

Journal of Alloys and Compounds 369 (2004) 152-154

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Enhanced magnetic properties in Zr-containing rare earth-rich Didymium (Nd/Pr)-based nanocrystalline hard magnetic alloys

I. Betancourt^{a,*}, H.A. Davies^b

^a Materials Research Institute, UNAM, P.O. Box 70-360, Mexico, DF 04510, Mexico ^b Department of Engineering Materials, University of Sheffield, Sheffield S13JD, UK

Abstract

A systematic study of the influence of processing conditions and Zr addition on the magnetic properties of RE-rich, Didymium (Nd/Pr)₁₄Fe₈₀-B₆ (Nd:Pr ratio of 3:1) is reported. For directly quenched alloys, various roll speeds resulted in grain sizes d_g within the range 35–50 nm. Increasing remanence J_r and maximum energy product (BH)_{max} values were observed as d_g decreased (up to 0.86 T and up to 124 kJ/m³, respectively). Small Zr addition (1 at.%) resulted in improved J_r and (BH)_{max} (up to 0.92 T and up to 142 kJ/m³, respectively). For overquenched and annealed alloys, partial substitution of Fe by Zr (0–4 at.%) indicated a marked dependence of the magnetic properties on Zr content, with an excellent combination of J_r , (1.0 T), $_iH_c$ (1574 kA/m) and (BH)_{max} (149 kJ/m³) at 2 at.% Zr. Results are interpreted in terms of variations in the scale of the nanostructure and of the effects of Zr substitutions into the 2/14/1 unit cell.

Keywords: Permanent magnets; Magnetic measurements

1. Introduction

The processing windows for obtaining optimum nanostructures and magnetic properties by direct quenching via melt spinning to ribbons in NdFeB-based alloys tend to be narrow and the properties within large batches are likely to be rather variable [1]. An alternative process route is to overquench to a fully amorphous state, followed by a controlled devitrification anneal to a nanoscale grain structure. This has been shown, in some cases, to yield magnetic properties comparable with those attainable by direct quenching [2]. Also, the substitution of Nd by Pr in nanostructured RE₂Fe₁₄B hard magnetic alloys is of interest because the anisotropy field H_A and the intrinsic coercivity $_{i}H_{c}$, are increased [3]. For RE-rich compositions (y > 12 in $RE_{v}Fe_{94-v}B_{6}$ alloy systems) having already large $_{i}H_{c}$ values (typically above 1000 kA/m) this substitution is expected to increase $_{i}H_{c}$ values for similar processing conditions [3]. Moreover, Zr additions in stoichiometric RE₂Fe₁₄B alloys have been reported as increasing the anisotropy field $H_{\rm A}$, since Zr enters the $RE_2Fe_{14}B$ unit cell [4–6].

In this paper, the effect of processing conditions and Zr addition on the magnetic properties of RE-rich, Didymium $(Nd/Pr)_{14}Fe_{80}B_6$ (Nd:Pr ratio of 3:1) alloys, produced by direct quenching and by overquenching and annealing, is presented.

2. Experimental techniques

Ingots of the alloys were prepared using commercial grade materials by arc-melting the constituents in a high purity Ar atmosphere. The compositions of the alloys were $(Nd_{0.75}Pr_{0.25})_{14}Fe_{80-x}Zr_xB_6$ (x = 0–4). Nanocrystalline directly quenched (DQ) ribbon samples with thicknesses and mean grain sizes in the range 20–40 μ m and 35–50 nm, respectively, were produced by chill block melt spinning at various roll speeds (16–25 m/s), under a protective argon atmosphere. Overquenched and annealed alloys (OA) were obtained by devitrification of fully amorphous alloy spun at 45 m/s (annealed 10 min at 700 °C with material sealed in a silica tube under argon). The magnetic properties J_{r} , $_{i}H_{c}$ and (BH)_{max} (computed from the BH loop) were determined using an Oxford Vibrating Sample Magnetometer with a maximum field of 5 T. Measurements were made in the

^{*} Corresponding author. Fax: +52-55-56161-371.

E-mail address: israelb@correo.unam.mx (I. Betancourt).

plane of the ribbon samples and transverse to the spinning direction so that no correction for self-demagnetisation was necessary. The Curie temperature T_c of the 2/14/1 phase was determined by DSC, using a heating rate of 40 K/min. The structures of selected ribbon samples were monitored by X-ray diffractometry and the mean crystallite diameter d_g for the 2/14/1 phase was estimated by line broadening analysis, using the Scherrer formula [7].

3. Results and discussion

XRD diffractograms for nanocrystalline (Nd_{0.75}Pr_{0.25})₁₄- $Fe_{80}B_6$ alloys, melt spun at various roll speeds v_r , are shown in Fig. 1. For increasing v_r , a slight broadening of the peaks is manifested, which results in decreasing d_{g} values. Also included in Fig. 1 is the diffractogram of a Zr-containing sample, which exhibits a further peak broadening as a consequence of an additional grain size refinement. The effects of varying d_{g} on the magnetic properties of DQ (Nd_{0.75}Pr_{0.25})₁₄Fe₈₀B₆ alloys are plotted in Fig. 2. $J_{\rm r}$ increases progressively rapidly as $d_{\rm g}$ decreases up to 0.86 ± 0.03 T for $d_g = 36$ nm, reflecting the increasing degree of intergranular exchange coupling. The magnitude of $J_{\rm r}$ for any given $d_{\rm g}$ is lower than for the lower RE-containing $(\leq 12 \text{ at.}\%)$ alloys because of the dilution of the 2/14/1 phase by the paramagnetic RE-rich grain boundary phase [8]. (BH)_{max} follows the same trend, as is expected for alloys in which $_{\rm i}H_{\rm c} \ge J_{\rm r}/2$ [9], up to 124 ± 3 kJ/m³ at $d_{\rm g} =$ 36 nm. Unlike stoichiometric alloys [8], $_{i}H_{c}$ also increases as $d_{\rm g}$ decreases, up to a maximum of 1500 ± 30 kA/m at $d_{\rm g} = 38 \,\rm nm$. Such high $_{\rm i}H_{\rm c}$ can be ascribed to the significant role of grain boundary phase in damping the nucleation of reverse domains. This grain boundary effect is likely to be strengthened as d_{g} decreases due to increased boundary

Fig. 1. XRD diffractograms for nanocrystalline DQ (Nd_{0.75}Pr_{0.25})₁₄Fe₈₀B₆ alloys, melt spun at various v_r , showing d_g variations: (a) $v_r = 18$ m/s, $d_g = 42$ nm; (b) $v_r = 22$ m/s, $d_g = 39$ nm; (c) $v_r = 25$ m/s, $d_g = 36$ nm; (d) $v_r = 25$ m/s, 1 at.% Zr, $d_g = 28$ nm.

Fig. 2. Magnetic properties of $(Nd_{0.75}Pr_{0.25})_{14}Fe_{80}B_6$ DQ alloys as a function of $d_g.$

area per unit volume, though it may be in competition with the effect of increasing exchange coupling in decreasing $_iH_c$. Such a competition may explain why $_iH_c$ manifests a maximum value. Upon substituting 1 at.% Zr for Fe, a significant refinement of d_g down to 28 nm was observed for samples melt spun at 25 m/s. This resulted in increased remanence enhancement up to 0.92 ± 0.01 T and, thus, in an improved (BH)_{max} of 142 ± 2 kJ/m³, with only a small attenuation of $_iH_c$ (1322 ± 20 kA/m). These represent an excellent combination of magnetic properties.

The mean grain size diameter d_g of the 2/14/1 phase as a function of Zr concentration for OA (Nd_{0.75}Pr_{0.25})₁₄Fe_{80-x}-Zr_xB₆ (x = 0-4) alloy ribbons are shown in Fig. 3. Unlike the 0 and 1 at.% Zr DQ ribbons, the initial Zr addition (1 at.%) gave an increased d_g , though further Zr substitutions led to reduction of d_g . The magnetic properties as a function of Zr content are shown in Fig. 4. For the Zr-free OA alloy, an enhanced J_r of 0.84 \pm 0.03 T, compared with

Fig. 3. Mean grain size diameter of the 2/14/1 phase as a function of Zr concentration for OA $(Nd_{0.75}Pr_{0.25})_{14}Fe_{80-x}Zr_xB_6$ (x = 0-4) alloy ribbons.

Fig. 4. Dependence of magnetic properties on Zr content for OA $(Nd_{0.75}Pr_{0.25})_{14}Fe_{80-x}Zr_xB_6$ (x = 0-4) alloy ribbons.

the DQ counterpart with a $(BH)_{max}$ of $117 \pm 11 \text{ kJ/m}^3$ were attained, for an equivalent d_g of 47 nm. $_iH_c$, in contrast, is very high $(1553 \pm 15 \text{ kA/m})$ and is about 12% larger than for the DQ equivalent. For Zr-containing samples, the initial Zr addition (1 at.%) gave little significant change in $J_{\rm r}$ (from 0.84 to 0.85 T), whilst, at 2 at.% Zr, a clear maximum ($J_r = 1.00 \pm 0.02 \text{ T}$) was observed, presumably because of the reduced d_g promoting increased intergranular exchange interaction. Further increase in Zr concentration results in decreasing J_r , in spite of concomitant reduced $d_{\rm g}$, evidently because of a diminishing saturation polarization J_s . As expected, (BH)_{max} follows the same trend as J_r (since (BH)_{max} is dominated by J_r at this level of $_iH_c$) with a maximum of $149 \pm 9 \text{ kJ/m}^3$ at 2 at.% Zr. Overall, up to 3 at.% addition of Zr results in an increase in $_{i}H_{c}$, in spite of the decreasing $d_{\rm g}$, which is consistent with an enhancement of H_A for the 2/14/1 phase [4], though initially, up to 1 at.% Zr, there is a slight decrease of $_{i}H_{c}$, presumably due to the increased d_g . The maximum _i H_c at 3 at.% Zr is 1610 ± 10 kA/m. However, the best (BH)_{max}/_iH_c combination $(149 \text{ kJ/m}^3/1574 \text{ kA/m})$ correspond to the 2 at.% Zr alloy, which are outstanding properties and exceed those of the 1 at.% Zr DO sample, referred to above. The Curie temperature T_c of the 2/14/1 phase as a function of Zr concentration is shown in Fig. 5. For the Zr-free sample, a slightly reduced $T_{\rm c}$ (306 °C) compared with the Nd₂Fe₁₄B phase (310 °C) is observed as a consequence of the partial substitution of Nd by Pr. A monotonic decrease of T_c with increasing Zr content is observed, which we conclude is evidence for the Zr entering into the RE₂Fe₁₄B unit cell, and influencing the inter-atomic exchange interactions. Thus, for the alloy having the most favourable $(BH)_{max}/_{i}H_{c}$ combination (2 at.% Zr) the reduction in T_c is ~12 °C. This could be compensated for by small substitution of Co for Fe.

Fig. 5. T_c of the 2/14/1 phase, as a function of Zr concentration for OA $(Nd_{0.75}Pr_{0.25})_{14}Fe_{80-x}Zr_xB_6$ (x = 0-4) alloy ribbons.

4. Conclusions

Excellent combinations of coercivity and maximum energy product have been achieved for nanocrystalline mixed rare earth melt spun $(Nd_{0.75}Pr_{0.25})_{14}Fe_{80}B_6$ -based alloys through small substitutions of Zr for Fe. For directly quenched $(Nd_{0.75}Pr_{0.25})_{14}Fe_{79}Zr_1B_6$ the $(BH)_{max}$ and $_iH_c$ were 142 kJ/m^3 and 1322 kA/m, respectively, while, for the overquenched and annealed $(700 \degree C$ for $10 \text{ min}) (Nd_{0.75}Pr_{0.25})_{14}Fe_{78}Zr_2B_6$ ribbon, the values were 149 kJ/m^3 and 1574 kA/m, respectively.

Acknowledgements

H.A. Davies acknowledges financial support from EP-SRC, through the Advanced Magnetics Programme.

References

- H.A. Davies, in: C.F. Mainwaring, et al. (Eds.), Proceedings of the 8th Symposium on Magnetic Anisotropy and Coercivity in RE-TM Alloys, University of Birmingham UK, 1994, p. 465.
- [2] D. Goll, H. Kronmuller, in: L. Schultz, K.H. Muller (Eds.), Proceedings of the 15th International Workshop on RE Magnets and their Applications, MATINFO Frankfurt, 1998, p. 189.
- [3] I. Betancourt, H.A. Davies, J. Appl. Phys. 85 (1999) 5911.
- [4] M. Jurczyk, W.E. Wallace, J. Magn. Magn. Mater. 59 (1986) L182.
- [5] T.W. Capehart, R.K. Mishra, F.E. Pinkerton, J. Appl. Phys. 73 (1993) 6476.
- [6] J.I. Betancourt, H.A. Davies, IEEE Trans. Magn. 37 (2001) 2480.
- [7] G.E. Carr, H.A. Davies, R.A. Buckley, Mater. Sci. Eng. 99 (1988) 147.
- [8] H.A. Davies, J. Magn. Magn. Mater. 157-158 (1996) 11.
- [9] D. Goll, M. Seeger, H. Kronmuller, J. Magn. Magn. Mater. 185 (1998) 49.