrix is expanded through third order and
the usual initial guess,E'ep1Spp(ep), is equal to the en-
ergy difference between the initial and final states obtained
using second- or third-order perturbation theory with frozen
~initial state! orbitals, when second- or third-order expan-
sions forSpp are used, respectively. Because second-order

results typically overestimate the correlation corrections
while third-order results underestimate them, three scaling
procedures known as outer valence green’s function~OVGF!
methods A, B, and C have been developed to improve
accuracy,9 as well as numerical criteria to choose from the
three methods.10

A somewhat different derivation of the electron propaga-
tor approximations employs an asymmetric metric inspired
by the coupled-cluster parametrization of the reference state.
Numerical tests on the importance of various terms gener-
ated in this manner leads to the partial third-order approxi-
mation, P3.11 This method has been reviewed recently15 and
has been successfully applied to a variety of molecules.16–19

The P3 method has proven to be more accurate than OVGF
methods in many applications and is computationally more
efficient, since it does not require the evaluation of electron
repulsion integrals with four virtual indices. It corresponds to
the following choice of the superoperator Hamiltonian ma-
trix,

Ĥ~P3!5F Ĥh,h
~0! Ĥh,p

~0! Ĥh,2hp
~1! Ĥh,2ph

~1!

Ĥp,h
~0! Ĥp,p

~0! Ĥp,2hp
~1! Ĥp,2ph

~1!

Ĥ2hp,h
~2! Ĥ2hp,p

~2! Ĥ2hp,2hp
~1! Ĥ2hp,2ph

~0!

Ĥ2ph,h
~1! Ĥ2ph,p

~1! Ĥ2ph,2hp
~0! Ĥ2ph,2ph

~0!

G , ~24!

while keeping the resulting self-energy terms through third
order, making the quasiparticle~diagonal! approximation and
omitting (auV̂a) terms from Eq.~18!. The NR214 method
~nondiagonal, renormalized second-order extension to the P3
method! consists of solving for the eigenvalues of the matrix
in Eq. ~24! but with the 2hp,p block expanded only through
first order, and omitting the (auV̂a) terms as well. The ne-
glect of second-order terms in the 2hp,p block is justified by
numerical tests that show these terms to have a negligible
effect on IE poles.

B. The photoionization process

The first calculations of the photoionization cross section
of molecules were performed by Kaplan and Markin22,23and
by Lohr and Robins24,25 ~see also Refs. 26–28!. In these
studies, the photoionization cross section was calculated in
the first order of time-dependent perturbation theory. The
initial molecular state and the ion were described in the
Hartree-Fock approximation, while the ejected electron was
described by a plane wave22–24 or orthogonalized plane
wave.25,27,28In contrast to the former approach, the employ-
ment later on of DOs for the determination of photoioniza-
tion cross sections7,29–34allowed description of electron cor-
relation effects while preserving, at the same time, all
benefits of the one-electron description.

In first-order time-dependent perturbation theory, the
probability of transition per unit time~transition rate,w! is
given by Fermi’s Golden Rule:35

w~ke!5
2p

\ (
n

u^C0
NuBuCnke

N &u2rke
~E!, ~25!
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whererke
(E) is the density of states for the photoelectron

with the wave vectorke ; B is the many-electron perturbation
Hamiltonian for the interaction between radiation and matter;
C0

N is the initial state wave function, which is an eigenfunc-
tion of the time-independent Hamiltonian operatorHN ; and
Cnke

N is the antisymmetrized wave function for the final state

n, where one electron has been excited to the continuum
orbital fke

with energyeK5\v2IP5u\keu2/2me . The final
state wave function is represented as

uCk
N&5

1

A2
~aka

1 uCb
N21&2akb

1 uCa
N21&)

5A2~aka
1 uCb

N21&), ~26!

where we used the spin-raising operatorS1 such that
S1uCb&5uCa&, and which follows the commutation rule
@S1 ,akb

1 #5aka
1 .

The many-electron perturbation HamiltonianB can be
written from its one-electron counterpart as

B5(
i j

Vi j Ei j , ~27!

where Ei j is the unitary group generatorEi j 5aia
1 aj a

1aib
1 aib that follows the commutation rule

@Ei j ,aka
1 #5d j kaia

1 . ~28!

The interaction of a photon of wave vectorkp with the ith
electron is given by

V̂5
2e

mec
A i "pi , ~29!

A i5A0nei ~kp"r i !, ~30!

pi52 i\¹Wi . ~31!

Inserting Eqs.~26!–~28! into Eq.~25! yields an expression in
terms of the DO,gn ,29

w~ke!5
2p

\
u^gnuV̂ufke

&u2rke
~E!. ~32!

To obtain the differential cross section, it is useful to notice
that the energy transported per unit time~rate of energy
transport! and per unit area by an electromagnetic wave of
frequencyn is given by the magnitude of the Poynting vec-
tor, S5v2A0

2/2pc. If the Poynting vector is multiplied by
the differential cross sectionds, the energy transport rate
results. This rate must be the same as obtained by the product
of the transition ratev by the photon energy\v. Equating
these two results, the differential cross section for photoion-
ization can be written as

ds5
~2p!2c

vA0
2

u^gnuV̂ufke
&u2rke

~E!. ~33!

The density of states for the free electron in the solid angle
dV is36

rke
~E!5S L

2p D 3 meke

\2
dV. ~34!

Therefore, for the differential cross section of photoioniza-
tion, one obtains the following expression:

ds

dV
5S me

\2 D L3kec

2pvA0
2

u^gnuV̂ufke
&u2. ~35!

If the wavelength of the incident photon can be consid-
ered as large compared to the molecular dimensions, the ex-
ponential in Eq.~30! may be approximated as unity. This is
the basis for the electric dipole approximation.

C. The wave function for the ejected electron

The simplest representation for the continuum orbital is
a plane wave~PW! with the wave vectorke.

21 Taking it to be
normalized inside the volume of a large cubic box of edgeL
~Refs. 23–25! the free electron wave function will be

fke
→wke

5
1

AL3
hke

~r !, ~36!

hke
~r !5ei ~ke"r !. ~37!

The plane-wave approximation ignores the influence of
the positively charged molecular ion on the wave function of
the ejected electron, which renders it is invalid in the vicinity
of the threshold of ionization. It is a reasonable approxima-
tion in the limit of high electron kinetic energy. On the other
hand, the plane-wave approximation is not able to reproduce
correct angular distributions for electrons with angular mo-
mentumlÞ0.21 This limitation can be partially corrected by
the use of plane waves that have been Schmidt orthogonal-
ized to the occupied bound MOs of the system.27–33 The
continuum orbital can than be represented as an orthogonal-
ized plane wave:25

ufke
&5NF uwke

&2(
i

uf i&^f i uwke
&G . ~38!

As the size of the box to which the plane wave is nor-
malized gets large, the normalization constant

N5F12S L

2p D 23

(
i

u^f i uhke
&u2G21/2

~39!

can be taken as unity.
Writing P5^gnu¹Wi ufke

&, we have, for the orthogonalized
plane wave~OPW! approximation,

POPW5F ike^gnuhke
&2(

j
^gnu¹Wi uf j&^f j uhke

&G . ~40!

In the PW case, the second term in brackets is zero.

D. The spectrum of a gaseous sample

The random orientation of the molecules in a gaseous
sample requires that all incoming photon directions be aver-
aged by integrating over the solid angle of the incoming
radiation (dVp5sinu du df). In general
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ds

dV
5S e2

me
D ke

2pvc

* un"Pu2dVp

* dVp

5S e2

me
D ke

2pvc

1

4p E un"Pu2dVp . ~41!

If the incident beam is unpolarized, one must also aver-
age over the incident photon polarizations

un"Pu25
1

2
~ un1"Pu21un2"Pu2!. ~42!

The two polarization directions are perpendicular to the
photon propagation vectorkp . These three vectors form a
right-hand system of axes, and therefore

uPu25un1"Pu21un2"Pu21
ukp"Pu2

ukpu2
. ~43!

Now, Eq. ~41! can be written as

ds

dV
5S e2

me
D ke

2pvc

1

8p E S uPu22
ukp"Pu2

ukpu2 D dVp , ~44!

ds

dV
5S e2

me
D ke

2pvc

uPu2

8p E ~12cos2 u!dVp , ~45!

ds

dV
5S e2

me
D ke

6pvc
uPu2. ~46!

Integration of Eq.~46! over the solid angledV yields
the angle-averaged photoionization cross section.

III. IMPLEMENTATION

Equation~46! was implemented inGAUSSIAN, using both
PW and OPW approximations to represent the ejected elec-
tron, closely following the work of Deleuzeet al.33 Writing
the molecular orbitals as linear combinations of atomic or-
bitals, theP vector representing the overlap between the DO
and the photoelectron can be conveniently written as

POPW5(
m8

bmn* (
p

(
i 51

N F ike2 (
m8p8

cmpGpp8cm8p8G
3cmp* S~ke!, ~47!

where

S~ke!5^vpuhke
& ~48!

and

Gpp85^vpu¹Wtuvp8&. ~49!

In the PW case, the second term in brackets in Eq.~47!
vanishes. The last integrals (Gpp8) are the dipole velocity
integrals, while theS(ke) integrals represent an overlap be-
tween a plane wave and an atomic orbital.

Most computational chemistry programs~including
GAUSSIAN! use the scheme proposed by Boys37 of writing the
atomic orbitals as linear combinations of Cartesian Gaussian
primitive functions@g~r !# on each atomic center,

uvp&5(
q

dpqugpq&5(
q

dpq~Ni jkxiyjzke2ar2
!, ~50!

where the sumi 1 j 1k defines the angular momentum of the
atomic orbital. Therefore,

S~ke!5(
q

dpq^gquei ~ke"r !&5(
q

dpq@^e
2 i ~ke"r !ugq&#.

~51!

The integral in brackets in Eq.~51! is (2p)22/3 times the
Fourier transform of the primitive Cartesian Gaussian func-
tion g~r !. Formulas for those integrals have been derived
earlier by Kaijser and Smith38 in the convenient form of a
recursive relation which permits one routine to calculate the
Fourier transform of any given Cartesian Gaussian indepen-
dently of the angular momentum of the atomic orbital. The
Fourier transform reads

FT@g~r !#5~2p!23/2E e2 i ~p"r !g~r !dr

5e2 ik"Ae2p2/4a)
i 51

3

~2 i !kiKki
~zi !, ~52!

where

zi5pi /2Aa, ~53!

2aKk11~z!5pKk~z!2kKk21~z!, ~54!

K05~2a!21/2, ~55!

K1~z!5p~2a!23/2. ~56!

The integration of Eq.~46! to obtain the cross sections is
done by a double Chebyshev polynomial integration.39 In
this method, the integrand is fit to a Chebyshev polynomial
which is then easily integrated using the Clenshaw-Curtiss
quadrature.40

IV. CALCULATIONS

Calculations of the photoionization cross sections of the
first row hydrides CH4, NH3, H2O, and HF are shown. The
correlation consistent, polarized valence triplez ~cc-pVTZ!
basis set41 with a full set of Cartesian functions was used in
all calculations. Results from a related study of basis set
effects on intensity calculations that will soon be published
indicate that the cc-pVTZ basis set used here represents a
good compromise between efficiency and accuracy.

Geometries were optimized at the MP2 level. The IEs
and the respective DOs were calculated with 2ph-TDA,
ADC~3!, and NR2 nondiagonal approximations to the self-
energy, with the second order and P3 quasiparticle~diagonal!
approximations and with canonical Hartree-Fock orbitals and
energies. The cross sections were calculated for MgKa in-
cident radiation~1253.6 eV! with the PW or OPW approxi-
mations for the photoelectron.

Table I shows the absolute, angle averaged cross sections
results for the outermost Dyson orbital of each molecule.
Those lines were taken as reference for calculation of the
relative intensities summarized in Tables II, III, IV, and V.
~For comparison with the experimental values, each cross
section is multiplied by the degeneracy of the respective or-
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bital when calculating the relative intensities.! Figures 1–4
depict the60.05 contours of the DOs that were generated
with the programMOLDEN.42 In all cases it is found that the
DO is dominated by a single Hartree-Fock molecular orbital.
The same labels are applied to both sets of orbitals. Tables
VI, VII, and VIII show the shake-up configurations pertain-
ing to the states with low pole strengths from the NR2 cal-
culations. All contributions are summed for configurations
where the same occupied orbitals are coupled to different
virtual orbitals with same symmetry, and an ‘‘n’’ is used in
column 5 to indicate the virtual orbitals. The number shown
with the configuration description in column 5 is the sum of
squares of the coefficients for each of the 2hp configurations
combined@see Eq.~14!#. Only cases where this sum is above
0.1 are shown. In column 4 the total sum of all 2hp configu-
rations is shown.

V. DISCUSSION

The results agree well with previous calculations using
smaller basis sets.29–33 In general, all calculations reproduce
the experimental ordering of the photoionization
intensities.43–45As expected from the nature of the PW and
OPW approximations, quantitative agreement becomes
poorer as the photoelectron energy decreases, and the inten-
sities for the core ionizations are in most cases underesti-

mated. The neglect of the electrostatic interactions with the
molecular ion is a main source of errors in this region, and
the PW approximation is known to be valid only in the high
photoelectron kinetic energy limit. Although the orthogonal-
ization correction to the plane wave can be considered to
take this influence partially into account, both the PW and
the OPW approximations fail to reproduce the experiment
quantitatively for the core ionization. A better description of
the photoelectron at energies closer to the threshold of ion-
ization demands the inclusion of the electrostatic interaction
with the molecular ion.

With respect to inner and outer valence orbitals, a rea-
sonable agreement with experimental values is obtained in
all cases. The program presented here has the ability to cal-
culate the intensities for the (h,p) part of the shake-up states.
The results show that adding the contributions from different
shake-up lines is important for an accurate treatment of ion-
izations, especially for cases subject to intensity dispersion
such as the inner valence ionizations in NH3 and H2O. Such
improvement was predicted earlier by Deleuze, Pickup, and
Delhalle,33 but their program was not able to calculate those
intensities at that time. Nondiagonal approximations can also
improve the results when different final states corresponding
to the same irreducible representation are present, as in H2O.
Whereas the correlation and relaxation corrections included

TABLE I. Photoionization cross section absolute values (310227 m2) for the orbitals taken as reference in the
calculation of relative intensities. Values here do not include the degeneracy factor.

Method Molecule HF Second order P3 2p-h TDA ADC~3! NR2

PW CH4 (1t2) 1.82 1.67 1.68 1.65 1.68 1.69
NH3 (3a1) 20.73 18.59 19.01 19.79 19.78 19.94
H2O (1b1) 28.21 25.04 26.02 24.05 24.91 24.81
HF ~1p! 59.94 53.66 55.91 51.80 53.64 53.15

OPW CH4 (1t2) 2.73 2.51 2.52 2.47 2.52 2.50
NH3 (3a1) 20.63 18.50 18.92 20.02 19.99 20.06
H2O (1b1) 22.92 20.36 21.16 20.07 20.69 20.53
HF ~1p! 45.31 40.58 42.27 39.94 41.17 40.77

TABLE II. Calculated values for the ionization potentials~IP, in eV! and relative~%! photoionization intensities of the CH4 molecule. Degeneracy factor is
already taken into account.

Orbital

Koopmans Second order P3

IP ~str! sPW sOPW IP ~str! sPW sOPW IP ~str! sPW sOPW

1a1 304.9 33 450 22 085 291.6~0.80! 28 602 18 893 292.3~0.81! 28 877 19 077
2a1 25.70 1114 755 23.43~0.88! 1063 721 23.33~0.86! 1034 701
1t2 14.85 100 100 14.12~0.92! 100 100 14.27~0.92! 100 100

2ph-TDA ADC~3! NR2

1a1 289.8~0.77! 27 535 18 209 293.0~0.81! 28 698 19 004 291.7~0.79! 27 623 18 496
2a1 22.50~0.80! 976 663 23.35~0.82! 991 674 22.97~0.81! 973 669
1t2 13.96~0.91! 100 100 14.42~0.92! 100 100 14.22~0.92! 100 100

Expt.a

1a1 290.7 13 900
2a1 23.0 540
1t2 14.0 100

aReference 43.
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in the EPT calculations prove very important in determining
the correct ionization energies, intensity results obtained
from different theory levels vary only slightly. None of the
correlated methods is clearly superior and much more sig-

nificant improvement to the results is noted when changing
from PW to OPW, indicating the relevance of the orthogo-
nalization correction to the plane wave, already pointed out
by other authors.25,28,33

TABLE III. Calculated values for the ionization potentials~IP, in eV! and relative~%! photoionization intensities of the NH3 molecule. Degeneracy factor is
already taken into account.

Orbital

Koopmans Second order P3

IP ~str! sPW sOPW IP ~str! sPW sOPW IP ~str! sPW sOPW

1a1 422.7 13 952 13 617 405.0~0.78! 11 902 11 620 407.6~0.82! 12 308 12 018
2a1 31.02 562 584 27.69~0.81! 508 527 28.00~0.68! 414 430
1e 16.97 61 64 15.98~0.91! 62 65 16.43~0.93! 61 65
3a1 11.67 100 100 10.24~0.90! 100 100 10.82~0.92! 100 100

2ph-TDA ADC~3! NR2

1a1 404.1~0.77! 11 008 10 573 409.1~0.82! 11 791 11 332 406.9~0.80! 11 280 10 893
2a1 ~a! 37.83~0.03! 18 19 37.78~0.02! 17 18 37.80~0.02! 18 18

~b! 34.63~0.02! 5 5 34.62~0.02! 6 6 34.62~0.02! 6 6
~c! 29.52~0.15! 89 91 29.73~0.28! 168 172 29.61~0.21! 123 126
~d! 26.60~0.40! 221 225 27.48~0.53! 292 298 27.05~0.57! 313 321
~e! 26.29~0.25! 137 140 26.38~0.02! 8 8 26.37~0.04! 20 21

S(2a1) 471 480 491 501 479 491
1e 15.97~0.91! 57 60 16.62~0.93! 59 61 16.34~0.92! 59 61
3a1 10.26~0.90! 100 100 11.03~0.92! 100 100 10.72~0.91! 100 100

Expt.a

1a1 405.6 17 700
2a1 27.7 530
1e 16.5 50
3a1 10.85 100

aReference 43.

TABLE IV. Calculated values for the ionization potentials~IP, in eV! and relative~%! photoionization intensities of the H2O molecule.

Orbital

Koopmans Second order P3

IP ~str! sPW sOPW IP ~str! sPW sOPW IP ~str! sPW sOPW

1a1 559.4 13 575 15 579 537.9~0.77! 11 633 13 379 541.3~0.81! 12 404 14 262
2a1 36.64 716 925 32.44~0.77! 621 802 33.39~0.70! 544 703
1b2 19.26 65 66 18.11~0.91! 67 68 18.78~0.94! 66 67
3a1 15.79 156 176 13.87~0.90! 158 177 14.80~0.93! 157 176
1b1 13.76 100 100 11.51~0.89! 100 100 12.53~0.93! 100 100

2ph-TDA ADC~3! NR2

1a1 537.8~0.79! 12 304 13 781 544.3~0.84! 12 726 14 310 541.4~0.81! 12 327 13 922
2a1 ~a! 37.44~0.07! 55 69 37.48~0.11! 80 102 37.45~0.09! 65 83

~b! 33.77~0.02! 13 16 33.83~0.14! 108 136 33.78~0.03! 26 33
~c! 32.29~0.57! 456 574 33.40~0.55! 430 543 32.85~0.63! 486 616
~d! 30.16~0.19! 133 167 30.39~0.07! 48 60 30.30~0.11! 77 98

S(2a1) 656 826 665 842 654 830
1b2 18.24~0.92! 69 69 19.00~0.94! 68 68 18.66~0.93! 68 69
3a1 14.05~0.91! 182 205 15.08~0.93! 174 195 14.61~0.92! 177 199
1b1 11.75~0.91! 100 100 12.84~0.93! 100 100 12.37~0.92! 100 100

Expt.a

1a1 546.5 30 400
¯ 330 Broad band attributed to 2a1

34.8 200 Attributed to 3a1 shake up.
2a1 32.2 840
1b2 18.4 80
3a1 14.8 260
1b1 12.6 100

aReference 43.

4149J. Chem. Phys., Vol. 121, No. 9, 1 September 2004 Photoionization cross sections

Downloaded 21 Feb 2005 to 132.248.12.200. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



It has been shown that in the sudden approximation,
where final state relaxation and matrix elements describing
any process other than the primary ionization are neglected,
the resulting ‘‘uncorrelated’’ cross section implicitly includes
the effect of one- and multi-electron transitions, i.e., is a sum
of the cross section of the main ionization line plus the cross
sections related to any shake-up/shake-off processes associ-
ated to it.46 This effect can be noticed in the inner-valence
ionization region for NH3, H2O and HF, where the intensi-
ties obtained using Koopmans’s theorem reproduce the ex-
perimental intensities reasonably well. The sum of intensities
from nondiagonal results related to the same final state ap-
proach the Koopmans’s theorem intensity results as more
terms are added in the self-energy expansion.

Pole strengths have been used as a first approximation to
the relative cross sections. The results presented here indi-
cate that such an approach may lead to erroneous conclu-
sions and that explicit calculation of the cross section is nec-
essary even for qualitative agreement with experiment. The
method may still be useful, however, for a qualitative analy-
sis of relative intensities of peaks pertaining to similar DOs.

It is also important to mention that the method presented
here uses the dipole approximation, which is strictly valid
only when the wavelength of the incident radiation can be
considered to be large compared to molecular dimensions. In
this region, the resulting photoelectron will have low kinetic
energy. However, the PW and OPW approximations are valid
only when the kinetic energy of the photoelectron is high.
For photons with energy in the x-ray region, such as the ones

generated by MgKa radiation considered in this work
~1253.6 eV!, where the PW and OPW approximations are
valid, the photon wavelength is already of molecular dimen-
sions ~9.9 Å!, and the errors introduced by the dipole ap-
proximation are expected to be noticeable. For the treatment
of larger molecules, or for more energetic photons, the use of
the full form of the vector potential from Eq.~9! is expected
to be important. This approach corresponds to allowance of
all multipole moments~not only the dipole one!. It was ap-
plied by Kaplan and Markin23 in the x-ray photon range. In
Ref. 47, it was developed for theg-ray range where full
relativistic calculation of the photoionization of H2 up to
photons with energy 1 MeV was performed.

A. CH4

All the calculated relative photoionization intensities
~Table II! reproduce the correct order. However, the PW re-
sults generally overestimate the intensities corresponding to
the higher IPs. When the orthogonalization correction is ap-
plied, the results agree well with the experimental values.
The DOs in CH4 ~Fig. 1! show a structure very similar to the
canonical Hartree-Fock orbitals, and the diagonal approxi-
mations are already sufficient to reproduce the experimental
data with high accuracy. Indeed, the highest intensity is
noted for the first DO which is composed chiefly of the C 1s
dominated 1a1 Hartree-Fock molecular orbital. The main
contribution to the second DO, with intermediate intensity,
comes from the C 2s-like 2a1 Hartree-Fock orbital. The least

TABLE V. Calculated values for the ionization potentials~IP, in eV! and relative~%! photoionization intensities of the HF molecule. Degeneracy factor is
already taken into account.

Orbital

Koopmans Second order P3

IP ~str! sPW sOPW IP ~str! sPW sOPW IP ~str! sPW sOPW

1s 715.3 3433 3709 694.4~0.08! ¯ ¯ ¯ ¯ ¯

2s 43.40 265 375 39.11~0.34! 99 140 40.72~0.48! 136 193
3s 20.70 52 57 18.94~0.92! 53 58 19.87~0.94! 52 57
1p 17.53 100 100 14.70~0.90! 100 100 15.97~0.94! 100 100

2ph-TDA ADC~3! NR2

1s ~a! 848.7~0.03! 123 48 847.6~0.02! 68 64 848.1~0.03! 92 87
~b! 838.8~0.01! 44 47 ¯ ¯ ¯ 838.6~0.01! 37 36
~c! 828.2~0.02! 64 127 827.5~0.01! 51 50 827.8~0.02! 57 56
~d! 795.5~0.01! 48 3444 ¯ ¯ ¯ ¯ ¯ ¯

~e! 786.6~0.01! 47 4 ¯ ¯ ¯ ¯ ¯ ¯

~f! 775.4~0.03! 125 105 774.0~0.03! 114 116 774.7~0.03! 124 127
~g! 691.9~0.81! 3208 242 699.1~0.86! 3284 3528 695.6~0.83! 3218 3466

2s ~a! 43.46~0.02! 3 48 43.46~0.02! 3 4 43.45~0.02! 3 4
~b! 40.73~0.25! 76 47 41.34~0.50! 144 200 40.97~0.36! 104 145
~c! 37.68~0.62! 175 127 38.67~0.39! 108 150 38.20~0.53! 145 202

S~2s! 253 351 255 355 252 352
3s 19.19~0.93! 60 67 20.13~0.94! 57 63 19.68~0.93! 58 65
1p 15.10~0.92! 100 100 16.37~0.94! 100 100 15.76~0.93! 100 100

Expt.a

1s 694.0 14 167
2s 39.65 417
3s 19.89 79
1p 16.12 100

aReferences 44 and 45.
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intense feature comes from DOs that are dominated by the
1t2 Hartree-Fock orbitals which exhibit a mixing of C 2p
and H 2s orbitals.

B. NH3

The ammonia molecule poses a somewhat more interest-
ing case. The correct intensity order is reproduced in all
cases~Table III!. Apart from the 1a1 ionization, which is
underestimated, and the 2a1 in the P3 approximation, all
intensities reproduce the experiment well. This last DO also
has low pole strength, indicating that this state is not being
described well by the P3 method. The intensities calculated
from the canonical MOs are in close agreement with the
experiment. The low pole strengths for the two higher ion-
ization DOs in the diagonal approximations also indicate the
possibility of shake-up lines, which are revealed by the non-
diagonal calculations. The only important contribution to the
1a1 DO comes from the 1a1 Hartree-Fock orbital, which is
dominated by N 1s basis functions. The DOs for NH3 are
depicted in Fig. 2.

The 2a1 ionization shows a structure of five lines in all
nondiagonal methods. The structures of the DOs, in all cases,
are combinations of the 2a1 and 3a1 Hartree-Fock orbitals,
which can be identified with N 2s and N 2pz basis functions,
respectively, the dominant contributions being from the 2a1

orbital. The first four lines@2a1 ~a–d!# are similar in all
approximations. The first line@2a1-~a!# is the one with the
highest contribution from 3a1 relative to 2a1 . Comparison
of the coefficients in the DO combination shows a 3a1 to

FIG. 1. Dyson orbitals for the CH4 molecule.

FIG. 2. Dyson orbitals for the NH3 molecule.
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2a1 ratio of 1:3. This high amount of 3a1 mixing is respon-
sible for the lobe over the nitrogen atom seen in the plot. The
2a1-~b,d! poles have small contributions from both, but con-
centrate the DO more on the 2a1 HF orbital ~1:14,1:9!. The
2a1-~c! DO is composed almost exclusively of the 2a1

Hartree-Fock orbital~1:85!. Also, the coefficient for the 2a1

orbital in the~c! and ~d! cases is three to four times higher
than in~a! and~b!, which accounts for the size of the plotted
contour. For the last@2a1-~e!# DO, the 2ph-TDA approxi-
mation concentrates most of the contributions in the 2a1

orbital, just like the 2a1-~c! DOs ~1:87!, while ADC~3! and
NR2 both show more significant contributions from the 3a1

orbital, and reduced contributions from the 2a1 , when com-
pared to the 2ph-TDA results. In the ADC~3! and NR2 cases
the contribution from each HF orbital is small, like in the
2a1-~b! case, the ratio of 3a1 relative to 2a1 being 1:4 and

1:9, respectively, but the absolute contribution from the 2a1

orbital is higher in the NR2 case by;36%.
Table VI shows the most important 2h-p shake-up con-

figurations that couple to the 2a1-h operator leading to a2A1

final state. The ionization of an inner-valence electron from
the 2a1 DO is strongly mixed to processes which couple the

FIG. 3. Dyson orbitals for the H2O molecule.

FIG. 4. Dyson orbitals for the HF molecule.

TABLE VI. Shake-up configurations for the NH3 photoionization spectrum,
from the NR2 calculation.

Final state IP/eV~PS! S2h-p Configurations

2A1 ~a! 37.80~0.02! 0.98 0.28 (1e)21 (1e)21 (na1)11

0.41 (1e)21 (1e)21 (ne)11

~b! 34.62~0.02! 0.98 0.42 (1e)21 (1e)21 (na1)11

0.38 (1e)21 (1e)21 (ne)11

~c! 29.61~0.21! 0.79 0.53 (1e)21 (3a1)21 (ne)11

0.14 (3a1)21 (3a1)21 (na1)11

~d! 27.05~0.57! 0.43 0.28 (1e)21 (3a1)21 (ne)11

~e! 26.37~0.04! 0.96 0.84 (3a1)21 (3a1)21 (na1)11
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ionization of a valence electron to the excitation of another
valence electron. The cases where one 1e orbital is ionized
while another is excited to ana1 orbital or anothere orbital
generate the~a! and ~b! states. Configurations with holes in
the 1e and 3a1 orbitals and a particle in ane orbital are
important in the~c! and ~d! states. Finally, configurations
where both excited and ionized electrons originate from the
3a1 HF orbital are the main component of the~e! state, but
also contribute for the~c! state.

C. H2O

All calculations reproduce the correct order of ionization
intensities. The DOs for water are depicted in Fig. 3. As
happened with the other examples, the approximations used
here fail to reproduce quantitatively the intensities for the
1a1 (O 1s) ionizations, underestimating this intensity by
around 40–50%.

The low pole strengths for the second-order and P3 poles
for the 2a1 ionizations indicate a structure that is portrayed
by the nondiagonal calculations as having four lines@2a1

~a–d!#. Analysis of the DOs shows that the main component
in all cases is the 2a1 Hartree-Fock orbital (O 2s), with a
small mixing of 3a1 (O 2s,2pz ,H 1s). The differences in in-
tensities are due to differences in the 2a1 contribution for
each DO, the main line@2a1-~c!# being almost purely the

2a1 Hartree-Fock orbital. In the ADC~3! approximation, the
roles of the 2a1-~b! and -~d! DOs are reversed. A higher
contribution from the 2a1 Hartree-Fock orbital appears in
the ~b! rather than in the~d! component, as opposed to the
2ph-TDA and NR2 cases. The sum of the calculated inten-
sities from the four 2a1 lines agrees very well with the mea-
sured value. Also, the importance of the orthogonalization
correction is evident from the results in Table IV.

Table VII shows the most important 2p-h configurations
coupling to the 2a1-h operator leading to a2A1 final state.
The highest energy state~a! is mainly due to a configuration
with holes in the 1b2 and 3a1 orbitals, and a particle in ab2

orbital. This kind of configuration also contributes to the~b!
state, which is dominated by a configuration where both
holes are from the 3a1 orbital, with an excitation to ana1

orbital. State~d! is dominated by a 1b1 ionization coupled to
an excitation of a 1b1 electron to a 1a1 orbital. This last
configuration is also partially responsible for the~c! state,
together with another, where holes are left in both 1b2 and
3a1 orbitals and the particle in ab2 orbital.

The 1b2 and 1b1 DOs do not show any mixing of
Hartree-Fock orbitals and the results from the diagonal ap-
proximations are basically the same as in the nondiagonal
approximations. The former DO displays a mix of O 2py ~in
plane! and H 1s, while the latter consists almost entirely of
2px ~out-of-plane! functions.

The main atomic contributions for the 3a1 DO come
from O 2s and 2pz with some mixing with H 1s. This O 2s
contribution explains the high photoionization intensity
when compared to the 1b2 and 1b1 lines. In the nondiagonal
calculations, mixing from the 2a1 Hartree-Fock orbital in-
creases the O 2s character of the 3a1 DO and therefore in-
creases the intensities relative to the diagonal results.

D. HF

Relative intensity results for the HF molecule are shown
in Table VII and the DOs are depicted in Fig. 4. Diagonal
approximations completely fail to reproduce the experiment
in the inner valence and core regions. The results show that
these ionizations are accompanied by a number of shake-up
processes. Nondiagonal approximations are necessary for an
appropriate description of the photoelectron spectrum of this
molecule. The 1s DOs correspond to a main peak@1s ~g!#
and seven secondary peaks@1s ~a–f!# in the 2p-h TDA ap-
proximation. Four of those lines~a,b,c,f! appear in the NR2
approximation, while ADC~3! locates only three of them
~a,b,f!. The most important contribution to the DO, in all
cases, comes from the 1s Hartree-Fock (F 1s) orbital. The
shake-up configurations in Table VIII show that those states
are generated by the coupling of an ionization with an exci-
tation, where one hole is always on the 1s orbital and the
other in any of the inner-valence or valence orbitals.

The 2s DOs correspond to two states with comparable
intensities@2s ~b,c!# and a third weak feature at a slightly
higher energy, labeled 2s ~a!. The DOs for all three peaks are
composed primarily of the 2s ~mostly F 2s) Hartree-Fock
orbital with a small mixing from the 3s ~mostly F 2pz).

TABLE VII. Shake-up configurations for the H2O photoionization spectrum
from the NR2 calculation.

Final state IP/eV~PS! S2h-p Configurations

2A1 ~a! 37.45~0.09! 0.91 0.70 (1b2)21 (3a1)21 (nb2)11

~b! 33.78~0.03! 0.97 0.70 (3a1)21 (3a1)21(na1)11

0.13 (1b2)21 (3a1)21 (nb2)11

~c! 32.85~0.63! 0.37 0.13 (1b1)21 (1b1)21 (na1)11

0.12 (1b2)21 (3a1)21 (nb2)11

~d! 30.30~0.11! 0.89 0.82 (1b1)21 (1b1)21 (na1)11

TABLE VIII. Shake-up configurations for the HF photoionization spectrum
from the NR2 calculation.

Final state IP/eV~PS! S2h-p 2h-p Configurations

2S(1s)b ~a! 848.1~0.03! 0.97 0.57 (1s)21 (2s)21 (ns)11

0.29 (1s)21 (1p)21 (np)11

~b! 838.6~0.01! 0.99 0.13 (1s)21 (2s)21 (ns)11

0.67 (1s)21 (3s)21 (ns)11

0.12 (1s)21 (1p)21 (np)11

~c! 827.8~0.02! 0.98 0.25 (1s)21 (3s)21 (ns)11

0.61 (1s)21 (1p)21 (np)11

~d! 795.5~0.01!a 0.99 0.61 (1s)21 (2s)21 (ns)11

0.25 (1s)21 (1p)21 (np)11

~e! 786.6~0.01!a 0.99 0.80 (1s)21 (2s)21 (ns)11

~f! 774.7~0.03! 0.97 0.27 (1s)21 (2s)21 (ns)11

0.20 (1s)21 (3s)21 (ns)11

0.39 (1s)21 (1p)21 (np)11

~g! 695.6~0.83! 0.17 ¯

2S(2s)b ~a! 43.45~0.02! 0.98 0.83 (3s)21 (3s)21 (ns)11

~b! 40.97~0.36! 0.64 0.56 (1p)21 (1p)21 (ns)11

~c! 38.20~0.53! 0.47 0.32 (1p)21 (1p)21 (ns)11

aFrom 2p-h TDA calculation.
bIndicates the dominant HF orbital contribution in the Dyson orbitals com-
binations.
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Table VIII shows that both stronger lines have very similar
structures with significant coupling from a shake-up configu-
ration where onep electron is ionized while another is ex-
cited to as orbital, while for the higher energy feature both
ionization and excitation to as orbital originate from the 3s.
The relative contribution of the 2s orbital is five to eight-
times larger in the~b! and ~c! peaks when compared to the
~a! peak, which explains the difference in intensities and in
the size of the contour plot~Fig. 4!. Neither the PW nor
OPW approximation agrees quantitatively with the experi-
mental intensity, but the importance of the orthogonalization
correction is evident. The experimental reports do not dis-
cuss such features. However, the spectrum from Ref. 44
shows an asymmetric peak, centered at 39.65 eV, slightly
broader to the low energy side, obtained by fitting a Lorent-
zian function to the peak in the experimental spectrum. Our
results suggest that the use of at least two fitting functions
could be appropriate.

The last two ionization lines are well described by the
diagonal approximations as shown by the high pole
strengths, and the relative intensities are in reasonable agree-
ment with the experimental values.

VI. CONCLUSIONS

A program was implemented in theGAUSSIAN package
to performab initio electron propagator calculations of pho-
toelectron intensities in the dipole approximation, applying
either a plane-wave or orthogonalized plane-wave descrip-
tion of the photoelectron. Applications to the first-row hy-
drides satisfactorily predict the photoelectron spectra for all
molecules. The correct order of ionization intensities is re-
produced in all cases and, with the exception of core ioniza-
tions, a semiquantitative agreement is possible when the or-
thogonalized plane wave is used.

Shake-up states in NH3, H2O, and HF were located and
their intensities relative to those of the primary (h,p) part of
each spectrum were calculated. Important 2p-h configura-
tions in these states were discussed. Calculations of the in-
tensity pertaining to shake-up states proved crucial for the
correct interpretation of the NH3 and H2O inner-valence
spectra. The existence of shake-up states not previously re-
ported for HF suggests that a reevaluation of the experimen-
tal data might be appropriate.

Nondiagonal approximations are advantageous for cases
when several final states corresponding to the same irreduc-
ible representation symmetry are present, as in H2O. These
methods also are useful for examination of inner-valence IEs
with similar DOs. None of these approximations, however,
provided consistently better results and therefore a choice of
method may be based on computational efficiency alone. The
NR2 method is the most easily executed of the nondiagonal
approximations. For simpler systems where a single-
determinant description of the final state is suitable, such as
CH4, the diagonal approximations can be used. In this case,
the P3 method is indicated.

With appropriate choices of the photoelectron represen-
tation, the EPT approximation, and the basis set, the methods

described here can be a useful tool for the interpretation of
photoelectron spectra.
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