
phys. stat. sol. (c) 2, No. 8, 3133–3136 (2005) / DOI 10.1002/pssc.200460739 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Comparison of electric field effects on carriers between spheri-
cal quantum dots and cylindrical quantum wires 

Marcelo del Castillo-Mussot
1
, Gerardo J. Vázquez

*1
, Carlos I. Mendoza

2, and Harold N. 

Spector
3
 

1 Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 México, 

D.F., México 
2 Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 

70-360, 04510 México, D.F., México 
3 Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA 

Received 19 July 2004, revised 21 July 2004, accepted 29 October 2004 

Published online 9 May 2005 

PACS 73.21.Hb, 73.21.La 

We investigate the effect of an electric field applied to two systems; a spherical quantum dot and a cylin-
drical quantum wire. In the latter system the field is applied perpendicular to the cylinder axis. We are in-
terested on the energy ground state of carriers in the quantum dot and wire using an infinite confining po-
tential well model. We perform a variational calculation for both systems and for low electric fields we 
find a quadratic shift of the energy levels with the electric field. For strong fields the Stark shift of the en-
ergy groundstate increases almost linearly with the electric field. In order to compare the results of both 
systems, we choose the radii of the sphere and the cylinder to be equal. For same radii the Stark shift of 
the sphere is smaller than that of the cylinder.  
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1 Introduction 

In this paper, we present a theoretical calculation of the shift of the energy levels of carriers in spherical 

quantum dots (QD) and in cylindrical quantum wires (QW) with an electric field applied transverse to 

the axis of cylindrical symmetry. It is important to find the shift of the groundstate energy of the con-

fined carriers in the transverse fields to be able to determine the binding energies of excitons and hydro-

genic impurities in quantum wires in the same fields. There has been much work on the transverse Stark 

effect in quantum wells where an electric field is applied along the direction of confinement in the well 

[1–7]. However, to our knowledge little work has appeared concerning the Stark effect in QW when the 

Stark field is applied perpendicular to the wire axis.  Dupertuis, et. al. [8] investigated the effect of an 

electric field on the energies of electrons in V shaped quantum wires but did not show what they used for 

the confining potential. The electric field in their case had components parallel and perpendicular to the 

V shaped wire. They found excited states with many nodes, which get split with the electric field. Huynh 

Thanh, et. al. [9] investigated the confined Stark effect in quantum wires with parabolic confinement and 

found a quadratic Stark effect at all electric fields. Benner and Haug [10] considered the Stark effect in 

quantum wires also assuming parabolic confinement. There has also been experimental work on the 

photoluminescence in quantum wires in an electric field. [11,12]. Arakawa, et. al. [11] found a blue shift 

in the photoluminescence due to excitons in quantum wires in the presence of an electric field. In their 

case, the quantum wires were V shaped. Rinaldi, et. al. [12] also observed a small blue shift, which they 

believed, was due to the piezoelectric field, caused by strain in the quantum wires. In spherical QD`s we 
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must mention the works of Wen et al. [13], Chang and Xia [14] and Menéndez-Proupin and Trallero-

Giner [15], in which the Stark effect on the energy levels of excitons in quantum dots (QD's), was inves-

tigated. In Ref. [14] the Stark effect was calculated for both single particle and exciton states with an 

infinite hard-wall confinement potential. A good survey on the physics, optical spectroscopy, and appli-

cation-oriented  research of semiconductor QD´s is given in Ref. [16]. Previous calculations similar to 

the present work on Stark effect of a single particle in a spherical QD are very few. Bose [17] used quan-

tum perturbation theory to calculate the Stark effect on spherical quantum dots. Niculescu [18] used a 

variational procedure on the electronic states in a spherical QD's with parabolic confinement in two 

models: when this confinement is not limited and when it becomes constant outside a fixed value of the 

radius. He compared these results with those of his own variational calculations of spherical step-wise 

QD's and found that the parabolic potential leads to the smaller electric-field-induced shifts. Chang and 

Xia [14] calculated exactly the Stark effect in QD with an infinite hard-wall confinement potential. Here 

we present a variational calculation of the shift of the carriers ground state energy in QW`´s and spheri-

cal QD's using an infinite hard-wall confining potential. It is important to mention that this particular 

potential avoids the existence of quasibound states for strong fields, since a strong enough electric field 

(or applied over large regions) combined with finite confining potential will tend to eject the carrier from 

the bound state. 

2 Theory 

We describe a charged particle in a spherical QD (SQD) or in a cylindrical QW (CQW) in the presence 

of an electric field. For the QD the field is applied along the z-axis and for the cylinder (with its axis 

parallel to the z-axis) the electric field is applied along the x-axis. The Hamiltonians are: 

 
2
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2 * SQD

p
H qFr V r
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where F is electric field, m* and q are the carrier effective mass and charge respectively, r is the distance 

of the carrier from the center of the sphere, θ is the angle between the position vector of the carrier and 

the electric field direction. ρ is the distance of the carrier from the center of the cylinder, φ is the angle 

between the position vector of the carrier and the electric field direction. In both cases V are the confin-

ing potentials using the infinite well model which vanishes inside each structure defined by radius d and 

becomes infinite outside. Here, d has the same value for the sphere and for the cylinder. Our assumption 

of a constant electric field is based on a negligible difference between the dielectric constants of each 

structure and its surroundings. This would be the case for a GaAs structure embedded in Ga1–xAlxAs 

surroundings.  In the QD exact calculation of Ref. [14], the carrier wave function was expanded in the 

basis of the single-particle wave functions in the absence of electric fields. Therefore, in order to simplify 

these calculations, we chose as our variational wave function 

 )( )  ( exp( cos )0SQD SQDSQDk rN j rSQDY b q=r              

and analogously, for the cylinder we choose 

               )( )  ( exp( cos )exp( )0CQW CQWCQWkN J ikzCQW rY b r f=r  

where the product kSQDd is the first zero of the spherical Bessel function j0(x) and the product kCQWd is 

the first zero of the Bessel function J0(x), βSQD and βCQW  are the variational parameter which depend 

upon the electric field and N's are the normalization constants of the wave function. If q and F are posi-

tive then the particle will be pushed to positive values of z, and therefore both β are positive. The expo-

nential factor in the variational wave functions is chosen in analogy to the trial wave functions used for 

electrons in an electric field in bulk semiconductors and semiconducting quantum wells, which seems to 
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give good results for the ground state when compared to the exact wavefunctions involving Airy func-

tions.       

    A simple calculation shows that the normalization constants are given by  
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Here J
ν
(x) are Bessel functions and I

ν
 (x) are the modified Bessel functions of the first kind.  A straight-

forward calculation yields the change in the carriers energy due to the electric field:  
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3 Results 

The expression for ∆E's as a function of β 's are minimized to obtain a lower limit of ∆E's as a function 

of the structure radii and the electric field. In Fig. 1 the Stark shift of the carrier's energy -∆E is shown as 

a function of the electric field for various radii d. This shift is given in electron Rydberg units where 

Ry=(e2/2κa), the radii of both QD and QW are given in electron Bohr radii where a = (h2κ/m*e2), the 

electric field is given in atomic units F
0 

= (e/κa2) and κ is the dielectric constant of the semiconductor. 

The results for the shift in the QD's are approximately one third of those in the QW's. The shift in the 

QD's are smaller because the average carrier density probability is smaller in the QD when the field 

pushes the carrier to lower energies. Geometrically this means that the concavity of the sphere is stronger 

than in the cylinder, that is, as a function of the coordinate along the cylinder axis, the QW boundary 

does not change. ∆E is a nonlinear function of the electric field for low electric fields and an approxi-

mately linear function of the electric field for higher electric fields. For the QD our results agree quite 

well with those of Ref. [14]. It can be shown that the slope of the linear shift increases with increasing 

radii. These results show that the presence of the electric field decreases the energy of the carriers in the 

structures below their value in the absence of the electric field. Furthermore, we have also compared the 

results of an exact calculation of the Stark effect in cylindrical QD's [19] with our variational results and 

the agreement is very good.  

We can also point out a common fact which has been often overlooked. This consists of the existence of 

quasi-bound states (instead of bound states), if the electric field is strong enough and it is applied over a 

distance larger than the QD radius. For example, there exist calculation models in quantum wells [20] 

and quantum wires [21] which assume a potential term in the Hamiltonian qFz for all z, in which the 

authors fail to notice or to mention that they are dealing with quasi-bound states. 
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 In summary, we presented very simple one-parameter analytical expressions that yielded, after mini-

mization, very good results when compared with more complicated and exact results, as those given in 

Ref. [14] for QD and Ref. [19] for QW.  
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Fig. 1  The Stark shift of the carrier's energy -∆E is shown as a function of the electric field for various radii d. In 

this figure the quantities are given in atomic units appropriate for the electron in the semiconductor. CQW indicates 

cylindrical quantum wire and SQD indicates spherical quantum dot. 
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