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Though commonly unrecognized, a superconducting BCS condensate consists of equal
numbers of two-electron (2e) and two-hole (2h) Cooper pairs (CPs). A new complete
(in the sense that 2h-CPs are not ignored) boson-fermion statistical ternary gas model,
however, is able to depart from this perfect 2e-/2h-CP symmetry. It yields robustly
higher T¢’s without abandoning electron-phonon dynamics, and reduces to all the known
statistical theories of superconductors, including the BCS-Bose “crossover” picture—but
goes considerably beyond it.
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1. Introduction

Boson-fermion (BF) models of superconductivity (SC) as a Bose-Einstein conden-
sation (BEC) go back to the mid-1950’s,! =% pre-dating even the BCS-Bogoliubov
theory.?~7 Although BCS theory only contemplates the presence of “Cooper cor-
1-4,8-16 hosit the existence of actual
bosonic CPs. Indeed, CPs appear to be universally accepted as the single most
important ingredient of SC, whether conventional or “exotic” and whether of low-
or high-transition-temperatures 7. In spite of their centrality, however, they are
poorly understood. The fundamental drawback of early! ~* BF models, which took
2e bosons as analogous to diatomic molecules in a classical atom-molecule gas mix-
ture, is the notorious absence of an electron energy gap A(T). “Gapless” models
cannot describe the superconducting state at all, although they are useful in locat-
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ing transition temperatures if approached from above, i.e., T > T,. Even so, we are
not aware of any calculations with the early BF models attempting to reproduce
any empirical T, values. The gap first began to appear in later BF models.® 13
With two!l'1? exceptions, moreover, all BF models neglect the effect of hole CPs
included on an equal footing with electron CPs to give a “complete” BF model
(CBFM) consisting of both bosonic CP species coexisting with unpaired electrons.
Unfortunately, no experiment has yet been done, to our knowledge, that distin-
guishes between electron and hole CPs.

The “ordinary” CP problem!” for two distinct interfermion interactions (the
J-well'®19 or the Cooper/BCS model®!7 interactions) neglects the effect of two-
hole (2h) CPs treated on an equal footing with two-particle (2p) CPs—as Green’s
functions,?® on the other hand, can naturally guarantee. A crucial observation!!12
is that the BCS condensate consists of equal numbers of 2p and 2h CPs. This was
already evident, though commonly unrecognized, from the perfect symmetry about
€ = u, the electron chemical potential, of the well-known Bogoliubov?? v2(e) and
u?(€) coefficients, where € is the electron energy. The CBFM “unifies” ' both BCS
and BEC theories as special cases, and predicts substantially higher 7,’s than BCS
theory without abandoning electron-phonon dynamics.

2. Bethe-Salpeter treatment of Cooper pairing

A Bethe-Salpeter (BS) many-body equation (in the ladder approximation) treating
both 2p and 2h pairs on an equal footing reveals that, while the ordinary CP prob-
lem [based on an ideal Fermi gas (IFG) ground state (the usual “Fermi sea”)| does
not possess stable energy solutions, it does so when the IFG ground state is replaced
by the BCS one. This is equivalent to starting from an unperturbed Hamiltonian
that is the BCS ground state instead of the pure-kinetic-energy operator corre-
sponding to the IFG. The remaining Hamiltonian terms are then assumed suitable
to a perturbation treatment. Consequently, i) CPs based not on the IFG-sea but on
the BCS ground state survive in a nontrivial solution as “generalized” or “moving”
CPs which are positive-energy resonances with an imaginary energy term leading to
finite-lifetime effects; ii) as in the “ordinary” CP problem, their dispersion relation
in leading order in the total (or center-of-mass) momentum (CMM) 2K = h(k, +ks)
is also linear 2! rather than the quadratic #2K?2/2(2m) of a composite boson (e.g., a
deuteron) of mass 2m moving not in the Fermi sea but in vacuum; and iii) this lat-
ter “moving CP” solution, though often confused with it, is physically distinct from
another more common trivial solution sometimes called—even though Bogoliubov®
was the first to derive it—the Anderson-Bogoliubov-Higgs (ABH)?627 (and Ref. 7
p. 44) collective excitation. The ABH mode is also linear in leading order and goes
over into the IFG ordinary sound mode in zero coupling. All this occurs in both
2D?® as well as in the 3D study outlined earlier in Ref. 29. We focus here on 2D be-
cause of its interest3” for quasi-2D high-7,. cuprate superconductors. In general, the
results will be crucial for BEC scenarios employing BF models of superconductivity,
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not only in ezactly 2D as with the Berezinskii-Kosterlitz-Thouless (BKT)3132 tran-
sition, but also down to (1 + €)D which characterize the quasi-1D organo-metallic
(Bechgaard salt) superconductors.®3~35

If K = ky +ks is the CMM and k = %(k1 —ko) the relative wavevectors of the 2e
bound state, and Ex = E; + E» is its energy with Ejand E5 the energies of particles
1 and 2, one uses the bare one-fermion Green’s functions Go (K/2 £ k,Ex/2+ E)
for particles 1 and 2, respectively, where F = %(El — E5). The solution of the
complete BS equation wrt the IFG unperturbed state with both 2e- and 2p-CPs
included is

€ = +i2hwp/Ve?r —1  — +i2hwpe 1/, (1)

As the CP energy is pure-imaginary there is an obvious instability of the CP prob-
lem when both type pairs are included. This was actually reported in Refs. 7 (p.
44) and 36 and contrasts sharply with the familiar solution!” for 2e-CPs only,
& = —2hwp/(e?/* — 1) s —2lwpe~?/* which is exact in 2D and to a very

good approximation otherwise if hwp < Er, where wp is the Debye frequency and
A =VN(Ep) with N(EF) the electronic density of states (DOS) for one spin. This
corresponds to a negative-energy, stationary-state (i.e., infinite-lifetime) bound pair.
Clearly then, the original CP picture is meaningless if 2e- and 2h-CPs are treated
on an equal footing, as consistency demands.

However, a BS treatment not about the IFG sea but about the BCS ground
state vindicates the CP concept as a nontrivial solution. This is equivalent to
starting not from the IFG unperturbed Hamiltonian but from the BCS one. Its
physical justification lies in recovering three expected items: a) the (trivial) ABH
sound mode; b) the BCS T" = 0 gap equation; and c¢) finite-lifetime effects of
the “moving CPs” in both 2D?® or 3D?°. Thus, e.g., the IFG Green function
Go (K/2+k,Ex/2+ E) = Go(ky, Ey) is replaced by the BCS one Go(ky, Eq) that
contains the energy Fy, = /&, 2 + A2 with &, = h?k? /2m Erp and Athe T =0
fermionic gap, as well as the Bogoliubov functions?” vkl = 1(1 — &, /Ex,) and
uil =1-— v,%l. There are two solutions. 1) The trivial solution is the ABH energy
Ex equation Taylor-expanded about K = 0 and small A which in 2D is

hUF
V2

where o(\) denote interfermion interaction correction terms that vanish as A — 0.
Note that the leading term is just the ordinary sound mode in an IFG with sound
speed vr/v/d in d dimensions. 2) The nontrivial moving CP solution of the BCS-
ground-state-based BS treatment, which is entirely new, leads to the pair energy
Ex which in 2D is

Exk = —=K + O(K?) + o()), (2)

1
isK_2A+ihuFK+ hvp g2 /\thKJr LIve 1age2| 4 ook (3)
9kp 12 kp

where the upper and lower signs refer to 2p- and 2h-CPs, respectively, and
kp = wp/vp with wp the Debye frequency. A linear dispersion in leading order
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again appears, but now associated with the bosonic moving CP. From (3) the
positive-energy 2p-CP resonance has a width I'x and a lifetime 7 = h/2Tx =
h/2 [(\/m)hvp K + (hvp /12kp)et/ 2 K?] that diverges at K = 0, falling to zero as
K increases. Thus, “faster” moving CPs are shorter-lived and eventually break up,
while “non-moving” K = 0 ones are in infinite-lifetime stationary states.
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Fig. 1. BE condensate-fraction curves 1 — (T'/T.)?/5 for bosons in d = 3, 2, or 1 with dispersion
relation n ~ Cs K* with s = 2 or 1, for a pure phase of either 2e- or 2h-CPs as discussed in text,
compared to empirical data for 3D SCs (Nb/Cu and Sn), two quasi-2D SCs (Y123 and Bi2212)
and a quasi-1D SC (4 A-wide nanotubes). Data for the latter are for A(7")/A(0) but are plotted
as [A(T)/A(0)]2 so as to reflect 2h-CP condensate fraction mo(T)/mgo(0) according to (14). The
curve marked 1/1 strictly corresponds to T. = 0; however, it serves as a lower bound to all curves
with d/s = (1 + €)/1 for small but nonzero € for which T, > 0. The ordinate axis is labeled with
the superelectron number density ns(7") in units of the normal electron density n. Also shown,
for reference, are the two-fluid model*® curve 1 — (T/T:)* and the BCS gap A(T)/A(0) order
parameter.47

Empirical evidence for the linearly-dispersive nature of Cooper pairs in cuprates
has been argued by Wilson3® to be suggested by the scanning tunneling microscope
conductance scattering data in BSCCO. More direct evidence is shown3? in Fig. 1
via experimental data (mostly from penetration-depth measurements) for two 3D
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SCs,4041 two quasi-2D cuprates,*2~%* and a quasi-1D SC.%> The data are seen to
agree quite well, at least for T' 2 0.5T,, with the pure-phase (only 2e- or 2h-CP) BE
condensate fraction formula 1 — (T'/T.)%* for d = 3, 2 and 1, respectively, provided
one assumes s = 1. For lower T’s, one can argue'? that since a mized BEC phase
containing both 2e- and 2h-CPs becomes more stable (i.e., has lower Helmholtz
free energy), the simple pure-phase formula 1 — (7'/7,)%* is no longer strictly valid.
These remarks apply only to the boson component of the BF mixture while the
unpaired-electron background plays a passive role as in Cooper’s'” original treat-
ment of CPs. Thus, BF models assuming this CP linearity for the boson component
[instead of the quadratic A2 K?/2(2m) assumed in Refs. 1, 9-12 among many others]
can give BEC for all d > 1, including exactly 2D without the need to invoke the
BKT transition. Such BF models can then in principle address not only quasi-2D
cuprate but also quasi-1D organo-metallic superconductors.33—3°

3. Complete Boson-Fermion Model (CBFM)

The CBFM!!:!2 is described in d dimensions by the Hamiltonian H = Hq + Hp;.
The unperturbed Hamiltonian Hy corresponds to a non-Fermi-liquid “normal” state
which is an ideal (i.e., noninteracting) ternary gas mixture of unpaired fermions and
both types of CPs, two-electron (2e) and two-hole (2h), and is

Hy= > ey, o, s, + ZE+(K )bicbi — ZE (K)ciex (4)

k1,81

where as before K = kj + ka is the CP CMM wavevector while e, = h%k?/2m are
the single-electron, and EL(K) the 2e-/2h-CP phenomenological, energies. Here
a:h s, (ax,,s,) are creation (annihilation) operators for fermions and similarly by
(bk) and ¢ (ck) for 2e- and 2h-CP bosons, respectively. Two-hole CPs are pos-
tulated to be distinct and kinematically independent from 2e-CPs, all of which
provides a ternary BF gas mixture. In a sense, our Hy “explains” magnetic-flux
quantization experiments*® that establish CP charge carriers along with unpaired
electron ones.

The interaction Hamiltonian H;,; consists of four distinct BF interaction ver-
tices each with two-fermion/one-boson creation or annihilation operators, depicting
how unpaired electrons (subindex +) [or holes (subindex —)] combine to form the
2e- (and 2h-) CPs assumed in the d-dimensional system of size L, namely

—d/2
Hint = /Zf (k){a k+1KT k_,,_lKle‘i‘a k+1Klak+;K,TbK}
d/2 +
LY f(k k+1K,T k+1KLCK+a ket LK, | Ot 1K 1CK ) (5)
kK

where k = $(k; — kz) is the relative wavevector of a CP. The energy form factors
f+(k) in (5) are essentially the Fourier transforms of the 2e- and 2h-CP intrinsic
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wavefunctions, respectively, in the relative coordinate of the two fermions. In Refs.
11 and 12 they are taken as

f if 1[E+(0) — de] < € < 1[EL(0) + d¢]
0 otherwise.

fe(e) = (6)
We now introduce the quantities £y and de as new phenomenological dynamical
energy parameters (in addition to the positive BF vertex coupling parameter f)
that replace the previous such E4(0), through the definitions

E;=1[E4(0)+ E_(0)] and de = L[E,(0) — E_(0)], (7)

where F.(0) are the (empirically unknown) zero-CMM energies of the 2e- and
2h-CPs, respectively. Clearly

E:t(()) = 2Ef =+ de. (8)

The quantity E serves as a convenient energy scale; it is not to be confused with the
Fermi energy Ep = %mv% = kpTr where Tr is the Fermi temperature. The Fermi
energy Ep equals 7h?n/m in 2D and (#%/2m)(37%n)%/3 in 3D, with n the total
number-density of charge-carrier electrons, while F; is the same with n replaced by,
say, ny. The quantities Ey and EF coincide only when perfect 2e/2h-CP symmetry
holds, i.e. when n = ny; see below (14).

The interaction Hamiltonian (5) can be further simplified by dropping all K # 0
terms, as is done in BCS theory. Constructing the grand potential

Q(T, L4, ju, No, My) = —kpTln Tre_ﬂ(H_“N)} (9)

where “Tr” stands for “trace,” minimizing with respect to Ny (the number of zero-
CMM 2e-CPs) and M (the same of 2h-CPs), and simultaneously fixing the total
number N of electrons by introducing the electron chemical potential u, one can
specify an equilibrium state of the system with volume L? and temperature T by
requiring that

o0 o0 o0

a—]vo = 0, aT_[O = 0, and % = —N. (10)

Here N evidently includes both paired and unpaired CP electrons. Some algebra
then leads to the three coupled integral Eqgs. (6)—(8) of Ref. 11. The relation between
the fermion spectrum E(e) and fermion energy gap A(e) turns out to be BCS-like,
ie.,

E(e) = /(e — u)? + A2(e) but where A(e) =+/nof+(e) ++/mof-(e). (11)

This last expression for the gap A(e) implies a simple T-dependence rooted in the
2e-CP no(T) = No(T)/L? and 2h-CP mo(T) = Mo(T)/L¢ number densities of
BE-condensed bosons, i.e.,

A(T) = V/no(T) f+(€) + Vmo(T) f-(€). (12)
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Self-consistent (at worst, numerical) solution of the aforementioned three coupled
equations then yields the three thermodynamic variables of the CBFM

no (Ta n, N“)a mo (T7 n, :U‘)7 and :U‘(Ta TL) (13)

Most significantly, the three CBFM equations contain the key equations of five
different statistical theories as special cases. Perfect 2¢/2h CP symmetry signifies
equal number of 2e- and 2h-CPs; i.e., np(T) = mp(T) as well as no(T) = mo(T).
With (8) this implies that Ey coincides with u, and the CBFM then reduces to:

i) the gap and number equations of the BCS-Bose crossover theory for
the BCS model interaction—if the BCS parameters V and Debye energy hwp are
identified with the BF interaction Hamiltonian H;,; parameters f2/2d¢ and de, re-
spectively. The crossover picture for unknowns A(T") and p(7) is now supplemented
by the key relation

A(T) = f/no(T) = f/mo(T). (14)

The crossover picture is associated with many authors beginning in 1967 with
Friedel and coauthors®?; for a review see Ref. 50. However, it is widely unrecognized
to be a very modest improvement, at least for the Cooper/BCS model interaction,
over BCS theory per se since an unphysically large A of about 8 is required to bring
w(T.)/Er down from 1.00 to 0.998; indeed, T,-values differ very slightly®! all the
way up to A ~ 50 when the Fermi surface pinned at u disappears so that the model
interaction breaks down. If one imposes that u(7.) = Er exactly, as follows from
the number equation for weak BF coupling f, the crossover picture is well-known
to reduce to:

ii) ordinary BCS theory which is characterized by a single equation, the
gap equation for any 7T'. Thus, the BCS condensate is precisely a BE condensate
whenever both ng(T") = mp(T) and no(T) = mo(T) and the BF coupling f is
small. For small coupling A the CBFM T = 0 superconducting state has the same
condensation energy in lowest order in A as the BCS state, and in fact lower in
next-to-lowest order.2:2

On the other hand, for no 2h-CPs present the CBFM reduces!'! also to:

iii) the BEC BF model in 3D of Friedberg and Lee®1? characterized by the
relation A(T') = f+/no(T), first reported in Ref. 8; but lacking 2h-CPs this model
cannot be fully related to BCS theory. When f = 0 it reduces to:

iv) the ideal BF model (IBFM) of Refs. 15 and 16 that predicts nonzero 2e-
CP BEC T¢.’s even in 2D. The “gapless” IBFM cannot describe the superconducting
phase. But considered as a model for the normal state it should provide feasible T.’s
as singularities within a BE scenario that are approached from above T, and this
seems to be indeed'® the case. Finally, in 3D this model in the limit of no unpaired
electrons reduces to:

v) the familiar T,-formula of ordinary BEC in 3D.

The very general CBFM has been applied in both 2D and 3D and gives sizeable
enhancements in T,.’s over BCS theory that emerge for moderate departures from
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perfect 2e/2h-pair symmetry. This is attained for the same Cooper/BCS interaction
model (coupling strength A and cutoff iwp) parameters often used in conventional
superconductors. The three coupled equations of the CBFM that determine the d-
dimensional BE-condensate number-densities ng(7") and mo(7") of 2e- and 2h-CPs,
respectively, as well as the electron chemical potential p(7T'), were solved numerically.
At n/ny = 1 one has perfect 2e/2h-CP symmetry; ny can be seen'? to be the
number ny(T") of unpaired electrons per unit area when A = 0 and T' = 0. The
third, or “complete” number, equation then explicitly reads

2no(T) + 2np+(T) — 2mo(T) — 2mp+(T) +np(T) =n (15)

with mp4+(T), e.g., being precisely the number of “preformed” K > 0 2h-CPs.
Besides the normal phase (n) consisting of the ideal BF ternary gas described by
Hy, three different stable BEC phases emerge, see Fig. 2.

m, g

Fig. 2. Illustration on the no-mo plane of three CBFM condensed phases (the pure 2e-CP and 2h-
CP BE condensate phases s+ and s— existing only along the horizontal (mo = 0) and vertical (ng)
axes, respectively, and the mixed phase ss) along with the normal ternary BF non-Fermi-liquid
phase n which is a single point at the origen.

We next focus on s = 1 which occurs in the leading term for “ordinary” CPs
in a Fermi sea as well as for “generalized” CPs in a BCS state. For the latter, the
boson excitation energy n to be used has a leading term in the many-body Bethe-
Salpeter (BS) CP dispersion relation given by 7 ~ (A\/27)hwp K in 2D.2® As before,
A=V N(EF) where N(EF) is the electron DOS (for one spin) at the Fermi surface.
Note that 7 is not the quadratic A2 K?/2(2m) appropriate for a composite boson of
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Fig. 3. Phase diagram in 2D temperature 7' (in units of Tr) and electron density n (in units of
ny as defined in text) showing the phase boundaries of T¢’s for pure 2e-CP BEC phases (dashed
curves) determined by A(7T¢) = f+/no(Tc) = 0 and pure 2h-CP BEC phases (full curves) given by
A(T.) = fy/mo(Tc) = 0 for A = 1/4 and 1/2 with hwp/Er = 0.05. Intersections corresponding
to no(T") = mo(T") approximately reproduce the BCS T, as given by (14) and are marked by black
dots. Black squares mark the exact BEC limit where all electrons are imagined paired into 2e-CP
bosons.

mass 2m moving not in the Fermi sea but in vacuum.'~%9~12 In 2D the electronic
DOS per unit area L? is constant, namely N (¢) = m/2rh?. Using n ~ (\/27m)hvp K
we obtain for the bosonic DOS

M(n) = (1/2m) K (dK /dn) ~ (27 /\*E*vg)n (16)

instead of the constant that follows in 2D from the quadratic dispersion n =
h?K?/2(2m). One uses Ey = wh®ng/m = kpTy as energy/density/temperature
scaling factors, and the relation n/n; = (Ep/Ef)%?, to convert quantities such as
T./Ty to T,/Tr, where Ep = kgTr. We took the two values of A = 1/4 (lower
set of curves in Fig. 3) and = 1/2 (upper set of curves), and fwp/Er = 0.05 (a
typical value for cuprates). If A > 1/2 the ionic lattice in 3D becomes unstable,”®
and Ref. 1 (p. 204). Solving two coupled equations at a time leads to the T./Tp
vs. n/ny phase diagram of Fig. 3 for both 2e-CP (dashed curve) and 2h-CP (full
curve) pure, stable BEC-like phases. The value n/ny = 1 corresponds to perfect
2e/2h-CP symmetry for the lower-T, mixed phase (not shown as it occurs below the
BCS T¢.’s), while n/ny > 1 (and < 1) signifies more (less) 2e-CPs than 2h-CPs in
the mixed phase. The T, value where both phase-boundary curves no(7.) = mo(7%)
= 0 intersect is marked by the large dots in the figure. These values are consistent
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with those gotten from the BCS formula T, /Tr ~ 1.134(fwp/EFr) exp(—1/X) which
gives ~ 0.001 for A = 1/4 and ~ 0.008 for A = 1/2, for iwp/Er = 0.05. The black
squares in Fig. 3 (upper for A = 1/2 and lower for A = 1/4) mark the exact BEC an-
alytic values!'? if all electrons in our 2D or 3D many-electron system were imagined
paired into noninteracting bosons formed with the Cooper/BCS model interelectron
interaction. Cuprate data empirically®® show 7,’s and Tx’s falling within the range
T./Tr ~ 0.03 — 0.09. Thus, moderate departures from perfect 2e/2h-CP symmetry
enable the CBFM to predict quasi-2D cuprate empirical T, values, without aban-
doning electron-phonon dynamics—contrary to popular belief. Finally, from Fig. 3
we note that room temperature superconductivity (RTSC in figure) is possible but
only via 2h-CP BE condensates.

Lastly, we address the unique but mysterious role played by hole charge car-
riers in the normal state of superconductors in general. Chapnik?® has hypothe-
sized that hole (electron) charge carriers are associated with superconductors (non-
superconductors). Indeed, a) of the cuprates, those that are hole-doped have tran-
sition temperatures T, about siz times higher than electron-doped ones; and b)
even in conventional superconductors?* over 80% of all superconducting elements
have positive Hall coefficients (meaning hole charge carriers); while ¢) over 90%
of non-superconducting metallic, non-magnetic elements have electron charge car-
riers. This greater “efficiency” of individual, unpaired hole carriers in producing
higher 77.’s is clearly reflected in the “skewed” right-left appearance in Fig. 3 for 2D
superconductors—at least insofar as pure 2h-CP BE condensates exhibiting higher
T.’s than those associated with pure 2e-CP BE condensates.

4. Conclusions

In conclusion, the new “complete boson-fermion model” (CBFM) includes as limit-
ing cases the following theories: i) BCS and ii) BCS-Bose “crossover” when the BE
condensate consists of equal numbers of electron- and hole-pairs, as well (when no
hole pairs are present) as iii) the Friedberg-Lee BEC model, iv) the “ideal boson-
fermion model” (IBFM) and v) BEC theory, when there are no unpaired electrons.
The BCS condensate is precisely a BE condensate of equal numbers of 2e/2h-pairs
and weak coupling. Cooper pairs are meaningless if defined wrt the ideal Fermi
gas “sea,” but when defined wrt the BCS ground-state sea survive as positive-
energy, finite-lifetime plasmon-like objects with a linear (instead of quadratic) rise
in total, or center-of-mass, momentum K. Without abandoning electron-phonon dy-
namics the CBFM leads to 2-to-3 order-of-magnitude higher T,.’s—including room-
temperature superconductivity but only via hole-pairs. The CBFM also suggests
an “explanation” for the empirical skewed role of holes in producing higher T’s.
A specific recipe for high T,.’s would be to engineer superconductors to have many
more 2h-CPs than 2e-CPs at 7).

All this rests on four essential ingredients: 1) 2h-CPs cannot and must not be
neglected in a fully self-consistent treatment in any many-fermion system, otherwise
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a spurious value of T, may®® result; 2) CPs are bosons, even though BCS pairs not;
3) CPs are linearly-dispersive for small K; 4) to achieve higher T,’s one must depart
from the perfect 2e-/2h-CP symmetry of the BE condensate of BCS. Left out thus
far, however, are: a) K > 0 terms in the boson-fermion vertex interactions; b)
boson-boson interactions (as is BCS); ¢) a T" > 0 Bethe-Salpeter CP treatment; d)
different hole and electron effective masses; and e) ionic-lattice crystallinity effects
which might initially be dealt with via Van Hove singularities introduced®® in the
electronic DOS or, ultimately, via “bipolarons”®” replacing CPs.
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