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Abstract. We have studied the structure of annealed two-dimensional diffusion-limited aggregates (DLA).
The annealing process consists of introducing internal flexibility to the original DLA rigid structure as well
as excluded volume interactions between particles. From extensive Monte Carlo simulations we obtained
aggregates with fractal dimension slightly higher than that obtained for two-dimensional DLA structures.
This is somehow surprising since the fractal dimension of the annealed structure is determined not only by
connectivity but also by the competing effects of excluded volume interactions and configurational entropy,
whilst in the rigid DLA only diffusion counts for the fractal-dimension value.

PACS. 61.43.Hv Fractals; macroscopic aggregates (including diffusion-limited aggregates) – 05.40.-a
Fluctuation phenomena, random processes, noise, and Brownian motion – 82.70.Dd Colloids

1 Introduction

Aggregation of particles in colloidal suspensions is an im-
portant example of a nonequilibrium process. Patterns
formed by this process have much practical importance,
since they appear in a wide range of phenomena in dif-
ferent areas of science and technology [1]. Diffusion-limi-
ted aggregation (DLA) [2] and other related models [3,4]
have become paradigms for growth phenomena in far from
equilibrium conditions [5]. DLA model was introduced to
describe growth where the limiting step is diffusion to the
surface of the growing object. Such processes are quite
common in nature [6]. In colloidal suspensions and other
systems well described by these models [7], the elementary
units that successively stick to form the aggregate remain
thereafter at relative fixed positions, thus conferring an
intrinsic rigidity to the structure. That is, the statistical
properties characterizing the disorder of the particle po-
sitions are quenched by the growth process itself. This
is an important limitation that impedes the application
of the conventional diffusion-limited aggregation model
to diverse aggregating systems. Examples of systems in
which the DLA model cannot be applied are: aggregates
involving rearrangement within the clusters [8–10], and
polymer chains in solution that are formed by fluctu-
ating elements [11]. To obtain a better description of
these fluctuating structures other models have been devel-
oped [1,12,13,15]. A realistic model for describing growth
in systems with fluctuating constituents must include in-
formation not only about the colliding events that lead to
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the irreversible build up of the structure, but also about
the equilibrium configurations that result from the Brow-
nian motion of the internally articulated elements [14].
Therefore, the statistical properties characterizing the po-
sitional disorder are in this case a combination of quenched
and annealed rearrangements.

Clusters formed by aggregation processes generally
have a fractal structure [16]. Fractal dimension is a cru-
cial parameter that defines many properties of aggre-
gates [10,17–21]. By definition, if the density ρ and the
size R of an object are related through, ρ ∼ Rdf−d, with
df a non-integer number less than d, – d the dimension
of the space –, then one is dealing with a fractal struc-
ture. The exponent df represents the fractal dimension of
the aggregate. The smaller the fractal dimension, the less
compact the aggregate.

Since the first aggregation models were introduced,
many modifications of them have been introduced to de-
scribe systems under a wide range of circumstances [16].
It has been found that fractal dimensionality depends
on the nature of the aggregation process [2–4,22]. The
least dense structure occurs for a diffusion-limited ag-
gregation in which particles stick together irreversibly
and permanently at contact. Computer simulations have
shown [3,4] that for diffusion-limited cluster aggregates
(DLCA) df ≈ 1.75 while experiments with colloidal gold
particles have yielded df = 1.75 ± 0.05 [7]. For reaction-
limited (RLCA) processes the clusters are more com-
pact than those formed by DLCA. The formation of
more compact structures than expected for RLCA pro-
cesses has been encountered and explained in terms of
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cluster restructuring [23–25]. Recently, a general class
of diffusion-mediated reversible aggregate-reorganization
processes have been shown to exhibit globally attracting
equilibrium distributions that are universal [26,27]. Addi-
tionally, aggregate restructuring is found to be an impor-
tant mechanism in explaining aggregation kinetics [10].

A rather interesting question with regard to the struc-
ture of a DLA aggregate is the following: What happens
to the structure of a DLA aggregate when the rigidity con-
striction at the bonds of each constituent is relaxed and
monomers originally distant in the structure come close
to each other in space due to Brownian motion? Since
each monomer has a finite volume other monomers can-
not come into its own region, so the natural interaction
that comes into play is the excluded volume interaction or
steric effect. In such a situation the net result is a repul-
sive force between the different branches of the aggregate
because two or more interacting branches always have re-
duced configurational freedom as compared to the case
when each branch is isolated in space.

In this paper we address this issue and study the
structure of aggregates, that are created from a two-
dimensional DLA structure by introducing flexibility to
the rigid DLA bonds and taking into account excluded
volume interactions. Nonetheless, it is important to point
out that the present model is not aimed at explaining
aggregation processes with internal mobility during ag-
gregation or processes in which any two particles bind
to each other upon touching, even if the particles are al-
ready bound to some other ones. Models of aggregation
which treat these cases have been introduced and studied
previously [14,15]. Rather than studying models in which
reorganization leads to a change in topology, here we in-
vestigate the equilibrium properties of the already grown
DLA structure without further changing its connectivity.
This model could be relevant to experimental systems in
which presumeably flexible fractal structures in solution
are formed. For example, in the experimental system of
reference [11], the polymers could be thought of as a flex-
ible globules that could be modeled as soft spheres. These
spheres have a small number of reactive sites where other
spheres can be attached building up large flexible aggre-
gates. Once the reactive sites of a given particle are filled
no other particle can be bind to it even if they get close.

The annealing process induced by flexibility, yields
structures with a fractal dimension that is only slightly
higher than that of the original DLA. This is an unex-
pected result since the fractal dimension of the annealed
structure is determined not only by connectivity but also
by the competing effects of excluded volume interactions
and configurational entropy. Excluded volume interactions
introduce a repulsion between particles that in principle
should lead to a stretching of the branches of the aggre-
gate which is opposed by the effect of configurational en-
tropy. In other words, flexibility tends to increase con-
figurational entropy while excluded volume interactions
reduce the number of possible configurations of the aggre-
gate. In contrast, in the rigid DLA only diffusion counts for
the fractal-dimension value. This entropy dominated pro-

cess should be distinguished from other mechanisms that
lead to the restructuring and compaction of colloidal ag-
gregates. For instance, in the colloidal silica aggregates ex-
perimentally studied in reference [9] the breaking of bonds
and formation of new ones are responsible for compacta-
tion.

2 Simulation

In what follows we briefly describe how to arrive to the two
dimensional aggregates under study. We start by forming
a two-dimensional DLA in the usual way, i.e., we begin
with a seed particle of diameter r0 located at the origin of
coordinates. Then we release another identical particle at
a random position some distance away. The new particle
is allowed to diffuse, i.e. take steps of length r0 in random
directions, until it reaches a position within a distance r0

from the first. Then it is stopped and added to the ag-
gregate at the point of contact. Successive particles are
released, one at a time, and the process is repeated until
an aggregate of N particles is completed. Once the 2D
DLA is grown we introduce internal degrees of freedom to
anneal the aggregate. These internal degrees of freedom
substitute the rigid bonds between monomers at the con-
tact points and provide the aggregate with some flexibility
which is determined by the type of interaction potentials
between the constituent particles that form the aggregate.
To make contact with some other interesting soft con-
densed matter systems, for instance, polymer systems, we
model this internal flexibility applying the finitely exten-
sible nonlinear elastic (FENE) potential [28]. The FENE
potential is applied only to the monomers that are near-
est neighbors and has the property that it is harmonic at
its minimum and the “bonds” between nearest monomers
cannot be stretched beyond a maximum length. This po-
tential is defined by,

Vb(rij) = −k

2
(rsup − r0)

2 ln
[
1 −

( rij − r0

rsup − r0

)2
]
, (1)

where k is the spring constant, and rij , r0, and rsup are
the instantaneous length of bond ij, the equilibrium bond
length (or equivalently, the particle size), and the max-
imum bond length, respectively. The self-avoiding prop-
erties of the aggregate are modeled by considering the
excluded volume interaction potential between monomers
not directly connected. This interaction is modeled with
the hard sphere potential,

Vnb(rij) =
{∞, if rij ≤ r0

0, if rij > r0
(2)

where rij is the instantaneous distance between particles
i and j. The internal mobility of the aggregate means
that if it is embedded in a thermal bath, then due to
the Brownian motion of the monomers it changes its con-
formation. The statistical nature of this flexible aggregate
is now determined not only by the initial quenched dis-
order contained in the original DLA but also by the an-
nealing process that arises when the conformations of the
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Fig. 1. Superposition of 100 snapshots of a partially relaxed
aggregate with N = 100 particles. In black we show the output
of an hybrid method which combines classical MC and CBMC,
and in light grey we show the output of classical MC [panel (a)]
and CBMC [panel (b)]. One can see that CBMC relax well the
tips of the branches but can not relax the central part of the
structure whilst classical MC relax all the structure albeit less
efficiently. The hybrid procedure applies CBMC to the tips
while it uses MC for the rest of the structure.

aggregate sweep the allowed configurational space. In this
paper, this annealing process is simulated using a Monte
Carlo (MC) algorithm that is a combination of three dif-
ferent types of moves, since we found that it was extremely
difficult to obtain a complete relaxation of the aggregate
using just one kind of move. This is due to the fact that
DLA are aggregates with a rich branched structure, so
that, most of the time a movement is intended, it will
be rejected due to attrition problems. The simplest type
of MC moves are local updates according to the standard
Metropolis criteria [29] using the interaction potentials de-
fined in equations (1), (2). That is, we choose a particle
of the aggregate at random and carry out a random dis-
placement δr. The move is accepted or rejected according
to the standard Metropolis criteria. The second type of
move consists of choosing at random a monomer of the
aggregate, and freely rotate, by an arbitrary angle, all the
branches emanating from it. This kind of move is called a
“pivot move” [30]. This latter MC move has been applied
to annealing random branched polymers in three dimen-
sions with number of monomers up to 2000 [31]. Although
this type of moves do not mimic the real dynamics of the
macromolecules at all, it is acceptable as long as we are
interested in the equilibrium properties of the aggregate.
The third type of MC move introduced in the simulations
is the conventional Configurational Bias Monte Carlo al-
gorithm (CBMC) [29]. In this method the aggregate is
partially regrown starting from a random particle. As one
would expect the Metropolis moves work well for all the
monomers located at the core of the aggregate, while the
CBMC moves are more efficient for the monomers located
near the free ends of the branches of the aggregate. This
is shown in Figure 1 where we can see the effect of these
two kinds of movements on a small DLA. For monomers
located deep inside the aggregate, the probability of accep-
tance of a CBMC move is very small due to steric effects.
On the other hand, the “pivot moves”, that are essen-

Fig. 2. Evolution of the square of the radius of gyration as
a function of number of Monte Carlo steps. In the inset we
show the evolution of the square of the radius of gyration as a
function of number of Monte Carlo steps right after the ini-
tial quenching. This result clearly indicates that the initial
DLA shrinks rapidly. Averages over 10 different aggregates of
N = 1000 monomers have been taken in both cases.

tially rotations around a given monomer, contribute to
rearrange more efficiently the branches of the aggregates.
These type of moves proved to be crucial to successfully
achieve the relaxation of the aggregates. As a matter of
fact, we found that the more efficient way of annealing the
aggregate was using a random combination of the three
types of MC moves. The Metropolis and the pivot moves
were applied to any monomer in the aggregate while the
CBMC moves were applied only to monomers near the
tips of the branches. We now describe some parameters
and details of the numerical simulations.

We found that a set of ten different DLA’s configura-
tions with a total of N = 1000 monomers yielded statisti-
cally meaningful results. Note that it is relatively easy to
grow a DLA with thousands of particles, however, the an-
nealing of such aggregate becomes extremely difficult. In
fact, we tried larger systems but it proved to be computa-
tionally quite expensive, since it took too long to achieve
a relaxed state. The parameters used in the FENE po-
tential were, in reduced units: k = 50, r0 = 1, and the
largest bond length was set rsup = 1.2r0 to avoid bond
crossing. To carry out the annealing of each DLA aggre-
gate we performed a total of 108 combined MC moves
considering a monomer displacement |δr| (δrα ≤ 0.2r0,
with α = x, y, z), when it was required. The simulations
were done at constant temperature T = 1/kB, with kB

the Boltzmann constant.

3 Results

In Figure 2 we show the evolution of R2
g, as a function of

MC time. There one sees that right after initial quenching
it decreases significantly, as shown in the inset. However,
after 106 MC steps have elapsed this quantity oscillates
with relatively small amplitude around an average value.
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Fig. 3. Average of the distribution of the square of the radius
of gyration. The average was taken over 10 different annealed
DLA aggregates and over 100 snapshots taken each 106 simu-
lation steps. The position of the dashed vertical line represents
the average value of the square of the radius of gyration of the
initial 10 DLA configurations. From this figure it is obvious
that there is a net shrinking of the annealed DLA aggregates.

Fig. 4. Snapshots of a DLA before and after the annealing
process. Note that the annealed aggregate looks more compact
than the original DLA.

This is a clear indication that the aggregate has converged
statistically to a relaxed configuration. We also studied the
distribution of R2

g by counting the number of times a given
value of this quantity falls within a given interval. The re-
sult is shown in Figure 3 where we plotted the distribution
averaged over 10 different configurations. The dashed ver-
tical line shows the value of R2

g averaged over the 10 initial
DLA configurations. From this figure it becomes evident
that the annealed aggregates show an average value of R2

g
smaller than that corresponding to the average of the orig-
inal DLA configurations. An example of this is shown in
Figure 4 where we present snapshots of an aggregate be-
fore and after the annealing process. It can be seen that
the annealed aggregate is effectively more compact than
the original DLA.

Further evidence of this behavior is given in Figure 5.
There we plotted the distance from a given monomer to
a monomer of reference – the DLA seed monomer – as
a function of its chemical distance, defined as the num-
ber of particles that connect the monomer of interest with
the monomer of reference. We note that for the annealed
aggregate each of its monomers is closer to the reference

Fig. 5. Distance from any given monomer to the DLA seed
monomer, as a function of the chemical distance between them.
DLA aggregates (dashed line) and annealed aggregates (solid
line). The slope of the curve measures the stretching of the
branches. This figure shows clearly that the branches of the
annealed aggregates are less stretched than those of the regular
DLA. Results are the average over 10 different configurations
with N = 1000 monomers each one.

monomer than the corresponding distance in the original
DLA configuration. This results are an indication that the
annealing process has produced a more compact aggre-
gate. The slope of this curve – see Figure 5 – is related to
chain stretching along that chemical path [32]. As seen in
the figure, a leveling of the curve close to the ends indi-
cates that such particular branch has underwent thermal
relaxation whereas the internal monomers have retained
their original stretching. This is a well known steric effect
that is also present in polymer brushes [33] and star poly-
mers [34]. Close to the center of the structure, where the
monomer density is higher, excluded volume interactions
stretch branches outwards from their central attachment
point. On the contrary, there is no force acting on the free
ends of the branches. Therefore, chain stretching decreases
from its maximum at the center to a minimum vanishing
value at the free-ends.

At this point it is important to recall that the final
aggregate is the result of a quenching process (DLA for-
mation) plus the annealing one that in some sense mimic
the statistical and thermodynamic fluctuations produced
by the conformations due to the Brownian motion of
each monomer. To make a quantitative estimate of the
compactness of the aggregates we calculated the frac-
tal dimension of each aggregate after the annealing pro-
cess has taken place . This quantity was calculated using
two different procedures: (i) the well known box count-
ing method [35] and (ii) the particle density correlation
function. Using the first method the fractal dimension of
an annealed aggregate was the result of averaging the
fractal dimensions of 100 different configurations taken
every 106 MC moves. In doing so for each one of the
ten aggregates we obtained the average fractal dimension
df = 1.69 ± 0.01. Using the same procedure we obtained,
for the regular two-dimensional DLA, df = 1.66 ± 0.04.
We applied the second procedure to calculate the fractal
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Fig. 6. Particle density correlation function for the DLA and
the annealed aggregate. The fractal dimensions are extracted
from the slopes of the plotted straight lines.

dimension of the aggregates after performing 106 MC
moves, by averaging the fractal dimensions of all the con-
secutive configurations, and further averaging over the
ten different aggregates obtaining, df = 1.69 ± 0.05,
while for the regular two-dimensional DLA we obtained,
df = 1.65 ± 0.08, in agreement with the results obtained
using the box counting method. In Figure 6, we show the
two-particle density correlation function, g(r), from which
the fractal dimension was obtained. The fractal dimension
is obtained from the slopes of the straight lines shown in
the figure by, df = 2 + slope.

As one can see, in both cases, annealed and regular
DLA, the fractal dimensions are very similar within the er-
ror bars. However, we obtained consistently that the aver-
age fractal dimension of the annealed aggregate is slightly
larger than that of the regular DLA. This finding is similar
to those found in reference [14] where a fluctuating three-
dimensional DLA was considered, and in reference [31]
where a randomly branched polymer was annealed. We
should mention that the fractal dimension we get for the
regular DLA (1.66) is consistent with the value obtained in
reference [36] for small aggregates. Nevertheless, we should
recall that the fractal dimension of a large off-lattice two-
dimensional DLA is df = 1.71, (see Refs. [36,37]). There-
fore one should expect that for a large annealed aggregate
the fractal dimension should be slightly larger than 1.71,
to be consistent with the result we get in the present study.
As a point of statistical comparison of the present results
we may bring to our attention the study of reference [14].
There, a total of N = 3000 monomeres were used to build
up successfully three-dimensional fluctuating DLA struc-
tures. Nonetheless, in our present study, due to the re-
duced dimensionality of the space – two dimensions – the
spatial extension of the aggregates is larger than that of
reference [14]. Because of this, one would expect results
with better statistics. Thus, the conformational proper-
ties of the aggregates with N = 1000 monomers studied
here should be statistically meaningful. The slightly in-
creased compactness of the annealed aggregates is due to
its internal flexibility and steric effects produced by the
excluded volume interactions. This may be readily under-

stood by considering a directed one dimensional growth
process without internal mobility – rigid bonds. This pro-
cess would yield a rod-like object with fractal dimen-
sion df = 1. However, by introducing flexibility at the
“bonds” this one-dimensional object would eventually un-
dergo a self-avoiding walk process due to excluded volume
effects. The resulting object would have fractal dimen-
sion df ≈ 1.33 in two dimensions [38], a fractal dimension
much larger than the original rod-like object. The results
obtained here mean that the conventional DLA growth
process does prepare quenched but statistically stretched
and rigid structures.

4 Conclusions

In conclusion, we have shown by means of extensive MC
simulations that when the rigid bonds in a regular DLA
are substituted by flexible ones with excluded volume in-
teractions, the system relaxes to a structure with a frac-
tal dimension only slightly higher than that of the orig-
inal diffusion-limited aggregate in spite of the important
compaction of the aggregate that the annealing process
causes. That is to say, two different processes, diffusion
and excluded volume interactions with flexible bonds,
yield structures with fractal dimensions that differ by a
small amount in spite of the large difference in the value
of their respective radius of gyration. This is somehow
surprising since excluded volume interactions always in-
troduce a repulsion between particles that is opposed by
the effect of configurational entropy. These two competing
effects together with connectivity determine the fractal di-
mension of the annealed structure, whilst in the rigid DLA
only diffusion counts for the fractal dimension value.
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