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In this work, the Kubo-Greenwood formula is used to investigate the electronic transport
in multidimensional macroscopic quasiperiodic lattices within the tight-binding model.
This investigation is carried out by means of a novel renormalization method and the
convolution technique. The dc electrical conductance of two-dimensional (2D) periodic
systems shows uniform steps in units of 2e2/h, as observed in 2D electron-gas experi-
ments, and a fractal distribution of these steps is found when the atoms in perpendicular
direction to the applied electric field are quasiperiodically ordered. The spectral integral
of these conductances presents a strong dependence on the imaginary part of energy in
the Green’s function, contrary to the case of density of states.
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1. Introduction

Recent advances in the fabrication of two-dimensional (2D) electron gases formed at the
high-mobility GaAs-AlGaAs heterostructures have enabled the experimental study of bal-
listic transport in 2D systems, finding a quantization of the conductance in units of g0 =
2e2/h [1, 2]. On the theoretical side, the electrical conductance can be quantified by means
of the Kubo-Greenwood formula

σ (µ, ω, T ) = 2e2-h

π�m2

∫ ∞

−∞
d E

f (E) − f (E + -hω)
-hω

T r{pImG(E + -hω)pImG(E)},

where � is the volume of the system, G(E) is the retarded one-particle Green’s function,
f (E) ={1 + exp[(E −µ)/kBT ]}−1 is the Fermi-Dirac distribution with Fermi energy µ and
temperature T , and p is the projection of the momentum operator along the applied electric-
field direction. For one-dimensional systems, the momentum operator can be determined
by using the relations p = (im/-h)[H, x] and x = ∑

j xj| j〉〈 j |, where x j is the coordinate
of site j . Hence, in the Wannier representation, we have

p = ima
-h

∑
j

(t j, j+1| j〉〈 j + 1| − t j, j−1| j〉〈 j − 1|),
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where t j, j+1 = β j, j+1(x j+1 − x j )/a, and β j, j+1 is the hopping integrals within the tight-
binding model. Notice that for the periodic case t j, j+1 = β j, j+1 = β.

In this paper, we study the electronic transport in two- and three-dimensional (3D)
quasiperiodic systems, paying special attention to the imaginary part of energy in the Green’s
function and its effects on the conductance spectra.

2. Multidimensional Fibonacci Systems

For the bond problem, two kinds of bonds, βA and βB, are organized following the Fibonacci
sequence and the self-energies of the atoms are assumed to be zero. The first and the
second generations of the Fibonacci sequence (Fn) are respectively defined as F1 = A and
F2 = B A, and the generation n is given by Fn = Fn−1 ⊕ Fn−2. Along the applied electric
field all the systems considered in this paper are connected to two semi-infinite periodic
leads with vanishing self-energies, hopping integrals β = βA and a lattice constant a, in
order to resemble the real measurement conditions. A novel renormalization method [3] is
used to calculate the electric conductivity in quasiperiodic chains.

For multidimensional systems, in which one or more directions are quasiperiodic and
their Hamiltonians (H ) are separable, i.e., H = H|| ⊗ I⊥ + I|| ⊗ H⊥, where H|| (I||) and H⊥
(I⊥) respectively stand for the Hamiltonian (the Hilbert-space identity) of the parallel and
perpendicular subsystem with respect to the applied electric field, the convolution theorem
[4] is employed. This theorem can be written as

σ (µ, ω, T ) = 1

�⊥

∫ ∞

−∞
dyσ ||(µ − y, ω, T )DOS⊥(y),

or

σ (µ, ω, T ) = 1

�⊥

∑
β

σ ||(µ − Eβ, ω, T ),

where σ ‖ is the electric conductivity of the parallel subsystem, �⊥, DOS⊥ and Eβ are
respectively the volume, the density of states and the eigenvalues of the perpendicular sub-
system, i.e., H⊥|β〉 = Eβ |β〉. In Figs. 1(a) and 1(b), we respectively show the dc electrical
conductances at zero temperature, g(µ, 0, 0) = σ (µ, 0, 0)�⊥/ �||, for 2D (�⊥ = 46369
atoms) and 3D (�⊥ = 90 × 90 atoms) periodic lattices, both with �|| = 165580142 atoms.
Figs. 1(c) and 1(d) exhibit the electrical conductances of the same systems as in Figs. 1(a)
and 1(b), except that in the perpendicular directions to the applied electric field the atoms
are organized following the bond Fibonacci sequence with βB/βA = 0.8. Magnifications
of Figs. 1(a–d) are respectively illustrated in Figs. 1(a′–d′). Notice that for 2D periodic
systems there are perfect quantum steps in units of g0 = 2e2/h, as observed in 2D electron
gas devices [2]. However, in 3D periodic lattices the quantum steps are not uniform, due to
the degeneracy and distribution of eigenvalues Eβ in last equation. For partially quasiperi-
odic 2D systems (see Fig. (1c′)), self-similarly distributed quantum steps are observed. In
Figs. 1(e) and 1(f), we respectively show the electrical conductances of 2D and 3D fully
quasiperiodic systems, i.e., the bond Fibonacci sequence is followed in every direction of
the system. Observe that these noisy spectra are one order of magnitude smaller than those
of partially quasiperiodic systems. The imaginary part of energy used in all these figures is
10−11|β|.

Another interesting and not widely analysed feature of the dc conduction spectra is
its dependence on the imaginary part (η) of the energy in the Kubo-Greenwood formula.
In Fig. 2 we show the spectral integral of g(µ, 0, 0) as a function of η for two fully 2D
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FIGURE 1 Electric conductances (g) for (a) 2D and (b) 3D periodic lattices, (c) 2D and (d)
3D quasiperiodic superlattices, in which the bond Fibonacci sequence is found in the per-
pendicular directions to the applied electric field, and (e) 2D and (f) 3D fully quasiperiodic
systems. The magnifications of Figs. (a–d) are respectively illustrated in Figs. (a′–d′).

FIGURE 2 The spectral integral of g(µ, 0, 0) as a function of the imaginary part of
energy (η) for two fully 2D Fibonacci systems, �|| = 1346270 atoms (open square) and
�|| = 165580142 atoms (open circles), with the rest of parameters as in Fig. 1(e).
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Fibonacci systems, �|| = 1346270 atoms (open square) and �|| = 165580142 atoms (open
circles), with the rest of parameters as in Fig. 1(e). Observe the existence of a critical value
(ηc), i.e., the integrals remain the same value for η < ηc and diminish following a power
law (η−α) when η > ηc, where α = 0.82 for bond Fibonacci systems with βB/βA = 0.8.

It is interesting to compare with the DOS, whose spectral integral is always a constant,
independent of η. Furthermore, we observe that ηc ∝ �−1

|| and an imaginary part (η)
smaller than ηc is used in Fig. 1. Therefore, quadruple precision calculations are required.

3. Conclusions

In summary, we have studied the electronic transport in macroscopic multidimensional
Fibonacci systems, observing an almost uniform distribution of the steps in the conduc-
tance spectrum of 2D periodic lattices and a fractal distribution of these steps when the
arrangement of atoms in the perpendicular direction to the applied electric field becomes
quasiperiodic. The analysis of the imaginary part of energy reveals the existence of ηc for
each given �|| and suggests the use of η < ηc for electric conductance calculations. Fig. 2
contrasts to the constant behaviour of the DOS spectral integral, since the Kubo-Greenwood
formula involves the products of the Green’s function instead of single ones in the DOS
calculation.
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