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2School of Chemical Engineering, Cornell University, Ithaca NY 14853, USA
3Department of Chemical Engineering and Materials Science, Syracuse University,

Syracuse NY 13244, USA

(Received 5 August 2002 and in revised form 5 May 2004)

A weak, laminar shear flow of a monodisperse suspension of high-Reynolds-number,
low-Weber-number bubbles is studied in a novel experimental configuration. Nitrogen
bubbles are formed through an array of small capillaries at the base of a tall channel
with a small inclination from the vertical. The bubbles generate a unidirectional
shear flow, in which the denser suspension near the bottom wall falls and the lighter
suspension near the top wall rises. Profiles of the bubble and liquid velocities and the
bubble volume fraction are obtained using hot-film and dual impedance probes. To our
knowledge, measurements of the laminar shear properties of a nearly homogeneous
bubble suspension have not previously been reported.

A steady shear flow is observed in which the bubble velocity variation across the
channel is typically less than 20% of the mean bubble velocity. The velocity and
volume fraction gradients increase with channel inclination and exhibit little or no
dependence on the mean gas volume fraction. To explain the magnitude of the volume
fraction gradients, it is necessary to consider the effects of both the lift force and the
effective bubble-phase diffusivity in balancing the segregating tendency of the cross-
channel component of the buoyancy force. The bubble velocity gradient can be under-
stood in terms of a balance of the component of the buoyancy force parallel to the
channel walls and an effective viscosity associated with the Reynolds stresses produced
by bubble-induced liquid velocity fluctuations. Theories for bubbles rising with
potential-flow hydrodynamic interactions predict an instability of the homogeneous
state due to a negative Maxwell pressure. However, the hydrodynamic diffusivity
inferred from our experiments is large enough to mitigate the clustering effects of the
Maxwell pressure. Consistent with this, a vigorous instability of the homogeneous
state of the bubble suspension is only observed at volume fractions larger than
5%–20% with the critical volume fraction depending on the angle of inclination.

1. Introduction
To understand the flow behaviour of suspensions and multiphase systems, it is

useful to first study relatively simple flows of nearly homogeneous suspensions, for
example, the sedimentation or rise of particles, drops or bubbles due to buoyancy in
an otherwise quiescent fluid or the simple shear flow of a homogeneous suspension.
It is also simplest to understand nearly monodisperse bubble or drop suspensions
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in which no significant amount of coalescence is occurring. While studies of the
effective viscosity and effective particle diffusivity in suspensions of solid particles in
very viscous fluids are common (Leighton & Acrivos 1987), comparable experimental
studies are lacking for flows in which the inertia of the continuous phase plays an
important role in the particle length scale. One type of inertial suspension that has
been the subject of considerable theoretical investigation is a suspension of high-
Reynolds-number, low-Weber-number bubbles. The Reynolds number is defined as
Re= ρf dbub/µ, where ρf is the fluid density, db is the bubble diameter, ub is the
bubble velocity relative to the fluid and µ is the fluid viscosity. The Weber number is
defined as We = ρu2

bdb/σ , where σ is the surface tension of the liquid–gas interface.
In this paper, we present an experimental investigation of the shear flow of a nearly
homogeneous, monodisperse suspension of bubbles with high Reynolds number and
moderately small Weber number.

The fluid velocity disturbances produced by high-Reynolds-number, low-Weber-
number bubbles are expected to be well-approximated as potential flow fields. The
experimental system that best approximates this limit is gas bubbles in water with
diameters db from 0.5 to 1.5 mm corresponding to Re from 10 to 102 and to We from
10−3 to 10−1. Some experimental confirmation of this expectation is obtained by com-
paring the rise velocity of bubbles with a calculation based on the viscous dissipation
occurring in a nearly inviscid potential flow (Duineveld 1995). Detailed equations of
motion can be derived from first principles for bubbles with potential-flow velocity
disturbances (Biesheuvel & Gorissen 1990; Sangani & Didwania 1993a; Zhang &
Prosperetti 1994; Bulthuis, Prosperetti & Sangani 1995; Yurkovetsky & Brady 1996;
Kang et al. 1997; Spelt & Sangani 1998). Numerical simulations of many interacting
spherical bubbles have also been performed (Smereka 1993; Sangani & Didwania
1993b). Of particular interest for our study are the theoretical and simulation studies
of Kang et al. (1997) for simple shear flow of a bubble suspension in the absence of
buoyancy forces and the study of Spelt & Sangani (1998) that derives equations of
motion for a bubble suspension with a mean relative velocity of the two phases and
a bubble velocity variance.

Theories and numerical simulations of bubbles with potential-flow interactions
indicate that bubbles rising in a fluid tend to cluster so that a homogeneous suspension
is unstable (Sangani & Didwania 1993b; Smereka 1993). In Zenit, Koch & Sangani
(2001), we performed experiments on the rise of bubbles of approximately 1.4 mm
diameter through a quiescent aqueous electrolyte solution. The bubbles were released
from a uniform array of capillaries at the based of a tall thin vertical channel.
The Reynolds number of the bubbles was very large (380> Re> 250). The Weber
number was moderately small (1.5 > We> 0.5). The individual bubbles rising in the
liquid took on a spheroidal shape and had a rise velocity that could be explained by
potential-flow theory for a deformed bubble. With increasing bubble concentration,
the bubbles were found to become more spherical. The decrease in the mean rise
velocity of the bubbles 〈ub〉 with increasing bubble concentration was comparable
with that predicted theoretically by Spelt & Sangani (1998).

Visual evidence of the clustering predicted by potential-flow theories was also
obtained by Zenit et al. (2001), but the intensity of the clustering was considerably
less than that observed in numerical simulations such as those of Sangani & Didwania
(1993b). The fluid velocity variance was much larger than that predicted based on
the potential-flow velocity disturbance of a homogeneous bubble suspension. The
frequency spectrum of the Eulerian velocity indicated that most of the energy of the
flow was contained at frequencies 〈ub〉/W associated with the passage of clusters of
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bubbles with a size comparable with the gap thickness W of the channel. The frequency
spectrum did not exhibit the ω−2 scaling that would be expected of a single-phase
turbulent flow. Nonetheless the large velocity fluctuations produced by the instability
of the bubble suspension may be expected to significantly influence the transport
(or dispersion) of bubbles and the transport of momentum in vertical and slightly
inclined channels. Large velocity fluctuations have also been measured in high-
Reynolds-number suspensions of rising bubbles in water with diameters of about
5 mm (Lance & Bataille 1991) and falling solid particles in water (Parthasarathy &
Faeth 1990). These authors attributed the liquid velocity fluctuations to the
disturbances in the wakes of the bubbles or particles. The 1.4 mm bubbles studied in
Zenit et al. (2001) and the present study are expected to have much weaker wakes
and we attribute the large velocity fluctuations to the clustering of the bubbles.

In the present paper, we will investigate the shear flow of a bubble suspension. In
previous investigations involving sheared bubbly liquids, the shear flow was induced
by a pressure gradient along the axis of a pipe (Wang et al. 1987; Liu & Bankoff
1993a, b). In the resulting strong shear flows, the bubble volume fraction is usually
highly inhomogeneous, i.e. the ratio of the volume fraction to the magnitude of the
bubble volume fraction gradient is comparable with the bubble diameter in parts
of the flow. Also, most of these investigations involve very high-speed flows that
are probably turbulent and large deformed bubbles whose disturbances to the
fluid velocity would not be expected to be described by potential flow. Valukina’s,
Koz’menko & Kashinskii (1979) study of vertical pressure-driven pipe flow of bubbles
in an electrolyte solution does conform to the high-Reynolds-number, low-Weber-
number limit. However, the range of conditions investigated and the characterization
of the flows were limited and some of the experiments involved situations in which all
the bubbles were confined to a layer about 1.5 bubble diameters thick near the pipe
wall.

We use a novel method to produce a weakly sheared, nearly homogeneous bubble
suspension. In particular, we incline the channel used in our previous investigation
at small angles (up to 10◦) from the vertical. This leads to a steady, buoyancy-driven
shearing flow in which the more buoyant suspension near the top wall translates
upward and the suspension near the bottom wall translates downward. The shear flow
thus produced is a weak perturbation to the mean rise of the bubbles through the
liquid. The variation in the bubble velocity across the channel width is less than
about 20% of the mean rise velocity. The Reynolds number associated with the mean
velocity of the liquid and the gap thickness of the channel is less than 1000 so that
(based on single-phase flow criteria) the flow is expected to be laminar. Buoyancy-
driven flows due to small mis-alignments are known to be important in bubble columns
(Lu et al. 1997) and fluidized beds (Couderc 1985). In addition, the segregation and
buoyancy-driven flows have a strong influence on oil and natural gas wells, which
typically involve two or three phases (oil, gas and water) and are drilled at an angle
to the vertical. However, we believe this is the first attempt to use an inclined channel
to produce a nearly viscometric flow.

In low-Reynolds-number suspensions, a pure shear flow with no relative motion
of the two phases can be achieved by using a very viscous fluid or by matching the
density of the particles or drops with that of the fluid. At higher Reynolds numbers,
density matching is also possible though we are not aware of an ideal viscometric
study of a high-Reynolds-number sheared particle suspension. In any case, density
matching is impossible for bubble suspensions and so one must always consider
a mixed buoyancy–shear flow for terrestrial experiments involving bubbly liquids.
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Figure 1. Experimental setup. The insert shows schematically the accumulation of bubbles
near the top of the channel.

We believe that the present study is the most ideal example of a sheared bubbly
liquid investigated to date.

The experimental setup and experimental measurements are described in § § 2 and 3,
respectively. Many of the measurement techniques are similar to those used in
our previous study of bubble suspensions in a vertical channel (Zenit et al. 2001).
Measurements of the profiles of bubble velocity, bubble velocity variance and
bubble concentration were obtained using a dual impedance probe. Details of the
experimental technique using the dual impedance probe can be found in Zenit, Koch &
Sangani (2003). In § 4, these measurements are discussed and interpreted.

2. Experimental setup
We study the shear flow of a bubble suspension in the inclined channel shown sche-

matically in figure 1. Nitrogen bubbles are injected through a capillary array at the
base of a tall narrow channel which is inclined at a small angle θ with respect to the
vertical. The channel is 20 cm wide with a 2 cm gap and 150 cm high filled with a
dilute aqueous electrolyte solution (0.05 mol l−1 MgSO4) to inhibit bubble–bubble co-
alescence. The streamwise (parallel to the walls) and cross-streamwise (perpendicular
to the walls) directions, will be referred to as the z- and y-directions respectively.
W is the channel thickness.

The mean gas volume fraction, α, or hold up, is obtained from the increase �H in
liquid level after the bubbles are introduced to the cell,

α = (Ho/�H + 1)−1 (2.1)

where Ho is the initial liquid level. Although there are concentration gradients within
the channel, the hold up gives us a measure of the average gas volume fraction. The
bubble size and shape are determined using high-speed video photographs and digital
image processing.
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(a) (b)

Figure 2. Photo of the flow taken from the sidewall. (a) Vertical channel, θ = 0◦, (b) inclined
channel, θ = 5◦. Mean gas volume fraction, α = 0.05. The slight increase in concentration near
the top wall can be appreciated.

Due to the inclination of the channel a small component of the gravity vector acts
in the gap thickness direction. As a result the bubbles tend to accumulate at the top
part of the gap. The suspension near the top of the channel has a lower mass density
and therefore rises. A velocity gradient is generated and the suspension is sheared.
Figure 2 shows photographs of suspensions in vertical and inclined channels with the
same average bubble concentration (α ≈ 0.05). The fluctuating motion of the bubbles
and frequent bubble–bubble collisions as well as the mean shearing of the bubble
phase are apparent in a videotape of the suspension.

Measurements of the variation of the suspension properties across the gap were
obtained using two types of probe. A commercial hot-wire probe detected the liquid
velocity. A dual impedance probe was used to measure the bubble concentration, and
the mean and variance of the bubble velocity.

It is important to note that the measurement of the gas volume fraction with the
impedance probe was found to be sensitive to the bubble size and the details of
the bubble–probe interaction. A detailed description of how to correct the impedance
probe measurement to account for the bubble–probe interaction, as well as a complete
description of the measuring system, can be found in Zenit et al. (2003). A translating
device to which the probes were attached was fixed to one of the walls. The position
could be resolved to within 0.1 mm and measurements were taken at 25 positions
across the 2 cm gap for all experiments to obtain an accurate account of the profiles.
Measurements near the walls could not be obtained with a good degree of accuracy
due to the probe–wall interaction.

The voltage signals obtained from the probes were digitized using a computer based
data acquisition system with a sampling rate of 10 kHz for each probe. The recording
time per data point was at least 100 s. The initial liquid height, Ho, was 1.50 m and
was kept constant for all experiments.

2.1. Gas volume fraction and bubble velocity measurement

An impedance probe is used to measure the gas volume fraction, and the mean and
variance of the bubble velocity. The system detects local changes in electrical imped-
ance. It uses the difference in electrical impedance between the gas and liquid phases
to determine the residence time of bubbles in a small measuring volume adjacent to
the probe tip. The probe was designed such that it is able to identify single bubbles
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in a small localized measuring volume. This characteristic is essential to measure the
spatial variation of the bubble concentration and velocity across the thin direction
of the channel. Making the measuring volume small has the disadvantage that the
measurement becomes sensitive to the nature of bubble–probe interactions, especially
for the determination of the gas concentration. Details of the probe operation,
construction and performance assessment can be found in Zenit et al. (2003).

To measure the bubble velocity a second probe, of identical characteristics, is placed
a short distance downstream of the leading probe. The signals of the two probes are
cross-correlated to find the time delay between them. The time delay is the time that
a bubble takes to move from the leading to the trailing probe; hence, by knowing
the distance between the two probe tips, the velocity can be calculated. The mean
bubble velocity is obtained from the cross-correlation of long duration traces during
which many bubbles pass near the two probes. By identifying individual bubble events
within the probes signals, a distribution of bubble velocities can be obtained and,
therefore, the bubble velocity variance can also be calculated. For the measurements
presented in this paper the probe is inclined along with the channel; hence, the
velocity measured is in fact the component parallel to the walls.

2.2. Liquid velocity and wall shear stress measurements

A hot-film anemometer is used to measure the liquid velocity in the bubble suspension.
For the case of gravity-driven bubbly flows the mean liquid velocities are small and the
distinction between the measured mean and fluctuating components is very difficult
to assess. The main complication in the interpretation of the velocity signal arises
from the fact that the probe can only measure the absolute value of the fluid velocity.
Usually hot-film probes are used in flows with a large mean velocity and small
fluctuating velocity and then one can easily discern the statistics of the velocity fluctua-
tions relative to the mean. However, in the inclined channel, the mean liquid velocity
is expected to be only about 0.1 times the root-mean-square of the liquid velocity
fluctuations. Nonetheless, we can unambiguously present measurements of the mean-
square velocity. This contains contributions due to the mean velocity associated with
the shearing of the suspension as well as the liquid velocity fluctuations produced by
the bubbles, although we expect the latter to dominate. Details of the performance
of the hot-wire anemometer can be found in Zenit et al. (2001).

A second hot-film probe was used to measure the wall shear stress. The probe
consisted of a heating element located at its tip, which is connected to the hot-wire
anemometry system. The heating patch, with a dimension of 0.15 mm by 1.5 mm, is
made of platinum with a layer of quartz coated on top which is necessary to protect
the sensor from shorting in the conducting salt solution. The probe was flush mounted
to the channel wall and oriented in such a way that the longer side of the heating
patch is normal to the main flow direction. By measuring the electric voltage needed
to maintain the probe at a constant temperature, the rate of heat transfer can be
inferred. Since the thermal boundary layer is thinner than the momentum boundary
layer, this heat transfer rate is proportional to the velocity gradient at the wall and
the shear stress. The probe was calibrated by imposing the known laminar flow
associated with a developing boundary layer on a flat plate for a range of free-stream
velocities and angles of inclination of the plate to the free-stream velocity. In addition
to calibrating the probe, the consistency of the measurements obtained for different
angles of inclination validated the ability of the probe to detect the local shear stress.
More information about the performance of this type of wall shear probe can be
found in Jensen, Sumer & Fredsoe (1989).
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Figure 3. Equivalent bubble diameter, deq , as a function of mean gas volume fraction, α, for
a channel inclination of θ = 5◦. The short bars indicate the measurement error associated with
the finite pixel size. The long bars indicate the bubble size standard deviation. The dashed
line shows the equivalent bubble size best-fit from the experiments in a vertical channel (Zenit
et al. 2001).

3. Experiments
Profiles of the concentration, bubble velocity and liquid velocity were obtained for

three mean volume fractions (α = 0.02, 0.05 and 0.10) at five channel inclinations
(θ = 0◦, 2.5◦, 5◦, 7.5◦ and 10◦). The measurements were taken at 20 positions across
the gap with a 1 mm increment. Measurements near the walls were discarded since
it was not possible to discriminate between the effects of the wall–probe and the
bubble–wall interactions.

To verify that the flow was fully developed a series of measurements were also
obtained for three different axial positions. Some single bubble experiments were also
performed to observe the motion of a bubble interacting with the inclined walls.

3.1. Bubble size

The effect of the inclination of the channel on the bubble size was determined using
a procedure for assessing bubble size similar to that used in Zenit et al. (2001).
Photographs of the flow were digitized and processed for different values of the mean
bubble concentration. We present results for a channel with an inclination θ =5◦.

The bubble equivalent diameter was obtained from the two-dimensional photo-
graphic projection of the spheroidal bubbles and calculated as

deq =
(
d2

longdshort

)1/3
. (3.1)

Figure 3 shows the measured bubble equivalent diameter as a function of the mean
gas volume fraction. It is observed that the bubble size stays approximately constant
for volume fractions below 0.14. The measured bubble size is 9% larger than that
found in the vertical channel experiments (Zenit et al. 2001).
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The statistical error associated with the size measurement is on the order of 3%.
We used a constant value of the bubble diameter to calculate the correction for the
gas volume fraction caused by bubble–probe excluded volume. Since measurements
of the bubble size were obtained only for a channel inclination of 5◦ and the effects
of inclination and the associated shear flow on the bubble size are modest, it is
assumed that the results for 5◦ can be applied to all inclinations. The aspect ratio of
the bubbles, χ = dlong/dshort, was also measured from the photographs. It was found
to be approximately constant, χ = 1.15 ± 0.05, for gas volume fraction up to 0.10 for
all the channel inclinations tested.

3.2. Axial flow development

To confirm that the experiments were taken far enough above the channel bottom to
correspond to a fully developed state, velocity and bubble volume fraction profiles
were obtained at three axial positions, cf. figure 4(a, b). These profiles were obtained
by inserting the probe from the top wall, which corresponds to the position y = 10 mm
on the graphs, and translating it to different positions within the gap.

The results clearly show that the flow is already developed at a position of 78.3 cm
above the bottom of the channel. As discussed in Zenit et al. (2003), some increase of
the gas volume fraction can be expected resulting from the volumetric expansion due
to the loss of hydrostatic head (less than 4% for the present conditions). This effect
can be observed in the measurement obtained at an axial position of 138 mm. All the
gas volume fraction measurements were corrected for the probe–bubble interaction
mechanism described in Zenit et al. (2003). In figure 4, the measurements near the
walls are shown.

The measured volume fraction is nearly uniform at the centre of the channel and
appears to decrease near the wall through which the probe is being inserted. This
decrease arises because the wall excludes bubbles from entering a portion of the
measuring volume near the tip of the probe. For measurements near to the opposite
wall, the gas volume fraction appears to increase. This increase is most likely a result
of the probe intrusion. Bubbles were observed to be ‘trapped’ or retarded in the gap
between the tip of the probe and the wall. Note that, with the present probe setup,
the shape of the the bubble volume fraction profile can be determined accurately only
in the region away from the wall. It is not possible to determine to what extent the
decrease of the gas volume fraction and bubble velocity is caused by the intrusive
nature of the probe. To avoid this uncertainty, the data are reported only for regions
‘far’ from the walls. In the subsequent figures of this paper, the measurements are
shown for distances of approximately two bubble diameters away from each wall.

3.3. Gas volume fraction profiles

The measured gas volume fraction profiles for the experimental set are shown in
figure 5. From these results, the concentration gradient can be calculated. A value of
the gas volume fraction gradient (∂α/∂y) is calculated and made non-dimensional as

∂̂α

∂y
= db

∂α

∂y
, (3.2)

where ∂α/∂y is calculated by fitting the measurements to a straight line. This
expression assumes that the profile is linear. From figure 5 it can be seen that
this assumption is valid. The data for measurements within three bubble diameters
of either wall were discarded to calculate the gradient.
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Figure 4. (a) Bubble velocity and (b) gas concentration profiles for three axial positions.
Channel inclination θ =5◦. Mean gas volume fraction α = 0.05. The centre of the channel
corresponds to position =0. The error bars show the typical experimental uncertainties of the
measurements.

Figure 6 shows the gradient of the bubble concentration as a function of the channel
inclination for the three mean gas volume fractions tested. Within the experimental
error the trend is clear. The gradient of bubble concentration increases linearly with
channel inclination and is not affected significantly by the mean gas volume fraction
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Figure 5. Gas volume fraction profiles for three typical hold ups. �, α = 0.02; �, α = 0.05;
�, α = 0.10, for a vertical channel and four channel inclinations: (a) θ = 0◦, (b) 2.5◦, (c) 5◦,
(d) 7.5◦, (e) 10◦. The lines show linear fits to the data excluding the near-wall regions.

of the channel. The solid line shown on the figure corresponds to the linear fit

∂̂α

∂y
= κ0θ (3.3)

where κ0 = 2.147 × 10−4 and θ is expressed in degrees.
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Figure 6. Non-dimensional gas volume fraction gradient as a function of channel inclination
angle for three different gas volume fractions. The solid line shows the best fit equation (3.3).

3.4. Bubble velocity profiles

The profiles of the mean bubble velocity are presented in figure 7. The bubble
velocity is constant throughout most of the vertical channel. In the inclined channels
the bubbles in the high-volume-fraction region near the upper wall (y = 10 mm) rise
faster than those in the low-volume-fraction region near the lower wall (y = −10 mm).
The bubble velocity increases monotonically with increasing y in the centre of the
gap. We observed a decrease of the bubble velocity near the walls. However, it is not
reported here since it is not possible to discriminate between the effect caused by the
intrusive nature of the probe and the bubble–wall interaction mechanisms.

As the concentration and the inclination of the channel increase, the bubble velocity
measurements become more scattered. In fact, the measurements for α = 0.10 at an
inclination of θ = 10◦ are not shown, as for this case the flow became very agitated;
hence, it was not possible to obtain accurate results. The increased scatter can already
be observed for the α = 0.05 and θ =10◦ case. As we will discuss later, the flow
within the channel becomes unsteady at larger values of α and θ . The instability
manifests itself as macroscopic vortical structures that move across the width and
length of the channel. This instability is much more vigorous and visually apparent
than the mild clustering of bubbles at small α and θ discussed in the introduction
and in Zenit et al. (2001). The large unsteady motions of the suspension make the
measurement of bubble velocity profiles more inaccurate in two ways. First, the
motion of the bubbles is no longer quasi-uni-directional. The horizontal component
of the velocity disturbance produced by the instability could cause bubbles detected by
the leading probe of the dual impedance probe to be swept away before encountering
the trailing probe so that no velocity measurement can be obtained: Indeed, we found
that 12% of the bubble probe encounters at θ = 10◦ failed to produce a velocity
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Figure 7. Bubble velocity profiles for three typical hold ups. �, α =0.02; �, α = 0.05; �,
α = 0.10, for a vertical channel and four channel inclinations: (a) θ = 0◦, (b) 2.5◦, (c) 5◦,
(d) 7.5◦, (e) 10◦. The lines show the linear best fits.

measurement for this reason, compared with 8% in the vertical channel case. Perhaps
more importantly, the unsteady motions have a much longer correlation time than
the velocity disturbances produced by bubbles in a more homogeneous suspension.
Since the temporal averaging was conducted over a fixed time period of 100 s for
all the conditions, we may then expect to have less statistical significance for the
measurements taken in the unstable suspensions.

The bubble velocity gradient was obtained by fitting the measurements to a straight
line. As the inclination of the channel increases the bubble velocity gradient increases.
The gradient of the bubble velocity appears to be weakly dependent on the mean
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Figure 8. Non-dimensional bubble velocity gradient as a function of channel inclination angle
for three different gas volume fractions. The solid line shows the best linear fit. The lines show
predictions from (4.2) for α = 0.02 (− − −); α = 0.05 (− · −) and α = 0.10 (· · ·).

gas volume fraction. Figure 8 shows the non-dimensional bubble velocity gradient,̂∂ub/∂y, calculated using

∂̂ub

∂y
=

(∂ub/∂y)db

〈vb〉 (3.4)

where ∂ub/∂y is the measured change in bubble velocity for the reported data (that
excludes the regions near the walls), which represent the slope of the linear fits shown
in the figures. The bubble diameter of db = 1.55 mm is obtained from figure 3. We
use the relative velocity of the bubble and the fluid averaged across the gap to non-
dimensionalize the bubble velocity. The relative velocity vb is assumed to be the same
in the inclined channel as that occurring at the same volume fraction in a vertical
channel so that 〈vb〉 is calculated using equation (3.4) of Zenit et al. (2001). Because
the angles of inclination are small and the relative velocity in a fully developed
flow is expected to arise from a balance of buoyancy and drag forces, we believe
this approximation is reasonable. Figure 8 shows clearly that the gradient increases
linearly with the channel inclination and that it also increases with increasing mean
gas volume fraction. The data can be fitted to

∂̂ub

∂y
= κ1θ

√
α (3.5)

where κ1 = 1.006 × 10−2 and θ is measured in degrees.

3.5. Bubble velocity variance

The impedance probe was used to measure the velocities of many different bubbles
at each position across the gap. Thus, we are able to quantify the bubble velocity
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Figure 9. Gap-averaged normalized bubble velocity variance (z component) as a function of
channel inclination for three typical hold ups. �, α = 0.02; �, α = 0.05; �, α = 0.10.

variance 〈u′
b
2〉 or bubble-phase temperature. Typically, the bubble phase temperature

is defined as T = [〈u′
bx

2〉 + 〈u′
by

2〉 + 〈u′
bz

2〉]. Here, since we are only able to measure
the component of the variance of the bubble velocity in the z-direction, we define
T ≈ 〈u′

bz
2〉.

The fluctuations in bubble velocity arise from shear-induced bubble–bubble
collisions or from fluid velocity disturbances associated with the relative motion
of the bubbles and liquid. Kang et al. (1997) argued that shear-induced collisions
will produce a large velocity variance if the Reynolds number Reγ = a2γ /ν based
on the bubble radius and the velocity gradient γ = ∂ub/∂y is large. However, in
our experiments Reγ is always less than 1, so that shear-induced bubble velocity
fluctuations are not expected to be very significant. In Zenit et al. (2001), we found
that quite large bubble velocity variances can arise as bubbles rise in a vertical
channel. It was thought that the magnitude of these fluctuations was enhanced by the
formation of bubble clusters.

The velocity variance in the inclined channels was observed to vary slightly across
the channel, being larger near the lower wall where the bubble volume fraction is
smaller. If we assume that the mean relative velocity 〈vb〉 of the bubble and liquid
is only a function of the local volume fraction, as would be expected to occur if it
arises purely from a balance of buoyancy and drag forces, then this average relative
velocity is higher in the low-volume-fraction region. (Note that the pressure gradient
in the liquid will be independent of y due to the unidirectional nature of the flow.)
The normalized velocity variance 〈u′

b
2〉/〈vb〉2 was found to be nearly independent of

position across the channel as might be expected if the velocity fluctuations arise
from the relative motion of the phases. The normalized velocity variance averaged
over the gap is plotted in figure 9. The normalized variance is nearly independent
of the angle of inclination, suggesting that it arises purely from the relative motion
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Figure 10. Gap-averaged mean-square liquid velocity as a function of channel inclination for
three typical hold ups. �, α =0.02; �, α = 0.05; �, α = 0.10. The empty and filled symbols
show the measurements of the streamwise and crossstreamwise mean-square liquid velocity
respectively.

and is independent of the shearing motion. The normalized variance increases with
increasing bubble concentration.

3.6. Mean-square liquid velocity

The mean-square liquid velocity was measured at various positions across the channel
using the hot-wire probe. By orienting the axis of the cylindrical heating element of
the probe parallel and perpendicular to the walls, it was possible to determine
the mean-square of the cross-streamwise and streamwise velocity components as
described in Zenit et al. (2001). The mean-square liquid velocity normalized by the
square of the mean relative velocity between the phases was nearly uniform across
the channel cross-section. If we estimate the mean liquid velocity as comparable with
the variation of the bubble mean velocity across the channel, then we conclude that
the mean-square liquid velocity is dominated primarily by the variance of the velocity
rather than by the square of the mean velocity. The mean-square liquid velocities
averaged over the gap thickness are plotted in figure 10. The measurements are
normalized by the gap-averaged mean bubble velocity, 〈ulz

2〉/〈vb〉2 and 〈uly
2〉/〈vb〉2.

For all concentrations and inclination angles, the mean-square horizontal velocity is
about 20% of the mean-square vertical velocity. The mean-square liquid velocities are
approximately proportional to the bubble volume fraction. It is interesting to note
that the mean-square velocities have a non-monotonic dependence on the angle of
inclination. Inclining the channel slightly from the vertical θ < 5◦ leads to a decrease
in the mean-square velocity. We might speculate that this slight inclination allows
bubble clusters to stratify so that they produce a smaller disturbance. For angles
above 5◦, the variance increases with angle of inclination. This increase is especially
pronounced for α = 0.1 and θ =10◦, a condition for which we observed a vigorous
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Figure 11. Gross wall shear stress τw as a function volume fraction α. Measurements at
different angles: �, vertical; �, 2.5◦; �, 5◦; +, 7.5◦; �, 10◦.

instability of the suspension with large vortical structures. Thus, we believe that the
increase in the mean-square velocity for θ > 5◦ is a manifestation of this instability.

3.7. Shear stress measurements

Using a probe that works under the same principle as a hot-wire anemometer, a mea-
surement of the absolute value of the shear stress was obtained. Ideally, to measure the
liquid shear stress, we should only consider the signal arising from the probe when no
bubble is directly in contact with the heating element. Observations of the collisions
of single bubbles with the shear stress probe indicated that such collisions give rise to
a large spurious signal and the bubble collisions have a greater influence on the
shear stress measurement than on the measurement of liquid velocity in the middle
of the channel by hot-wire probes. To minimize bubble–probe collisions, we will use
measurements taken at the lower wall where the bubble concentration is smaller and
where bubble–wall collisions are gentler due to the absence of a gravitational driving
force for the collision. The absolute value of the shear stress was averaged over a
period of 90 s for each volume fraction and inclination.

Figure 11 shows the measured shear stress. The measured shear stress increases with
bubble volume fraction and inclination angle. The mean of the absolute value of the
shear stress is non-zero even in a vertical channel, because bubbles passing the probe
produce a fluctuating shear stress. This fluctuating shear stress increases with increas-
ing volume fraction as the number of bubbles passing the probe grows. Since the
boundary layer thickness on the channel wall due to the transient liquid flow caused
by passage of a bubble scales with aRe−1/2, the shear rate due to the passage of a
bubble within a distance of about a bubble radius from the probe is O(vb/aRe1/2).
Thus, the dimensionless shear rate is O(Re−1/2) = O(10−1). From figure 11, the results
have the correct order of magnitude.
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Figure 12. Net wall shear stress as a function of the channel inclination angle θ . Measurements
at different gas volume fractions: �, α = 0.02; �, α = 0.05; �, α = 0.10. The lines represent the
predictions from (4.14) for: —, λ= 0; − − −, λ= 0.32.

As the channel is inclined, a mean shear stress will develop in addition to the
fluctuating shear stress produced by the discrete nature of the bubbles. We found that
the standard deviation of the absolute value of the shear stress was nearly independent
of θ for θ > 5◦. This observation would be consistent with a scenario in which the
fluctuations in the shear stress are independent of θ and the only effect of increasing
θ is to increase the mean shear stress. Based on this observation, we will interpret the
difference between the average absolute value of the shear stress in the inclined and
vertical channel for the same α as the mean shear stress.

Clearly, the measured shear stress increases with gas volume fraction and channel
inclination. The net shear stress obtained by subtracting the shear stress measurement
from the corresponding stress measurement in a vertical channel is plotted as a func-
tion of inclination angle in figure 12 for three values of the bubble volume fraction.

4. Discussion and interpretation
The bubble volume fraction gradients measured in our experiments were surpris-

ingly modest. In this section we will explore some of the possible mechanisms that
may account for the order of magnitude of the bubble velocity and concentration
gradients reported in this investigation.

4.1. Lift forces

We can try to explain the magnitude of the bubble velocity gradient using a simple
model based on a force balance on the individual bubbles neglecting bubble–bubble
interactions. Since the bubbles are exposed to a shear flow, a lift force will be exerted
on them. In the simplest of cases, the sum of the lift force and the small component of
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gravity in the direction of the channel gap g × sin θ will be zero. Assuming a simple
form for the lift force on a spherical bubble in inviscid flow (Auton 1987):

FL = −π

6
ρd3

bCLvb

∂ul

∂y
(4.1)

where vb is the relative velocity of the bubble and the liquid, in the z-direction, ∂ul/∂y

is the liquid velocity gradient and CL = 0.5 is the lift coefficient for inviscid shear flow

with ̂∂ub/∂y � 1.
The liquid velocity gradient is assumed to be the same as the measured gradient of

the bubble velocity because we have a fully developed uni-directional flow with a small
variation of bubble volume fraction across the gap. In this situation, a substantial
difference between the liquid and bubble velocity gradients could not be sustained
over large distances (large compared with bubble radius). In pipe flow differences
occur but only near the walls, within 2–3 bubble diameters from the wall (Liu &
Bankoff 1993a, b). In this investigation we are only considering the measurements
obtained away from the walls.

The bubble velocity relative to the liquid, in the z-direction, is estimated to be
ub cos θ , where ub is the velocity obtained for bubbles of the same size in a vertical
channel (cf. equation (3.4) of Zenit et al. 2001). Using these approximations and
solving for the bubble velocity gradient yields

∂ub

∂y
=

2g tan θ

vb

. (4.2)

The lines in figure 8 show the predictions for the velocity gradient necessary to
obtain a lift force that balances the cross-stream buoyancy force for three different
gas volume fractions, i.e. three different mean bubble velocities. The experimentally
measured bubble velocity gradients are plotted as symbols. The experiment and theory
exhibit similar trends of increasing velocity gradient with increasing inclination and
bubble volume fraction. However, the experimentally measured velocity gradients
are about a factor of 2.5 smaller than the predictions based on the lift–buoyancy
calculation. Thus, a lift coefficient of CL =1.25 would be required.

The lift coefficient CL = 0.5 used to compute the curves in figure 8 is appropriate
for spherical bubbles in the limits of infinite Reynolds number, zero bubble volume
fraction, and small shear rates. To see if changes in CL with Re, α, χ or shear rate could
explain the discrepancy between the lift theory and the experiments, we will consider
theoretical estimates for the magnitude of these effects. Numerical simulations of a
clean spherical bubble in a simple shear flow (Magnaudet & Legendre 1998) indicate
that at a Reynolds number Re= 280 typical of our experiments, the lift coefficient is
CL = 0.48.

An ellipsoidal body with its axis of symmetry and velocity parallel to the streamlines
of a simple shear flow can be shown to experience a lift coefficient that is equal to
its added mass coefficient (Magnaudet & Eames 2000; Naciri 1992). Using this result
together with Moore’s theory for the added mass coefficient shows that bubbles with
the aspect ratios χ = 1.1 to 1.2 encountered in our study have a slightly increased
added mass coefficient CL = 0.56 to 0.62 (Moore 1965; Kushch et al. 2002). An
alternative estimate can be obtained based on lattice-Boltzmann simulations of
deformable bubbles performed by Sankaranarayanan & Sundaresan (2002). These
investigators suggested correlating the lift force with the Tadaki number Ta= ReMo0.23

where Mo = gρ2�ρν4/σ 3 is the Morton number and �ρ is the difference between the
density of the liquid and gas. The lift coefficient increased with increasing Ta in
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simulations for low-Mo fluids such as water. However, the simulation for a Tadaki
number of about 2 yielded only a modest increase in the lift coefficient to CL ≈ 0.6.
The Tadaki number in our experiments is smaller still, Ta ≈ 1, indicating that the
effects of deformation on the lift force are modest. At high shear rates or in more
viscous fluids, the deformation of the bubble can lead to a decrease or even a change in
sign of the lift coefficient. Sankaranarayanan & Sundaresan correlated this behaviour
with the capillary number based on the shear rate. Based on the simulations, our
experiments fall within the regime for which this decrease would be expected to be
small and in any case this effect is in the wrong direction to explain the experimental
observations.

It is difficult to establish the effects of bubble volume fraction on the lift coefficient
using experimental observations in a disordered bubble suspension, because other
effects of bubble–bubble interaction will arise at the same time that the lift force is
modified. However, an estimate of the effect of volume fraction on the lift coefficient
can be obtained from the numerical simulations of Sankaranarayanan & Sundaresan
for bubbles in periodic unit cells. The lift coefficient for nearly spherical high-
Reynolds-number bubbles was found to increase only about 10% over a volume
fraction range α = 0 to 0.08, similar to that considered in our study.

In a study of 500 to 800 µm diameter bubbles in tap water interacting with a vortex
ring, Sridhar & Katz (1995) extracted apparent lift coefficients that were much larger
than the theoretical estimates mentioned above. These large values may have resulted
from effects of surfactants possibly coupled with the highly transient nature of the
fluid flow in a reference frame following the bubble motion (Magnaudet & Eames
2000). Since isolated bubbles in our experiments rise with a velocity close to the
theoretical estimate for surfactant-free bubbles (Zenit et al. 2001) and the bubbles
experience a fully developed shear flow, we do not believe that the observations of
Sridhar & Katz are relevant to our study.

Thus, it seems unlikely that any possible modification of the lift coefficient to
account for deviations from the estimate CL = 0.5 for inviscid flow around a spherical
bubble could account for the factor of 2.5 discrepancy between the experiments and
a model based on a simple balance of lift forces and buoyancy.

4.2. Bubble–wall collisions

Clearly, the sole action of the lift force is not sufficient to explain the moderate velocity
gradients found. We conducted additional single-bubble experiments to quantify the
effects of bubble–wall collisions. Tsao & Koch (1997) observed that bubbles interacting
with a wall with θ < 55◦ bounced repeatedly in a periodic motion. If the amplitude of
this motion were to grow with decreasing θ to become as large as the channel thickness
W = 2 cm, then this might account for the distribution of bubbles across the gap. To
investigate this possibility, we released bubbles from a single capillary at the base of
the inclined channel and observed their motion at a distance of 1mm above the base
using video photography. The mean bouncing amplitude remained of the same order
of magnitude as the bubble diameter, so simple bubble–wall interactions do not
account for the small bubble volume fraction gradients observed in the experiments.

4.3. Dispersion of bubbles

Zenit et al. (2001) noted that the variances of the liquid and bubble velocity in a
vertical channel bubbly flow are much larger than those expected for a homogeneous
bubble suspension. In the present study, we have seen that velocity variances of
similar magnitude are retained when the channel is slightly inclined. It is natural to
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expect that these fluctuating motions will lead to a dispersion of bubbles that will
tend to oppose the development of bubble volume fraction gradients. The frequency
spectrum of the liquid velocity fluctuations measured by a hot-film probe that was
fixed in space indicated that the dominant frequencies were much smaller than the
value ub/db that would be expected in a homogeneous suspension and comparable
with ub/W . The frequency spectrum did not exhibit the ω−2 scaling with frequency
ω that would be expected for a single-phase turbulent flow. Thus, we believe that the
velocity fluctuations are associated with an instability of the bubble suspension that
occurs on a length scale of order W rather than being associated with the individual
bubble–bubble interactions in a homogeneous suspension or due to liquid-phase
turbulence. A better understanding of this phenomenon might be obtained from a
full numerical solution of the averaged equations of motion for the three-dimensional
time-dependent bubbly flow that occurs in the presence of the clustering instability.

In the absence of this solution, we will make a rough estimate of the dispersive
effect of the velocity fluctuations based on the measured bubble velocity variance.
The diffusivity of the bubbles can be expressed as the time integral of the two-time
autocorrelation for the bubble velocity. Thus, a simple estimate of the diffusivity D is

D =
〈
u′2

b

〉
τ (4.3)

where 〈u′2
b 〉 is the bubble velocity variance and τ is the correlation time for the bubble

velocity. We postulate that the O(ub/W ) frequency of the liquid velocity observed in
the Eulerian liquid velocity power spectrum results from the passage of clusters of
bubbles whose size is comparable with the channel thickness W . If bubbles move in
and out of these clusters as a result of their fluctuating motion, then we expect

τ =
W〈

u′2
b

〉1/2
(4.4)

so that

D =
〈
u′2

b

〉1/2
W. (4.5)

We measured the variance of the streamwise bubble velocity at various points across
the gap thickness of the inclined channels. However, we found that the variance is
relatively independent of cross-stream position and independent of the angle of
inclination θ , so we will simply take 〈u′2

b 〉1/2 from the measurements of the root-mean-
square vertical bubble velocity in the vertical channel. To predict the component
of the diffusion tensor governing the transport of bubbles across the gap, it would
be more appropriate to use the cross-stream velocity variance. However, the impedance
probe only provides a measurement of the vertical velocity variance. In very di-
lute suspensions, we were able to directly visualize the bubble motion and use video
image analysis to show that the horizontal velocity variance was smaller than but
of the same order of magnitude as the vertical velocity variance. The value of the
diffusivity estimated in this way is plotted as a function of volume fraction as the
solid line in figure 13. The diffusivity is presented in dimensionless terms, D/νf , where
νf is the kinematic viscosity of water.

We can consider a mass conservation equation for the bubble phase in fully
developed steady-state flow that includes the velocities Ubuoy and Ulift due to buoyancy
and lift forces and a flux due to the effective diffusivity D of the bubbles

∂

∂y
((Ubuoy + Ulift)α) − ∂

∂y

(
D

∂α

∂y

)
= 0. (4.6)
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Figure 13. Normalized diffusion coefficient as a function of gas volume fraction. The solid
line is the hydrodynamic diffusion coefficient estimated on the basis of the measured bubble
velocity variance, i.e. equation (4.5). The dashed lines show the diffusivity (4.8) that would
be required to balance the buoyancy-driven velocity and explain the measured bubble volume
fraction gradient, for different values of the inclination angle, θ . The dotted line shows the
diffusivity that is equivalent to the bubble-phase pressure derived from kinetic theory (Kang
et al. 1997).

where Ubuoy = ub sin(θ) is the component of the bubble’s buoyancy-driven velocity in
the direction perpendicular to the walls. The lift velocity can be obtained by balancing
the lift force with a viscous drag force, yielding

Ulift = −d2
bCLvb∂ub/∂y

36µ
(4.7)

where we have approximated the liquid velocity gradient by the bubble velocity
gradient, which in turn can be obtained from the measurements given in figure 8.

Before comparing solutions of (4.6) with the measured bubble volume fraction
gradient, let us consider whether the order of magnitude of the effective diffusivity
predicted on the basis of the bubble velocity fluctuations (solid line in figure 13) is
comparable with the diffusivity that would be needed to prevent the accumulation of
bubbles at the top of the channel gap. Equation (4.6) would be satisfied exactly if

D =
(Ubuoy − Ulift)α

∂α/∂y
. (4.8)

This value of D needed to balance the buoyancy and lift fluxes is plotted as the dashed
lines in figure 13 (considering different values of the channel inclination angle, θ). Thus,
we see that the estimate of the bubble effective diffusivity is comparable in magnitude
with the value needed to explain the small bubble volume fraction gradients reported
in § 3.3. This corroborates the importance of hydrodynamic diffusion in maintaining
relatively modest bubble volume fraction gradients even in the presence of a significant
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Figure 14. Comparison of the measured non-dimensional gas volume fraction gradient with
predictions from (4.6). The predictions are for three mean gas volume fractions: − − −,
α = 0.02; − · −, α = 0.05; · · ·, α = 0.10. The circles, squares and triangles refer to experiments
with α = 0.02, 0.05, and 0.10, respectively. The solid line shows a best fit to all of the
experimental results, which exhibit little dependence on volume fraction.

segregating buoyancy driving force. There is a significant difference in the volume
fraction dependence of the two estimates of the diffusivity but this could easily result
from the rough approximation made in estimating the correlation time for bubble
velocities.

Alternatively, we can compare the predictions of (4.6) using the estimated diffusivity
(equation (4.5)) with the measured gradients in the bubble volume fraction. This
comparison is shown in figure 14. The predicted and measured volume fraction
gradients are of similar magnitude and both grow linearly with the angle of inclination.
However, the predictions overestimate the dependence of the volume fraction gradient
on the value of the mean volume fraction.

The values of D estimated by (4.8) and (4.5) are much larger than the dispersion
that is predicted by the kinetic theory for a homogeneous sheared suspension (Kang
et al. 1997). To compare the bubble-phase pressure P predicted by Kang et al. with
a diffusivity, we note that balancing the pressure gradient with the drag force acting
on the bubbles yields a velocity

ubp = − ∇P

6πµndbRd

(4.9)

where n= 6α/(πd3
b ) is the number of bubbles per unit volume and Rd(α) is the ratio

of the average drag in the suspension to the drag on a single bubble. Equating the
flux ubpα to the diffusion flux −D∇α, we can express a diffusivity that is equivalent
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to the bubble-phase pressure as

D =
1

36µdbRd

∂P

∂α
. (4.10)

Batchelor (1988) and Nott & Brady (1994) have discussed the relationship between
the concepts of hydrodynamic diffusion and dispersed-phase pressure. Using (4.10),
the measured bubble-phase temperature and the kinetic theory result for the bubble-
phase pressure yields a diffusivity (plotted as the dotted line in figure 13) that is 10
times smaller than that required to explain the measured volume fraction gradient.
The kinetic theory assumes that the fluctuations in the velocities of individual bubbles
are nearly uncorrelated with the fluid velocity fluctuations. This assumption is valid
when the viscous relaxation time of the bubbles τv = ρf d2

b /(72µ) is much smaller than
the time scale over which the fluid velocity fluctuates. This assumption holds for a
homogeneous, high-Reynolds-number bubble suspension. However, the clustering in
the bubbly channel flow leads to liquid velocity fluctuations that remain correlated
over O(W/〈u′2

b 〉) times which are a factor of 10–15 larger than τv .

4.4. Effective viscosity and slip coefficient

In the previous subsection, we discussed the various mechanisms controlling the
bubble’s cross-stream motion perpendicular to the channel walls and saw that a
combination of hydrodynamic dispersion and a lift-force-driven velocity balance
the buoyancy-driven motion of the bubbles and maintain a modest bubble volume
fraction gradient. In this subsection, we will examine the streamwise bubble motion
driven by this bubble volume fraction gradient.

Consider a streamwise momentum balance for the suspension mixture (bubbles
and liquid). In a vertical channel, the volume fraction is independent of cross-stream
position y and the buoyancy force can be balanced by a change in the axial liquid
pressure gradient in such a way that there is no variation of the mixture velocity
with y. In the inclined channel, the variation of the bubble volume fraction results
in a variable buoyancy force across the channel thickness that is expected to drive a
shearing motion in the liquid. Since the average flow is fully developed, the inertial
terms associated with the mean velocity are zero. However, a Reynolds stress term
arises from the velocity fluctuations in the liquid driven by the random motion of
individual bubbles and bubble clusters. We will model this Reynolds stress in terms
of an effective viscosity µeff times the gradient of the mean liquid velocity, so that the
streamwise mixture momentum equation is

∂

∂y

(
µeff

∂ulv

∂y

)
= −ρg cos θ

(
α0 + y

∂α

∂y

)
+

∂pf

∂z
. (4.11)

In a fully developed flow, the pressure gradient in the fluid ∂pf /∂z is independent of
y and its value can be chosen such that the integral of the liquid velocity across the
gap thickness is zero. Because the effective viscosity in (4.11) arises from the inertia
associated with the liquid velocity fluctuations it is expected to be O(Re) larger than
the fluid viscosity. Kang et al. (1997) predicted that a large effective viscosity would
arise from the Reynolds stress terms in a homogeneous, sheared bubbly liquid in
the absence of a buoyancy-driven relative motion of the two phases. We have noted
that the buoyancy-driven relative motion of the two phases leads to clustering of
bubbles and a liquid velocity variance that is much larger than that predicted for a
homogeneous bubble suspension. The effective viscosity arising in our experiments
may thus be expected to be even larger than that predicted by Kang et al.
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Note that for the above balance equation, the z-component of the lift force has
been neglected. Since, as discussed in § 4.1, there is a local relative velocity (between
the bubble and the fluid) in the y-direction and the vorticity of the fluid is in the
x-direction, a lift force would act on the z-direction. However, the resulting lift z-
velocity can be shown to be small compared with the buoyancy-driven z-velocity;
therefore, it can be neglected.

A momentum balance for the liquid phase alone is dominated by a balance between
the interphase drag between the bubbles and liquid and a pressure gradient in the li-
quid phase. The viscosity of the liquid can be neglected throughout most of the channel
thickness. This balance leads to a nearly constant relative velocity of the bubble and
liquid since the bubble volume fraction and therefore the drag coefficient are nearly
independent of y. As a result, the variations of the liquid, bubble and mixture
velocities with respect to y are nearly equal and any one of the velocities could have
been used in the viscous stress term in (4.11). This observation was used in § 4.1 to
determine the liquid velocity gradient and the lift forces acting on the bubble from
the measured bubble velocity gradient.

The force balance that prevails throughout the bulk of the suspension can lead to a
non-zero mean liquid velocity near the wall. Bubble–wall collisions are not sufficient
to lead to a zero velocity of the bubbles adjacent to the wall, so the bubbles exert a
non-zero force on the liquid at O(a) distances from the wall. Owing to the small liquid
viscosity, the mean liquid velocity can vary rapidly in a boundary layer less than one
bubble radius from the wall where the drag exerted by the bubbles is reduced because
of the excluded volume of the wall. For simplicity, we will model the effect of this
boundary layer as giving rise to a simple Maxwell slip boundary condition applied
to the outer approximation for the liquid velocity as one approaches the boundary
layers at the channel walls:

ulv = ∓λ
∂ulv

∂y
at y = ±W

2
. (4.12)

Here λ is the Maxwell slip length which will be determined from the experimental
measurements for the wall shear stress. Note that the bubble, liquid and mixture
velocities will all be non-zero near the wall in the sheared suspension. We might
have chosen to apply a slip boundary condition to the bubble or mixture velocity.
However, only the choice of the liquid velocity in (4.12) results in a constant bubble
velocity and zero mean liquid velocity in a vertical channel for all values of y.

Integrating (4.11) assuming that the effective viscosity and bubble volume fraction
gradients are independent of y and applying the boundary conditions (4.12) yields
the liquid velocity profile:

ulv =
ρg

6µeff

∂α

∂y
cos θ

[
y

(
W

2

)2
1 + 3λ∗

1 + λ∗ − y3

]
(4.13)

where λ∗ = 2λ/W .
The shear stress at the wall is

τ |wall = −µeff

∂ulv

∂y

∣∣∣∣
y=H/2

=
ρg

3
cos(θ)

∂α

∂y

(
W

2

)2
1

1 + λ∗ . (4.14)

The value of the slip coefficient can be obtained by comparing (4.14) with the shear
stress measured by the flush-mounted hot-film probe. The value of λ∗ that gives the
best fit to all the data for the values of α and θ where large instabilities are not
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Figure 15. Suspension effective viscosity calculated from (4.15) for four channel inclinations
as a function of the gas volume fractions: �, θ =2.5◦; �, θ = 5◦; �, θ = 7.5◦; �, θ = 10◦. The
lines show the predictions from (4.15) for different values of λ∗: ——, λ∗ = 0.32; – – –, λ∗ = 0
(no slip condition); – · –, λ∗ = ∞ (no tangential stress condition). To obtain the lines equations
(3.3) and (3.5) were used.

observed is λ∗ = 0.32. In figure 12, the predictions based on (4.14) are plotted as solid
lines and compared with the experimental measurements.

The value of the effective viscosity can be found using the value of λ∗ obtained
from the wall shear stress measurements along with the measured volume fraction
and bubble velocity profiles. We were only able to accurately measure the bubble
velocity in the central portion of the channel and so we use the value of the velocity
gradient at the centre of the channel for this analysis. Assuming that the bubble and
liquid velocity gradients are equal, the effective viscosity can be obtained from (4.13)
and is given by

µeff =
ρg cos(θ)

6(∂ub/∂y)
∣∣
y=0

∂α

∂y

(
W

2

)2
1 + 3λ∗

1 + λ∗ . (4.15)

Figure 15 shows the suspension effective viscosity calculated using the results from
figure 8 for the bubble velocity gradient and figure 6 for the bubble concentration
gradient. The viscosity is normalized by the viscosity of the liquid phase, µf =
0.001 Pa s. The data points are calculated considering a value of λ∗ = 0.32. Note that
the viscosity of the suspension is on the order of 100 times greater than the viscosity
of water. The apparent viscosity does not show a clear variation with respect to the
inclination of the channel or the gas volume fraction. To give some indication of the
uncertainty in the effective viscosity associated with the value of the slip coefficient,
we also show results based on an assumption of no slip (λ∗ = 0) and no tangential
stress (λ∗ = ∞) boundary conditions.
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The shear viscosity of a stable homogeneous suspension of bubbles with potential-
flow liquid velocity disturbances can be derived from kinetic theory arguments
(Spelt & Sangani 1998):

µKT =
16

5π1/2
Ckρf dbT

1/2α2gc

(
1 +

π

2

(
1 +

5

8αgc

)2)
(4.16)

where Ck is the added mass coefficient associated with the fluctuating motion of the
bubbles, gc is the pair probability of the bubbles for bubble–bubble contact, and T is
the bubble-phase temperature. If we calculate the bubble-phase temperature from the
measured bubble velocity variance, as in § 3.5, an estimation for µKT can be found.
This predicted effective viscosity for a homogeneous suspension is only about 3 to 5
times larger than the fluid viscosity and is much smaller than the effective viscosities
measured in the experiments. This is not surprising since we have already noted that
bubble clustering contributes strongly to the bubble velocity variance and the effective
diffusivity of the bubbles. A critical assumption in the kinetic theory is that the liquid
velocity fluctuations that give rise to momentum transport are only correlated over
the O(a/〈u′

b〉) time between successive collisions of one bubble with other bubbles in
the suspension. The liquid velocity spectrum measured in Zenit et al. (2001) indicated
much longer correlation times for the liquid velocity. Since the effective kinematic
viscosity, given by the product of the bubble velocity variance and the correlation
time of the bubble velocity fluctuations, has a very large correlation time it is expected
to be of O(Re(W/db)).

The use of an effective viscosity to describe the average momentum transport in
an unstable, clustered bubble suspension is not likely to be quantitatively accurate.
A more complete description would require three-dimensional numerical simulations
of the fluid and bubble velocity fluctuations that arise in the unstable suspension.
However, like an eddy viscosity model of a turbulent flow, this description provides a
simple framework in which to interpret the experimental results. The large effective
viscosity leads to velocity gradients that are on the order of 100 times smaller than
one would predict in a single-phase (water) flow with the same buoyancy driving
force.

4.5. Bubble clustering

It is well known that bubbles rising in an inviscid liquid and under the potential-flow
approximation tend to cluster in horizontal rafts. This instability arises naturally due
to the nature of the hydrodynamic interaction between individual bubbles. Although
this effect has been calculated numerically (for a modest number of bubbles), our
experimental measurements have shown that clustering is not as strong as that
observed in the numerical calculations (Zenit et al. 2001). In the numerical simulations
of Sangani & Didwania (1993b), all of the bubbles form coherent horizontal rafts
that span the periodic cell. However, in the experiments, the clustering could only
be detected by a careful statistical analysis of video images and was more apparent
through its indirect effect of producing large-amplitude, slowing varying liquid velocity
fluctuations.

In the theory of Spelt & Sangani (1998), the clustering instability arises from
a negative pressure due to the hydrodynamic interactions among a suspension of
bubbles moving with a common velocity. This pressure which is analogous to a
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Figure 16. Bubble-phase pressure obtained using (4.19) (solid line) and the negative of the
Maxwell pressure (dashed line), (4.17), as functions of gas volume fraction.

Maxwell pressure in electrostatics was determined by Spelt & Sangani (1998) to be

PMaxwell = −1

2
ρf α2

(
Ca

2
+ 1

)2

v2
b (4.17)

where Ca is the added mass coefficient which is a function of the gas volume fraction.
According to Spelt & Sangani, Ca is of the form

Ca =
1 + 2α

1 + α
. (4.18)

Using (4.10), we can express the diffusivity due to the bubble velocity fluctuations
(4.5) in terms of a pressure:

P =
36µαD

d2
b

. (4.19)

This estimate assumes that D is independent of the gas volume fraction and neglects
dissipation effects. This positive pressure contribution is compared with the negative
of the Maxwell pressure in figure 16. Although the estimates of P include some
experimental uncertainty, it is clear that the two pressures are of the same order of
magnitude. This comparison may explain why the experimentally determined clusters
are not as strong as those predicted by the theory. The bubble clusters may grow
until they produce a sufficiently large velocity disturbance and bubble diffusion to
stabilize the suspension against the further growth of clusters.

4.6. Instability

It has been observed by many researchers (Lin et al. 1996; Lammers & Biesheuvel
1996 for example) that large vortical structures appear in bubble columns. Such
structures that move up and down and extend across the entire channel were observed
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Figure 17. Map of the stability conditions of bubble suspensions.

in our experiments on vertical channel flow (Zenit et al. 2001) for concentrations
larger than 0.20. The occurrence of such large-scale instabilities is generally postulated
to be associated with concentration waves.

In the case of the inclined channel, evidence of the instability was observed at lower
concentrations and depended on the channel inclination angle. Figure 17 shows a map
of the conditions at which the instability was first observed. The onset of instability
was determined visually and it was further corroborated by the nature of the fluid
velocity spectrum. A noticeable peak at the low-frequency range could be identified
when the unsteady vortical motion appeared. The instability appears at large bubble
concentrations when the channel inclination is small. As the channel inclination
increases the instability is observed at lower concentrations. The strength of the shear
clearly affects the onset of the instability.

A criterion to establish the onset of instability can be obtained from the gradient of
the dispersed-phase pressure with respect to concentration. This criterion is discussed
by Batchelor (1988) who argues that a homogeneous suspension cannot be stable
if the derivative of the dispersed-phase pressure with respect to the concentration
is negative. In general this derivative must be larger than some critical value to
overcome destabilizing influences such as that due to volume-fraction-dependent drag
and inertia.

Figure 18 shows the gradient of the total bubble-phase pressure with respect to the
bubble concentration. The gradient is calculated as

∂Pt

∂α
=

∂

∂α
(P + PMaxwell). (4.20)

The pressure gradient obtained from the diffusion coefficient calculated from the
bubble velocity variance, depicted by the solid line, (equation (4.5)) predicts that
the instability will appear at concentrations higher than 0.11. On the other hand,
the pressure gradient predicted from the diffusivity coefficient inferred from the
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Figure 18. Gradient of the total bubble-phase pressure with respect of the bubble concen-
tration as a function of the gas volume fraction. The solid and dashed lines show the prediction
of the pressure gradient based on (4.5) and (4.8) respectively.

concentration gradient, depicted by the dashed line, (equation (4.8)) shows a stable
state up to concentrations of 0.183. The estimates of the onset of instability are in
rough agreement with that observed experimentally in the vertical channel.

5. Conclusions
We have examined the behaviour of a monodisperse suspension of high-Reynolds-

number, low-Weber-number bubbles in a narrow channel that is slightly inclined to
gravity (angles of inclination less than 10◦). This novel flow configuration enables
one to examine the small perturbations of the suspension resulting from a weak
segregating force (the component of the buoyancy force acting across the channel)
and a weak shearing motion driven by buoyancy variations across the gap. The
measured volume fraction and bubble velocity profiles across the gap were interpreted
as providing evidence of the transport of bubbles and momentum due to bubble-
induced fluid velocity fluctuations. The narrow gap allowed the suspension to attain a
fully developed unidirectional flow with no visually apparent instability for a range of
gap-averaged bubble volume fractions and inclination angles. It might be interesting
in the future to use this configuration to investigate the behaviour of a range of
inertial suspensions, such as fluidized beds or bubble suspensions in fluids with higher
viscosity and/or lower interfacial tension.

Inclined channels are commonly used to enhance the rate of gravitational separation
of particles and fluid in suspension where the particle Reynolds number is very small
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(Kapoor & Acrivos 1995). In that situation, a distinct interface forms at some position
across the gap between the suspension and a clear fluid layer. In the high-Reynolds-
number suspension studied here, the hydrodynamic diffusion of the bubbles is found
to be large enough that no clear fluid layer forms and, in fact, the variation of bubble
volume fraction across the gap is quite modest.

The transport of bubbles and momentum was much more efficient than that pre-
dicted by theories for homogeneous bubbly liquids (Kang et al. 1997; Spelt & Sangani
1998). However, these theories predict that the homogeneous state of a suspension
of bubbles rising due to buoyancy is unstable to the formation of bubble clusters.
Although these clusters are not readily apparent to the naked eye, Zenit et al. (2001)
showed that video photography demonstrated an enhanced probability of horizontal
bubble pairs. Also, the liquid velocity variance and the frequency spectrum of the
liquid velocity gave evidence of large-scale liquid motions that we believe are induced
by bubble clusters. Since the current experiment represents a weak perturbation to
the state of bubbles rising in a vertical column, the shearing motion in the inclined
channels is not expected to be sufficient to break up the clusters or provide a sufficient
source of bubble-phase pressure to stabilize the suspension. The large values of the
effective viscosity and bubble-phase diffusivity (or bubble-phase pressure) deduced
from the present experiments are consistent with the presence of large-scale bubble
clusters. The extent of bubble clustering in the experiment was considerably less
than that seen in numerical simulations of O(50) bubbles undergoing potential-flow
interactions. We found that the bubble-phase pressure induced by the hydrodynamic
fluctuations was comparable to the negative Maxwell pressure that is predicted to
induce clustering. This suggests the idea that the bubble clustering may proceed to
such an extent that the clusters produce enough bubble-phase pressure to prevent
further clustering.

A more vigorous and visually obvious instability occurred for bubble volume frac-
tions larger than 0.2 in the vertical channel and at lower volume fractions with increas-
ing angles of inclination. The instability in the vertical channel may be similar to
that observed in previous studies (Lin et al. 1996; Lammers & Biesheuvel 1996
for example) and attributed to the growth of void-fraction waves associated with
the volume-fraction dependence of the bubble drag coefficient. We found that this
instability sets in at approximately the volume fraction above which the bubble-
phase pressure (obtained as the sum of the Maxwell and hydrodynamic-fluctuation
contributions) fails to increase with increasing volume fraction, so that it no longer
stabilizes the homogeneous state. It would be interesting to obtain a better under-
standing of how the shear induced by inclining the channel influences the instability
of the suspension. The instability of sheared granular materials has been studied
extensively (for example, Wang, Jackson & Sundaresan 1996) but we are not aware
of comparable studies of sheared inertial suspensions in which the continuous phase
plays an important role.

The experiments presented here suggest that the transport of bubbles and mo-
mentum resulting from the fluctuating motion in a suspension can play an important
role in limiting the extent of segregation of the disperse phase and producing
significant stresses with modest gradients of mean velocity. It is important to develop
a better understanding of the origin of this fluctuating motion. Kinetic theories of
sheared granular materials (Lun et al. 1984), gas–solid suspensions (Sangani et al.
1996), and bubble suspensions (Kang et al. 1997) consider the fluctuating motions
induced by individual particles or bubbles as they collide with one another. Other
studies have considered how an assumed turbulent flow in the continuous phase may
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be modified by the presence of particles (Ahmed & Elghobashi 2000). However, in
the present situation, the fluctuating motion is believed to result primarily from the
instabilities arising from the inherent dispersed nature of the flow. Little is known at
present about the magnitude of this type of fluctuating motion. Since most inertially
dominated suspensions are subject to some form of instability, the resulting fluctuating
motions can be expected to influence a broad range of multiphase flows.

This work was supported by NASA under grant number NAG3-1853 and by
CONACyT grant number J34497U-2.
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