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Abstract. We study the electronic and magnetic properties of ordered perovskites Sr2FeMO6 (where M
is a transition metal), among which some compounds, like Sr2FeMoO6 are half-metallic with high Curie
temperature while Sr2FeWO6 is an antiferromagnetic insulator. Using a double exchange type model with
an interaction between localized spins and conduction electrons together with a tight-binding Hamiltonian
and the renormalized perturbation expansion method, we study the behavior of Tc as a function of the
number of conduction electrons and also as a function of the Fe-M energy difference. We also consider the
Sr2FeMoxW1−xO6 compounds which present a magnetic and metal-insulator transition as a function of
doping.

PACS. 75.47.Gk Colossal magnetoresistance – 75.10.-b General theory and models of magnetic ordering
– 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Recently, the physics of half-metallic systems has be-
come very attractive in view of the potential magne-
toelectronic applications [1]. In this respect, a low-field
magnetoresistance at room temperature is highly desir-
able. This magnetoresistance (MR) can be obtained in
polycrystalline materials resulting from intergrain tunnel-
ing (TMR) and it is attributed to spin-dependent car-
rier scattering of spin-polarized electrons in a half-metallic
ground state. This view is in agreement with the ab-
sence of strong MR effect in single crystals [2] and is
verified by the observation of MR across an artificial
bicrystal boundary [3]. It is therefore of fundamental in-
terest to understand which parameters are controlling
the half-metallic character as well as the Curie temper-
ature Tc in order to optimize the electronic properties.
The double perovskites family A2MM’O6 (A being an
alkaline-earth and M, M′ two different transition-metal
elements) is considered as a serious candidate and ap-
pears to be very interesting to access to the role of elec-
tronic parameters because different members present a va-
riety of electronic and magnetic properties. Among them,
Sr2FeMoO6 and Sr2FeReO6 have shown low-field magne-
toresistance remaining significant up to room temperature
with half-metallic ferromagnetic character below Tc [4–6].
The fairly high Tc (≈450 K) compared to manganese per-
ovskites makes them very attractive. On the other hand,
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Sr2FeWO6 is known as an antiferromagnetic (AF) insula-
tor with TN ∼ 37 K [7]. As expected, a metal-insulator
and magnetic transition has been reported in the substi-
tuted compounds Sr2FeMoxW1−xO6 [8–10].

In Sr2FeMoO6 the low-field MR is strongly affected by
the long range ordering of Fe and Mo atoms [6,11], disor-
dered samples do not exhibit the low-field sharp magne-
toresistive response, though the MR remains very similar
to that of the ordered sample in the high-field regime.
One may think that disordering may modify the half-
metallic character of the system. In addition, in general,
the saturation magnetization (≈3.2µB per formula unit)
is significantly lower than the saturation moment 4µB

(Stotal = 5/2− 1/2) expected from the polarized bands, a
discrepancy which has been attributed to some degree of
disorder between Fe and Mo atoms. Decrease of the satu-
ration magnetization with increasing disorder is expected
as a result of antiferromagnetic superexchange interac-
tion between nearest-neighbors Fe [12]. Recently, with the
same approach as used here, it has been shown how a small
amount of positional disorder could affect the electronic
structure and the Curie temperature [13]. In the present
paper we will consider only fully ordered compounds.

2 Electronic scheme and model

In the following we will consider only Sr2FeMO6 double
perovskites. In the fully ordered perovskite structure, Fe
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and M occupy two interpenetrating sublattices, respec-
tively α and β, in a rock-salt structure. Oxygen atoms
bridge the Fe and M ions to form alternating FeO6 and
MO6 octahedra.

Let us first describe the electronic scheme of
Sr2FeMoO6. The electronic structure of ordered ferromag-
netic Sr2FeMoO6 investigated by optical spectroscopy [2]
and photoemission spectroscopy [14,16] is in good agree-
ment with band structure calculations [4,14,15]. The ma-
jority spin-up bands exhibit a bandgap (∼0.5−0.8 eV)
while minority spin-down bands cross the Fermi level giv-
ing rise to the half-metallic character in the ground state.
In the majority channel, the occupied part of the bands
near the Fermi level comes from filled t2g and eg bands
with mainly Fe-d character although slightly hybridized
with Mo-d. The partly occupied minority spin-down band
comes from strongly mixed Fe and Mo t2g states. All
bands present an important mixing with oxygen p states.
Because the relevant states near the Fermi energy are de-
rived from Fe and Mo d-orbitals we will use a simple tight-
binding Hamiltonian based on the calculated band struc-
ture and containing only Fe and Mo sites. The nominal
configurations are 3d5 for Fe and 4d1 for Mo. Of course
these states are hybridized with the oxygen lying in be-
tween them as indicated by band structure calculations.
However these O degrees of freedom can be eliminated
to produce Mo-Mo, Mo-Fe and Fe-Fe effective hoppings
as well as effective site diagonal energies at Fe and Mo
sites. We should think of these states as nominally Mo
4d- O 2p and Fe 3d- O 2p derived states. Inclusion of
on-site correlations within the local-density approxima-
tion +U (LDA + U) scheme or the local-spin-density ap-
proximation+ U (LSDA+U) do not modify qualitatively
the electronic structure [16–18], it merely enhance the ex-
change splitting of Fe and brings the Fe up-spin occupied
band further below the down-spin conduction band there-
fore reinforcing the localized character of the Fe up-spin
states.

We consider here a strongly correlated picture of Fe
with the stable configuration d5, in agreement with the
fact that there is no evidence for the presence of d4 con-
figuration in the ground state [16], implying that the en-
ergy ∆′ = E(Fe d4, M d1) − E(Fe d5, Md0) to transfer
an electron from Fe in the d5 state to Mo is positive
and large. Due to strong Hund’s coupling on Fe sites
parallel spins occupy the t2g and eg orbitals giving the
high spin configuration S = 5/2 of the 3d5 configuration
and we take these orbitals as frozen, depicted by a lo-
calized spin

−→
S i. In addition to these localized Fe spins,

itinerant electrons coming from Mo can move around be-
tween Fe and Mo ions in the exchange split t2g orbitals to
give 3d6 (S = 2) (Fe2+) configuration on the Fe sites.
The corresponding eg orbitals split by the crystal-field
are not occupied and will not be included. On a given
Fe site all the five d-orbitals being occupied with the
same spin direction, an itinerant electron is inevitably cou-
pled antiferromagnetically to the Fe localized spins: this
is indeed just the exclusion principle. Therefore itinerant
electrons with spin σ can hop only to Fe sites with an-

tiparallel localized spins. On the other hand Mo is not a
strongly correlated metal and usually non magnetic, the
intra-atomic exchange within d states being small com-
pared to the 3d transition metals [20], therefore there is
no constraint for electrons to hop on Mo sites. The Mo
sites would have either 4d1 (Mo5+) or 4d0 (Mo6+) con-
figuration. This electronic scheme is consistent with the
ab initio calculations and with the current informations
on electronic states emerging from photoemission spectro-
scopes [16] and a recent X-ray magnetic circular dichroism
(XMCD) experiment [19] for the “ferrimagnetic” ground
state of Sr2FeMoO6. It has been shown that the majority-
spin states are well localized and behave as a spin 5/2
which is built essentially from the Fe states, no apprecia-
ble Mo weight being observed in photoemission [16]. We
will consider this picture to be basically valid for other Fe
double perovskites with different metals M as well. The
model followed here for Fe double-perovskites Sr2FeMO6

does not differ in any essential way from that considered
in recent works [21,22]. The method we used is however
much simpler and transparent, and allows for a straight-
forward extension to consider substituted compounds like
Sr2FeMoxW1−xO6.

So we describe the conduction band arising from the
three degenerate t2g (dxy, dyz, dzx) orbital states by a
tight-binding model taking into account the constraints
on the hopping we just mentioned. To reduce the math-
ematical complexity we consider that the localized spins
can be either parallel or antiparallel to the quantization
direction; this precludes the possibility of canted or spi-
ral phases and restricts our approach to simple magnetic
structures (ferro, antiferro). So the hopping tµiσ of an elec-
tron with spin σ between a site M and a local spin µi (+
for up and − for down) at an Fe site i is t when the itiner-
ant electron spin σ (↑ or ↓) is opposite to the localized spin
and the hopping is zero when µi and σ are parallel. In
the cubic symmetry, due to the symmetry of the interme-
diate O orbitals, the first and second neighbor hoppings
are nonzero only between orbitals of the same symmetry
γ = xy, yz, zx and only between orbitals lying in the cor-
responding plane γ; it is the same for the three orbitals,
thus giving three degenerate two-dimensional bands. In
order to give a simple theoretical picture we neglect intra-
atomic correlation among the three possible t2g Fe/M or-
bitals. As we mentioned above this interaction is quite
small for Mo and other metals with extended 4d/5d states;
for Fe it is certainly stronger, values UFe ∼ 2−4 eV have
been reported [16–18], but since the three orbitals are oc-
cupied by the same spin direction it has to be reduced
by the exchange interaction J : Ueff = U − J . Strong
Coulomb repulsion among these orbitals at Fe sites has
been taken into account to study the possibility of a metal-
insulator transition within the ferrimagnetic phase using
a slave-boson approach [23]. Here we will consider only
the metallic regime and we may think of the electronic pa-
rameters of our Hamiltonian, in particular the hopping, as
renormalized by the correlations in the spirit of the slave-
boson approach. This will not change qualitatively our
results.
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According to the above considerations we write the
following model Hamiltonian for each t2g orbital:

H = εFe

∑

i{Fe},σ

a+
iσaiσ + εM

∑

i{M},σ

b+
iσbiσ

−
∑

〈i,j〉,σ
tµiσ

(
a+

iσbjσ + h.c.
)

(1)

where a+
iσ, aiσ ( b+

iσ, biσ) creates and destroys an itinerant
electron with spin σ at site i occupied by Fe (M) respec-
tively. εFe and εM are the site diagonal energies at the Fe
and M sites respectively, εM − εFe being the charge trans-
fer energy ∆ = E(Fe d5, S = 5/2; M d1) − E(Fe d6, S =
2; M d0). The hopping tµiσ has been defined above. We
consider only nearest-neighbors (n.n) Fe-M hopping and
ignore M-M hopping. The number of carriers per unit
cell is respectively n = 1 and n = 2 for Mo/W and
Re compounds; it can also be varied by substitution
of the divalent Sr by trivalent ions as, for example, in
Sr2−yLayFeMoO6 [24,25] in which case n = 1 + y.

A ferromagnetic ordering of the local spins favors a
larger mobility (wider band) for the antiparallel (down)
itinerant electrons and forbids parallel (up) electrons to
move. This lowers the kinetic energy of the conduction
electrons and stabilizes the “ferrimagnetic” phase. Al-
though the physical origin is different, this mechanism is
similar and acts in the same way as the double-exchange
for manganites in which the Hund’s rule couples ferromag-
netically the itinerant electrons and the localized spins:
in both cases, ferromagnetic ordering of the local mo-
ments occurs because of the kinetic energy gain. It is clear
that here the robustness of the ferrimagnetic state is gov-
erned by the hopping t and the charge transfer energy
∆ = εM−εFe. One understand easily that a large ∆ tends
to localize the electrons either on Fe or on the metal M
thus inhibiting the polarization of the Fe spins and reduc-
ing the stability of the ferrimagnetic state.

However this is not the only interaction which deter-
mines the magnetic structure of the double perovskites.
The majority spin occupied t2g and eg bands gives rise to
an AF superexchange interaction (SE) Jij

−→
S i

−→
S j between

the Fe localized spins mediated by Fe-O-M-O-Fe paths
with 90◦ and 180◦ Fe-M-Fe bonds. This SE is typically J ∼
t2eff
U ′ , where U ′ = E(Fe d6)+E(Fe d4)− 2E(Fe d5) and the
effective Fe-Fe hopping teff ∼ t2

∆′ so that J ∼ t4/(∆′)2U ′.
The contribution from the eg orbitals is the strongest be-
cause the hopping t′ between the eg orbitals is larger than t
between t2g orbitals, t′/t = 3 [26]. The competition be-
tween these two tendencies, which determines whether the
system will be ferrimagnetic or antiferromagnetic, is quite
subtle. This requires much care in the determination of the
SE interaction parameters, including the degeneracy of the
orbitals and all the different virtual processes involved. In
this paper we consider only the ferrimagnetic state, a de-
tailed study of the ferrimagnetic-antiferromagnetic transi-
tion will be published elsewhere [27]. Anyhow, we have to
keep in mind that the Curie temperature Tc is reduced by

the SE interactions, the value that we calculate represents
the contribution from the itinerant electrons only.

In order to obtain the density of states for itinerant
electrons, we calculate local Green’s functions in an in-
terpenetrating Bethe lattice using the Renormalized Per-
turbation Expansion (RPE) [28]. The RPE connects the
propagator at site i to propagators at the nearest neigh-
bor sites i + δ which exclude visiting site i again and
which we will denote by small g’s. These new propagators
are in turn connected to propagators of the same type
at sites i + δ + δ

′
, etc., so that Green’s function at each

site depends, through this chain, on the local spin config-
uration of the Fe sites. This procedure leads to different
Green’s functions for different sites, according to the lo-
cal spin configuration around the site. We are interested
in the configurational average of Green’s functions over
all possible spin configurations. This configurational aver-
age over local spin directions is assumed to be the same
at every site of the same sublattice, to restore transla-
tional invariance in the spirit of the mean-field theories
as ATA, CPA, etc. To this end we introduce the local av-
erage Green’s functions GFe

σµ and GM
σ for Fe and M. In

accordance with the model Hamiltonian, on the Fe sites
we have GFe

↑+ = GFe
↓− = 0 and only GFe

↓+ (or GFe
↑−) are

given by

GFe
↓+ =

1[
ω − εFe − zt2gM

↓
] , (2)

where we assume that the sum over neighbors can be re-
placed by the number of n.n z times their average Green
functions. Here z = 4. At this point we introduce the prob-
abilities ν± = (1 ± m)/2 that an Fe ion has its localized
spin + or −, the magnetization due to the localized spins
being then M = 5mµB, and we can write

gM
↓ =

1[
ω − εM − (z − 1) t2ν+gFe

↓+
] , (3)

and

gFe
↓+ =

1[
ω − εFe − (z − 1) t2gM

↓
] . (4)

Similarly for M ions we can write

GM
↓ =

1[
ω − εM − zt2ν+gFe

↓+
] . (5)

The Green’s functions for up electrons are obtained by
replacing ν+ by ν−.

Let us mention that, in our calculation we consider
the limit of infinite coordination number (z → ∞), in this
case zt2 scales as w2/4, w being half the bandwidth. In
our numerical calculations we take t = 1 i.e. w = 4. Then
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the functions g → G and the Green’s functions reduce to
those used in a dynamical mean field approach (DMF):

GFe
↓+ =

1[
ω − εFe − w2

4 GM
↓

] (6)

GM
↓ =

1[
ω − εM − w2

4 ν+GFe
↓+

] . (7)

The charge transfer energy ∆ between M and Fe itin-
erant states is the key parameter in determining the M
and Fe valence as well as the magnetic moment on Fe
and on M. However this parameter is not well known
from experiments. For example, even if we look at the
case of the most studied system Sr2FeMoO6 we find con-
tradictory results concerning the valence of Fe and Mo.
It is worth mentioning that assigning a specific valence
to ions having a contribution from conduction electrons
is always somewhat ambiguous. Early Mössbauer experi-
ments by Nakagawa [29] were interpreted as reflecting the
ionic configuration “Fe3+” and consequently Mo should
be “Mo5+”, which would mean ∆ negative and large. On
the other hand, different neutron diffraction studies have
been reported, one [30] claiming that the Fe magnetic
moment is 4µB and the absence of any moment at the
Mo sites, thus pointing towards the possibility of “Fe2+”
and “Mo6+” i.e. ∆ large and positive, whereas other stud-
ies by the same group proposed either µMo ∼ −1µB [31]
or ∼ − 0.5µB [25]. Other Mössbauer and neutron experi-
ments [32,33] seems to converge towards an intermediate
valence state close to Fe2.5+, literally meaning that εFe

and εMo should be quite close. The value of the Mo mo-
ment µMo = −0.35µB claimed by Besse et al. [19] is also
compatible with this view. Qualitatively this is in fact
what the band structure results tell us, clearly showing
that the minority-spin bands up to εFe are almost equally
populated from Fe and Mo contributions [4,14]. Therefore
it seems to be quite reasonable to assume that ∆ is small
for Sr2FeMoO6. To keep the model applicable to a large
variety of compounds we will consider ∆ as a parameter,
taking εFe = 0 and εM = ∆.

In the case of Sr2FeWO6, the valence of Fe (Fe2+)
and W (W6+) [7] implies that ∆ is much larger than the
hopping between Fe-W neighbors as just mentioned. As
a consequence, the conduction electrons cannot hop from
Fe to W.

In the compounds Sr2FeMoxW1−xO6 where W is sub-
stituted for Mo on the same sublattice, Fe is connected
to xz Mo nearest-neighbors only. The Green’s function
for Fe is then modified accordingly giving:

GFe
↓+ =

1[
ω − εFe − xw2

4 GM
↓

] (8)

while the Mo Green’s function is not changed.
Solving these equations we can calculate the partial

densities of states per orbital for itinerant electrons on Fe
and Mo sites. In the following we always consider densi-
ties of states per orbital and we include a factor 3 when-

ever necessary to take into account the orbital degener-
acy of t2g states. The total density of states ρ(m, ω, ∆) =∑

σ

[
ρFe

σ (m, ω, ∆) + ρMo
σ (m, ω, ∆)

]
, where ρFe

σ (m, ω, ∆) =
νµρFe

σµ(m, ω, ∆) = − νµ

π Im(GFe
σµ) and ρMo

σ (m, ω, ∆) =
− x

π Im(GMo
σ ) allows us to write n = 3

∫ εF

−∞ ρ(m, ω, ∆) dω
to determine the Fermi energy εF . We can calculate the
kinetic energy of the conduction electrons Ekin(m, ∆) =
3

∫ εF

−∞ ρ(m, ω, ∆) ω dω. In order to obtain the thermody-
namical values of m(T ) we need to calculate the mini-
mum of the free energy F = Ekin(m, ∆) − TS(m), where
S(m) = ln(2)−ν+ ln(2ν+)−ν− ln(2ν−) is the entropy term
of the local spins consistent with our approximation that
these are either up or down. The Curie temperature Tc is
easily determined from m(Tc) = 0.

3 Results and discussion

Let us first consider some general properties of the density
of states in the general case of Sr2FeMoxW1−xO6 systems.
We have two alternating lattices with different site diago-
nal energies given by the parameter ∆ which should open
a gap in the density of states. In addition the two lattices
also have in general different connectivities which are zν+

(zν−) for the Mo sublattice depending on the spin of the
itinerant electron, and zx for the Fe sublattice. This also
gives a gap as in chains with alternating hopping. There-
fore, in general, the density of states for spin σ has two
bands with a gap Eσ

g which depends simultaneously on

∆, m and x as Eσ
g =

√
∆2 + w2

(√
x −

√
1−σm

2

)2

. Be-

sides these bands the spectrum also shows δ-peaks arising
from the poles of the Green’s functions. Depending on the
relative values of x and m, these peaks have Fe or Mo
character. The total spectral weight is of course 1 + 2x,
since there is only one state available per Fe, 2 per Mo
and W but the W states are projected out.

In the general case when ∆ �= 0, the partial densities
of states are different for Fe and Mo. However they obey
to the following symmetry properties when ∆ → −∆:

ρMo
σ (m, ω − ∆,−∆) = ρFe

σ (m, ω, ∆)

ρFe
σ (m, ω − ∆,−∆) = ρMo

σ (m, ω, ∆).

A typical example of the density of states in the param-
agnetic state (m = 0) for different values of ∆ is given
in Figure 1 for the two cases x = 1 (a) and x = 0.6 (b).
This shows the narrowing of the two bands and how the
gap increases with increasing ∆ in the two cases. For a
given ∆, this shows that the gap is maximum for x = 1
and decreases for x = 0.6 according to the above formula.
The behavior of the density of states is further illustrated
in Figure 2 where we show the evolution of the density of
states with x in the ferromagnetic (m = 1) (Fig. 2a) and
the paramagnetic (m = 0) (Fig. 2b) states, taking ∆ = 0
and w = 4. As discussed above, it consists of two identical
bands separated by a gap and the partial density of states
are the same for Fe and Mo. In the ferromagnetic case, for
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Fig. 1. Total density of states versus energies (ω) for different
values of the charge transfer energy (∆) between transition
metals Fe and M (a) for the double perovskite Sr2FeMoO6 (b)
Sr2FeMoxW1−xO6 compound for x = 0.6 in the paramagnetic
phase taking w = 4.

x = 1 one recovers the semi-elliptic model density of states
extending from −w to +w. This represents the minority
spin-down density of states, on the other hand one has also
a δ-peak at ω = ∆ in the Mo up-spin density of states cor-
responding to the unoccupied narrow Mo-derived spin-up
band seen in the band structure calculations. For x �= 1 a
gap w (1 −√

x) develops and increases with decreasing x;
the spectral weight of each band is equal to x. In addition
there is a peak of weight (1 − x) at ω = 0 in the Fe partial
density, shown by the full lines in Figure 2a. As x decreases
the bands narrow and their spectral weight is diminished
due to the reduction of Fe-M nearest-neighbors, therefore
the gain in kinetic energy decreases. At finite temperature
local spins disorder (m �= 0) and electrons with spin up
start to move giving rise to Fe-Mo bandwidth in the up
channel. To see the effect of magnetization on the elec-
tronic spectrum let us look at the simpler case x = 1.
Now the down-spin band splits in two bands separated

by a band gap w(1 −
√

1+m
2 ), each band has a spectral

weight (1+m
2 ); the spin-up density of states also shows two

bands of weight (1−m
2 ) with a larger gap w(1 −

√
1−m

2 ),
therefore evolving towards the paramagnetic case (upper

Fig. 2. Density of states ρσ vs. energy for Sr2FeMoxW1−xO6

with different values of the concentration x: (a) in the fer-
romagnetic state (b) in the paramagnetic state. In all cases
∆ = 0 and w = 4. The vertical full line at ω = 0 represents the
Fe-derived peak with weight (1 − x). The Fermi energy indi-
cated by a vertical short dashed line corresponds to n = 1. For
x < 1/3 the Fermi energy coincides with the peak at ω = 0.

case in Fig. 2b). In addition Mo-peaks are present at
ω = 0 (in general this peak appears at ω = εM = ∆,
but we have taken here ∆ = 0) with weight (1−m

2 ) and
(1+m

2 ) for down and up-spins respectively (not shown); for
m = 1 one recovers the up-spin peak only. For x �= 1, the
evolution with m is quite similar but, as we mentioned
above, the spectral weight of each band as well as the
gap depends on x and m. In the paramagnetic phase, the
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Fig. 3. (a) Variation of the Curie temperature Tc as function
of the band filling for different ∆, (b) same for the saturation
magnetization ms.

bandwidth is reduced and the two bands are separated by
a gap Eg = w

∣∣∣
√

x − 1√
2

∣∣∣ which closes for x = 1/2. The
spectral weight of each band for each spin direction de-
pends on x, it is 1/2 when x > 1/2, and x for x < 1/2.
The peaks have the same weight for each spin and differ-
ent character depending on x: they are Mo states (weight
x − 1/2) for x > 1/2 and Fe-states (weight 1/2 − x) for
x < 1/2.

Let us consider the Curie temperature Tc in pure
Sr2FeMoO6 compounds (x = 1). Tc scales as the band-
width w due to Fe-Mo hopping. In Figure 3a, the Curie
temperature Tc/w is shown for different values of ∆ as
function of the band filling n. Tc does not depend on the
sign of ∆, and the overall behavior is similar to the one
obtained in reference [21] under the same conditions [34];
the differences comes from the different densities of states
used, in particular from the fact that M-M hopping is
included in reference [21]. In the range n = 1, correspond-
ing to Fe-Mo compounds, Tc/w reaches its maximum for
∆ = 0. From the point of view of energy levels, Fe-Mo
seems to correspond to an optimal situation for high Tc.
We also see that, for n = 2, Tc/w is about a factor of
two smaller, depending very little on ∆. Note that the
value of Tc for Sr2FeReO6 (n = 2) is in disagreement
with this trend, Sr2FeReO6 having similar Tc and w as
Sr2FeMoO6 [5]. This is an important point which requires

further study. A possibility is that, in this case, with a
larger number of itinerant electrons, the electronic cor-
relations within the conduction band itself play a cru-
cial role giving rise to a ferromagnetic instability of the
band states. For illustration, in Figure 3b, we have shown
the saturation magnetization in units of 5µB, formally
ms = m(T = 0) as function of the band filling. The be-
havior of Tc in the region of large band filling (n ∼ 2−3)
corresponds to the rapid decrease of ms from its maxi-
mum value. For n up to n ∼ 2, we find that the local spins
ground state is fully ferromagnetic (ms = 1). In this range,
the conduction electrons are fully polarized and the system
is half-metallic. For higher filling of the band n � 2 the
system becomes partially disordered in order to accom-
modate more electrons and progressively looses its half-
metallic and ferrimagnetic character. Above the critical
carrier concentration corresponding to Tc(nc, ∆) = 0 the
ferrimagnetic state becomes unstable in agreement with a
spin-wave theory [22]. As we mentioned above, Tc is re-
duced by the SE interactions. Including only spins inter-
actions J1 between Fe in 90◦ Fe-M-Fe bonds, Tc becomes
T ∗

c = Tc − 2S(S + 1)z1J1/3, z1 = 12 is the number of n.n.
Finally, let us mention that Tc may be affected by the pres-
ence of antisites. An enhanced number of antisites [24] may
increase Tc due to a superexchange interaction between
the Fe-Fe nearest-neighbors [13]. More complete work on
the effect of disorder on Tc is in progress [35].

It has been considered that a possible strategy to en-
hance Tc could be to increase the number of conduction
electrons in Sr2FeMoO6 by substitution of the divalent Sr
by trivalent ions in Sr2−yLayFeMoO6 [24,25]. A substan-
tial increase of the Curie temperature has been obtained
from y = 0 reaching Tc ≈ 490 K for y = 1 (n = 2).
However it is clear from Figure 3a that this cannot be a
genuine effect of the increase of the carrier density and
other factors have to be invoked to understand the origin
of such an increase of Tc. The change in the number of
electrons is not the only parameter that may change upon
doping with trivalent ions like La. Among them the most
direct one could be an increase of the bandwidth w with
increasing y (n). Unfortunately, upon La doping the cell
expands and the angle of the Fe-O-Mo bonds closes, as
a consequence the hopping integral between Fe and Mo
tFe-Mo is reduced, resulting in a decrease of w and conse-
quently of Tc: thus this cannot account for the observed
behavior. One may also think that the direct Mo-Mo hop-
ping that we have neglected may plays a role here. It
has been shown that Tc/w decreases with increasing M-M
hopping tM-M, indeed with the ratio tM-M/tFe-M [21]. It
is likely that tMo-Mo also weakens under the deformation
of the lattice with doping, however it is not clear how
tMo-Mo/tFe-Mo would vary and if it could decrease in a way
to overbalance the diminution of w. A complete analysis
of the lattice deformation effects on the overlap integrals
is required to conclude on this point. Again the superex-
change interactions due to the existence of antisites may
affect Tc, however the combined effect of the disorder and
the change in the number of carriers is not known. This
question is currently under investigation [35].
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Fig. 4. Variation of the Curie temperature Tc (a) for
Sr2FeMxW1−xO6 compounds as a function of the band fill-
ing n for different values of the concentration x and ∆ = 0 (b)
for Sr2FeMoxW1−xO6 compounds, corresponding to n = 1, vs.
concentration x for different values of ∆.

Let us now turn our attention to the case of Fe-(M,W)
alloys. To keep our model as general as possible we cal-
culated Tc for arbitrary band filling. Figure 4a shows
Tc/w for different values of the concentration x as func-
tion of the filling n and ∆ = 0. We see how the ferro-
magnetic phase is suppressed by the weakening of the ki-
netic energy with decreasing M concentration as shown
in the evolution of the density of states in Figure 2. In
Figure 4b we plotted Tc/w vs. x for the particular case
n = 1 corresponding to Sr2FeMoxW1−xO6. Overall, Tc(x)
gives a good description of the magnetic behavior in these
compounds [9,10]. We obtain that the Curie temperature
Tc drops to zero for concentration xc ∼ 0.2, indicating
the possibility of a magnetic transition. Compounds with
1 ≥ x > xc are ferrimagnetic while, for x � xc the anti-
ferromagnetic super-exchange interaction between the Fe
localized spins may stabilize an antiferromagnetic ground
state as in pure Sr2FeWO6. We will consider this in more
detail below. We see that this critical value is almost inde-
pendent of ∆, and note that it is in fairly good agreement
with the critical concentration xc ∼ 0.2−0.3 reported by
different groups [9,10]. However, the value reported in the
earlier work [8] is significantly larger xc ∼ 0.4−0.5 proba-
bly due to grain boundary effects [10]. From our Figure 4b,
taking Tc ≈ 450 K for x = 1, we may estimate that Tc

exceeds room temperature for x � 0.3−0.4 (a value de-
pending slightly on the value of ∆ we take), again this
is in good agreement with the experimental temperature
dependence of the magnetization [9]. So, at 300 K, com-
pounds should be paramagnetic for x � 0.3−0.4 (remem-
ber that the Néel temperature of the antiferromagnetic
phase is much smaller than room temperature, TN ∼ 37 K
for x = 0) and ferrimagnetic at higher concentration, in
qualitative agreement with recent Mössbauer data [36].
It is worth to discuss the valence arising from our ap-
proach for two reasons, first because the Fe-valence has
been estimated recently in this family of compounds [36],
second because ideas of valence transition have been in-
voked to explain the observed results [8–10]. In our pic-
ture, in the saturated ferromagnetic state (m = 1), be-
cause ∆ = 0 the lower band has equal Fe and Mo char-
acter with spectral weight x/2 each, so Fe remains Fe2.5+

(as we assumed in Sr2FeMoO6) as long as x > 1/3; below
1/3 Fe-localized states starts to be occupied pushing the
valence towards 2+. This strongly suggests that there is
a valence transition around the critical concentration xc,
in qualitative agreement with the estimates of the Fe va-
lence reported in reference [36]. This valence transition
scenario has some similarity with the ones proposed ear-
lier [8–10] although it differs in the details. It differs in the
sense that the models proposed by Nakagawa et al. [8],
Kobayashi et al. [9] and Ray et al. [10] are all based on an
“ionic picture”, Fe being either in the 3+ or 2+ state and
Mo in the 5+ or 6+ state, in contrast to the mixed-valence
character in Sr2FeMoO6 which is explicit in our approach.
We emphasized the role played by the itinerant electrons
interacting with the background of localized spins.

Let us discuss the effect of the antiferromagnetic SE
interaction between the Fe localized spins on xc. As we
mentioned above, it reduces Tc and will push the criti-
cal concentration xc to a value larger than 0.2. We can
get a reasonable estimate of the magnetic energy EF

M
resulting from the SE interactions in the ferrimagnetic
ground-state. Denoting by J1 and J2 the n.n and next
nearest neighbors (n.n.n) SE coupling constants between
Fe spins, one gets EF

M = S(S+1)(z1J1+z2J2)/2 (z1 = 12,
z2 = 6). J2 can be related to the Néel temperature of
the AF phase in Sr2FeWO6. The magnetic structure has
been reported recently [37] and consists of alternating fer-
romagnetic {111} planes coupled antiferromagnetically.
In this structure there is an equal number of n.n ferro-
and antiferro-bonds, so only n.n.n interactions J2 con-
tribute to the AF ground-state. So, the Néel tempera-
ture is TN = 2S(S + 1)z2J2/3, using this expression for
TN means that we neglect the lowering due to the fer-
romagnetic contribution of the kinetic energy, which is
consistent with our assumption that ∆ 
 w in the case of
Sr2FeWO6. For S = 5/2 and TN = 37 K in Sr2FeWO6 one
obtains J2 � 0.1 meV. We are not aware of any estimate
of J1 for the spins S = 5/2. Taking Fe2+ (S = 2) ions
as a starting point, a SE theory of Sr2FeWO6 has been
derived [38] suggesting that, in this case, J1 is around
half of J2; of course, this includes the processes involving
the fourth t2g electron with opposite spin present in the
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Fig. 5. The electronic energy difference ∆E/w between the
ferrimagnetic and paramagnetic phases vs. concentration x for
∆ = 0 and n = 1. The dashed lines represents the SE contri-
bution for J1/J2 = 0.5 (upper line) and 1 (lower line). This
gives the concentration range ∼0.25−0.3 below which the fer-
rimagnetic phase becomes unstable.

Fe2+ ions (giving S = 2) which, in our approach, is con-
tained in our Hamiltonian (1). However, remembering that
the dominant SE contribution comes from the eg elec-
trons, we may think that this would be a reasonable or-
der of magnitude in our case also. So, taking the ratio
J1/J2 in the range 0.5−1, we get EF

M = 1.5−2.25 TN .
The Fe-Mo bandwidth can be obtained from Figure 3,
Tc/w ≈ 0.1 for ∆ = 0 and Tc = 450 K, thus giving
EF

M/w ≈ 1.2−1.8 × 10−2; these values are shown by the
dashed lines in Figure 5 together with the difference of
electronic energy between the ferrimagnetic and the para-
magnetic phases for ∆ = 0. We see that the critical con-
centration at which the ferrimagnetic instability occurs is
now pushed towards xc ∼ 0.25−0.3, close to the experi-
mental critical concentration. For x � xc, the SE energy
EAF

M = −S(S + 1)z2J2/2 will stabilize the AF structure.
The correlation between the metal-insulator transition

and the ferrimagnetic-antiferromagnetic transition is not
clearly established although the metal-insulator transi-
tion takes place around the same concentration xc. We
may emphasize that the metallic character of the ferri-
magnetic compounds for x > xc follows from our den-
sities of states. This is easily obtained for the saturated
ferromagnetic state (m = 1), the lower band has a spec-
tral weight x, so it remains partially filled for x > 1/3
ensuring the metallic character. It is more difficult to ad-
dress the question of the insulating behavior since we have
not studied the electronic properties of the antiferromag-
netic phase. However, we think that the AF state is not a
band insulator but, most probably, a disorder induced in-
sulator. In the AF structure, electrons are confined along
one-dimensional ferromagnetic paths corresponding to the
intersection of the {111} ferromagnetic planes with the
xy, yz, zx-planes. Then W ions introduce strong diagonal
disorder giving rise to Anderson localization. We believe
that this is the probable origin of the insulating behav-
ior in the AF phase below xc. We should also mention
that previously the insulating character has not been in-
terpreted as an intrinsic property of the antiferromagnetic

phase but, instead has been attributed to the existence of
inhomogeneneous phases in the systems and to a percola-
tion process [9,10], a picture which is beyond the scope of
our paper.

To summarize, we have presented a simple model for
ordered perovskites based on Hund’s rule coupling in
which the 3d5 Fe majority-spins are localized and consid-
ered as local spins interacting antiferromagnetically with
itinerant electrons. The ferromagnetic state is stabilized
by the kinetic energy of the conduction electrons, similar
to the double-exchange mechanism. We have shown the
role of the charge transfer energy on the Curie temper-
ature as well as the effect of the band filling. Maximum
Tc is obtained in the range n = 0.5−1 and small charge
transfer energy between the two metal ions. The half-
metallic character is nevertheless preserved for band filling
up to n ∼ 2. For alloy compounds like Sr2FeMoxW1−xO6

we have been able to reproduce the general behavior
of the magnetic transition observed experimentally. Our
approach can be extended to the study of disorder be-
tween Fe and M atoms [13,35] and to the study of off-
stoechiometric Sr2Fe1+xMo1−xO6 [39].
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