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Abstract

In this work, the dynamics of a transient network is analyzed with a model that includes two coupled kinetic processes to describe the rheological
behavior of complex fluids. Five microstates are defined, representing the complexity of interactions among the macromolecules suspended in
a Newtonian fluid. These microstates represent statistically networks with varying entanglement density, such as a dense entangled network in
one extreme, and free chains or dangling ends (pendant chains) on the other extreme. It is assumed that the energy barrier required to modify
the complexity of the system can be provided by flow, and that the flow-induced change in the network complexity is modelled as a coupled
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inetic scheme constituted by a set of reversible kinetic equations describing the evolution of the microstates. The average conc
icrostates at a given time defines the maximum segment length joining the entanglement points in the transient network. The rheolog

unctions are calculated according to the classical statistical description of a transient network, but with a variable maximum segm
variable extensibility), which is a function of the kinetics of the microstates. The model predicts shear banding in steady simple shea
ependent non-linear rheological phenomena, such as thixotropy, stretched exponential relaxation and other interesting response
uids.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The transient network model[1–3]envisages a polymer solu-
ion as a transient network defined by nodes and segments.
he nodes are joined by polymer chains (segments) under-
oing continuous collisions, due to thermal motion. The rhe-
logical behavior of the system depends on the kinetics of
reakage and reformation of the network made of interacting
olymer molecules suspended in a Newtonian fluid. The concen-

rated polymer solution is composed of a network of polymer
olecules interacting each other at some specific sites along

he molecules called junctions or nodes. In the transient net-
ork model formulation, the dynamics of segments joining the
ntanglement points is described statistically, in such a way that
ntanglements break and reform due to the deformation imposed
y the applied flow.

∗ Corresponding author.
E-mail address: manero@servidor.unam.mx (O. Manero).

The entropic force in the segments is modelled as the in
Langevin function, and in some of these models the proba
of segment breakage increases and diverges as the segme
stretched near to their maximum length. The segments e
tion is simplified by replacing the exact entropic force law
each segment with an ensemble average. This “preavera
suggested by Peterlin[4] allows a closed set of equations to
derived for the stress tensor and the moments of the distrib
function.

In this work, the maximum segment length, i.e., the crit
length above which rupture of nodes occurs is not a constan
variable resulting from a kinetic process describing the dyna
of various microstates. These microstates reflect the com
ity of interactions among the polymer molecules in suspen
which can be free chains or pendant chains of the networ
one extreme, or the many-node interactions available in a d
network, on the other extreme. Within a statistical descrip
the properties of a system with a large amount of particles
be calculated by summation of the properties of each ind
ual micro-system that comprises the entire system. The fo
377-0257/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2005.08.011
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calculation of a property in a real system is a huge problem; an
option is to propose an idealization to obtain an approximate
solution.

Very simple microstates are defined representing all the possi-
ble structures that the transient network has when it is perturbed
by an external force. The variation in the concentration of the
microstates (creation and destruction of nodes in the network) is
described by a system of coupled kinetic equations, such as the
forward rate constants are function of temperature, as in ther-
mally activated processes. The reverse rate constants, together
with viscous dissipation due to flow, drive the system into a less
entangled network. Variation in the number of nodes is calcu-
lated by defining an average dynamic distance between nodes,
which represents the maximum elongation of the chains under-
going deformation. The distance between nodes is calculated as
an average of the five basic microstates, which represent all the
possible structures in the network.

The model is consistent with classical descriptions of tran-
sient networks. For example, when the concentration of free
chains is large or when there is little structure modification due
to the flow, the maximum segment length becomes constant
with large magnitude. In this situation the system behaves as
a Maxwell fluid, equivalent to a network of constant connectiv-
ity or a suspension of linear dumbbells.
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Fig. 2. The five basic microstates of a random arrangement of linear chains.

of linear molecules. This network possesses statistically similar
properties of the network shown inFig. 1a, where the segment
length is the average over that between nodes of polygons shown
in Fig. 1b.

A microstate reflects the complexity of interactions amongst
chains in a given region of space, and is defined in terms of
the number of nodes. InFig. 2, the microstates are schemati-
cally represented in a random arrangement of chains, and these
give rise to five basic configurations shown in the same fig-
ure. Among the possible number of configurations available, the
same number of nodes may represent microstates with different
number of chains. However, a preferable state is that with the
lower energy, which corresponds to that with a minimum number
of chains.

In this approach, five microstates represent the possible con-
figurations of the entire network, as illustrated inFig. 2. In this
form of representation,ω represents the specific microstate and
the sub-index represents the number of nodes that define the
microstate. For example,ω0 represents a pendant (dangling end)
or a free chain with no nearby interactions, as in a dilute system.
ω1 represents a configuration with one node and two chains.
Similarly, three extra configurations are proposed, representing
a more packed state with two, three and four nodes.

The next task is to calculate the average properties of the
network considering these five microstates. Under a given defor-
mation or flow, some microstates are favored, depending on the
p lso on
t

l
m twork
( n of
.1. The model

The system is a transient network composed of a large g
f flexible chains interacting as shown schematically inFig. 1a.
node is defined as the point of physical interaction betw

wo molecules, and a segment is the section of the mol
etween nodes. The concept of node is equivalent to a p
al entanglement forming the transient network. InFig. 1b, the
odes, or points of contact between chains, are drawn and j
ith straight lines. This composition gives rise to a mes

riangles, squares or polygons, where the nodes represe
ertex points of these polygons and they are linked by segm

ig. 1. Model of a random arrangement of linear molecules (a) and redu
o a non-regular polygon arrangements (b).
roperties of the system represented by the network and a
he characteristics of the deformation process.

In terms of average quantities, let us defineLp, the maximum
ength of one extended free chain andl′(t), which is the

aximum end-to-end distance between nodes in the ne
segments), including the dangling ends. By conservatio
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Table 1
Microstate configurations and properties

Microstate Geometry Number
of nodes

Number of
segments

Number
of chains

l(t)

ω0 0 1 1 1

ω1 1 4 2 2
4 = 1

2

ω2 2 7 3 3
7

ω3 3 9 3 3
9 = 1

3

ω4 4 12 4 4
12 = 1

3

chains, the following relation arises:

(l′(t)) (number of segments)= (number of chains) (Lp) (1)

The total length of the chains is the product of the length of
one free chain multiplied by the number of chains. The number
of chains is the product of the concentration of chains (C) in
every microstate times the occupied volume of the chains (V).
Similarly, the number of segments in the network is the product
of the occupied volume times the concentration of segments in
every microstate, including the dangling ends.Table 1shows
the geometry of every microstate and the number of nodes, seg-
ments and chains of each configuration. The number of chains is
just the sum of products of the number concentrations of chain
and a weighted factor in every microstate. Thus, the number o
segments is the sum of products of segment concentrations an
weighted factors in every microstate. Eq.(1) becomes:

l′(t) = VLp(Cω0 + 2Cω1 + 3Cω2 + 3Cω3 + 4Cω4)

V (Cω0 + 4Cω1 + 7Cω2 + 9Cω3 + 12Cω4)
(2)

In terms of the non-dimensional distance between nodes,l(t),
Eq. (2) becomes:

l(t) = l′(t)
Lp

= Cω0 + 2Cω1 + 3Cω2 + 3Cω3 + 4Cω4

Cω0 + 4Cω1 + 7Cω2 + 9Cω3 + 12Cω4

(3)

In the numerator we have the number concentration of chain
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multiplied by the number of nodes of every microstate (column
3 of Table 1) times the total volume of the system:

n(ωi) = V (4Cω4 + 3Cω3 + 2Cω2 + Cω1) (5)

The description that follows considers that flow and prop-
erties of the system modify the concentration of microstates at
a given time. A system of kinetic equations, similar to com-
plex chemical kinetics, provides for the concentration of every
microstate at timet. Since the network is transient, the number
of nodes in the network is modified by flow or temperature. The
transition between given microstates is described by reversible
kinetics, where the forward “reaction” induces the formation of
a more complex configuration (i.e., that with larger number of
nodes) and the reverse “reaction” gives rise to a configuration
with lesser number of nodes. The forward process is thermally
activated, whereas the reverse process depends on the viscous
dissipation.

1.2. Kinetic equations

The microstates are characterized by the number of nodes.
Collisions between molecules subjected to Brownian diffu-
sion and formation of physical entanglements require a state
of thermal energy, which amounts to the energy of interaction
between chains making a node. Under flow, the number of nodes
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f each microstate (column 5 ofTable 1) and in the denominato
e have the number of segments of every microstate (colu
f Table 1). In addition, the non-dimensional average dista
etween nodes for every microstate is shown in column
able 1. The limits ofl(t) correspond to the situation where
hains are free (l(t) = 1) and that where all chains are in c
gurationω4(l(t) = 1/3). Hence, the non-dimensional dista
etween nodes lies in the interval:

1

3
≤ l(t) ≤ 1 (4)

The definition for the distance between nodes may also
ider the case where a single chain may have various micros
hen, the total length of the chain is divided by a large num
f segments, giving rise tol(t) values lower than 1/3. This ca

s not treated here at this stage of the model development.
The total number of nodesn(ωi), can be obtained by sum

ation of the products of the concentration of each micro
s
f
d

s

4

f

-
s.

ecreases because the deformation energy overcomes th
ction energy between molecules involved in a node.

Table 2shows the energy change involved in the pro
f modification of configurations or number of nodes. Con
ation of chains is required for each transition. LetE0 be the
haracteristic interaction energy corresponding to the en
ssociated in the collision between two molecules to for

unction or a single node.
In the first couple of transitions the change in energy co

ponds toE0 (see first and second rows inTable 2). As depicted in
he second row, three single node configurations (six chains
nergy content 3E0) give two double node configurations (
hains with energy content 4E0). The energy difference betwe
hese microstates is�E = E0. The total change in energy is 4E0.
imilarly, in row three, a double node configuration (three ch
ith energy content 2E0) plus three single node configuratio

six chains with energy content 3E0) give three triple node con
gurations (nine chains with energy content 9E0). The energ

able 2
nergy change involved in structure transformations

quation Structure transformation �E �Etotal

6) 1 E1 = E0

7) 1 E2 = 4E0

8) 4 E3 = 9E0

9) 2 E4 = 12E0

9B) 0 EB = 12E0
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difference between the microstates is now�E = 4E0 and the total
energy change is 9E0.

For the last transition we observe that microstateω4 can
be obtained following two different paths. However, path 9B
possesses zero energy difference, and as a consequence, the
probability of its creation is the same as that for microstateω3.
In this work, only one path for microstateω4 is considered (Eq.
(9)).

In terms of the microstate transitions shown inTable 2, the
following forward and reverse constants can be defined for
each transition. In these equations, the forward rate constants
(kA) are the structure-formation kinetic quantities that have an
Arrhenius dependence[5] with temperature, associated to a ther-
mally activated process. The energy barrier is proportional to the
energy change involved in the transition from one microstate
into another, as disclosed inTable 2. The reverse rate constants
(kB) times the dissipation function represent the breakage or
modification process of the transient network at a given timet.
Then, the reverse process given bykB

i τ : D is a function of the
stress level (flow strength) and type of flow through the velocity-
gradient tensor. As the flow strength increases, one expects that
the breakage process overcomes the reformation process, favor-
ing microstates with low number of nodes. On the contrary, if
the flow is weak, formation of more complex structures with
larger number of nodes are preferred.

pro-
p n the
s ly th
s ocity
o ough
t tant
k of

microstates as in complex chemical kinetics systems, we have:

dCω0

dt
= τ : DkB

1 Cω1 − e−(E0/KT )kA
1 C2

ω0
(10)

dCω1

dt
= e−(E0/KT )kA

1 C2
ω0

+ τ : DkB
2 C2

ω2
+ τ : DkB

3 C3
ω3

− τ : DkB
1 Cω1 − e−(E0/KT )kA

2 C3
ω1

− e−(4E0/KT )kA
3 Cω2C

3
ω1

(11)

dCω2

dt
= e−(E0/KT )kA

2 C3
ω1

+ τ : DkB
3 C3

ω3
+ τ : DkB

4 C3
ω4

− τ : DkB
2 C2

ω2
− e−(4E0/KT )kA

3 Cω2C
3
ω1

− e−(2E0/KT )kA
4 C2

ω2
C2

ω3
(12)

dCω3

dt
= e−(4E0/KT )kA

3 Cω2C
3
ω1

+ τ : DkB
4 C3

ω4

− e−(2E0/KT )kA
4 C2

ω2
C2

ω3
− τ : DkB

3 C3
ω3

(13)

dCω4

dt
= e−(2E0/KT )kA

4 C2
ω3

C2
ω2

− τ : DkB
4 C3

ω4
(14)

wherekA
i andkB

i are variable rate constants whose relative values
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In equilibrium state, the temperature of the system is
ortional to the number of nodes. As external forces act o
ystem, they modify the number of nodes and subsequent
ystem reacts to recover its equilibrium properties. The vel
f the recovery process is proportional to temperature thr

he Arrhenius equation and also is proportional to the cons
A
i e−(E0/KT ). Following the method to write the kinetics
e

s

re related to the energy content of the process. Many dyn
ituations can be envisaged depending on the values o
ate constants. For example, some configurations or micro
ay be more likely than others, giving rise to the possib

o predict flow-induced structuring of the system. Furtherm
ime-dependent phenomena are also predicted, since the s
f coupled Eqs.(10)–(14) are a function of time and the pro
rties of the imposed flow. In this work, attention is restric

o simple situations where the rate constants can take v
ccording to the difference in energy for each process sho
able 2. The kinetic constants are given numerical values as

ng that the ratio between them is equal to the energy rat
ach kinetic equation. Under these assumptions these con
re related as follows:

= kA
1 e−(E0/KT ) = kA

2 e−(E0/KT ) = 4kA
3 e−(4E0/KT )

= 2kA
4 e−(2E0/KT ) (15)

= kB
1 = kB

2 = 4kB
3 = 2kB

4 (16)

Substituting Eqs.(15)and(16) into Eqs.(10)–(14), the sim-
lified system of kinetic equations can be written as follow

dCω0

dt
= Bτ : D(Cω1) − A(C2

ω0
) (17)

dCω1

dt
= Bτ : D

[
−Cω1 + C2

ω2
+ 1

4
C3

ω3

]

+ A

[
C2

ω0
− C3

ω1
− 1

4
Cω2C

3
ω1

]
(18)
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dCω2

dt
= Bτ : D

[
1

4
C3

ω3
+ 1

2
C3

ω4
− C2

ω2

]

+ A

[
C3

ω1
− 1

4
Cω2C

3
ω1

− 1

2
C2

ω2
C2

ω3

]
(19)

dCω3

dt
= Bτ : D

[
1

2
C3

ω4
− 1

4
C3

ω3

]

+ A

[
1

4
Cω2C

3
ω1

− 1

2
C2

ω2
C2

ω3

]
(20)

dCω4

dt
= B

2
τ : D[−C3

ω4
] + A

2
[C2

ω3
C2

ω2
] (21)

Several flow situations may be explored by assigning values
to the overall kinetic constantsA andB, based on experimental
information. Summarizing, once the characteristics of kinetic
equations of the system are defined according to experimental
data, there are two constants to describe the behavior of the
creation–destruction process of structures.

For example, the microstate representing a dilute system is
ω0. The series of constants describing theω0 configuration are:

A = kA
1 e−(E0/KT ) = kA

2 e−(E0/KT ) = kA
3 e−(4E0/KT )

= kAe−(2E0/KT ) = 0 (22)

B

ilut
s on-
s f a
d

C

er o
m ld b
d

C

m mum
l e
v con
fi s o
t ess
p f the
d

1

m
s

whereG represents the rate of creation of the network junctions
andβ represents the rate of destruction of the network segments.
ṙ- is the rate of change of the end to end vectorr. As long as the
chain remains Gaussian, the grand canonical function is defined
as

Ω =
(

L√
π

)3

e−L2r2
(27)

with

L2 = 3

2Nb2 (28)

In equilibrium,G =βϕ0. The equations for the moments of the
distribution function, specifically, the second moment equations,
can be obtained by multiplying Eq.(26)byr-r- and averaging over
the configuration space. The convected time derivative ofX is

denoted by symbol
∇
X, this leads to:

〈∇
r-r-〉 = 1

2
βL−2δ − β〈r-r-〉 (29)

The creation function of the segments is Gaussian in equi-
librium conditions, and the segments are modelled as entropic
springs with elastic tensionF- . The breakage process of segments
is expected to be weakly dependent on chain extension, unless
t

e
e

F

w n
s
p s
a ,
w nergy
b ; and
h ge.

ched
a In this
m
o

F

b -end
l

1

∂ -
d of
c nfig-
4

= kB
1 = kB

2 = kB
3 = kB

4 ≥ 0 (23)

In this case, the creation of nodes is absent as in a d
ystem, because the probability of collision is too small. C
equently, onlyω0 is different from zero. The description o
ilute system involves the following initial conditions:

ω1 = Cω2 = Cω3 = Cω4 = 0 and Cω0 �= 0 (24)

In contrast, for a concentrated solution, a specific numb
icrostates according to a particular concentration shou
efined.

ω0 = Cω1 = Cω2 = Cω3 = 0 and Cω4 �= 0 (25)

The concentration of the five microstates at timet deter-
ines the entanglement density of the network. The maxi

ength of segments between nodes (l(t)), is a dynamic averag
ariable representing the concentration of given microstate
gurations in a single parameter. To specify the dynamic
he segment end-to-end distance, a second kinetic proc
roposed. This process follows the classical description o
ynamics of transient networks.

.3. The distribution function

The classical description of the transient network[1–3] for-
ulation assumes that the distribution functionϕ(r,t) for the

egments can be described by the equation.

∂ϕ

∂t
+ ∇ · ṙ-ϕ = G − βϕ (26)
e

f
e

-
f
is

he chain becomes essentially fully stretched.
The elastic tensionF- in the chain varies linearly with th

nd-to-end distancer- according to Hooke’s law:

- = Hr- =
(

3KT

Nb2

)
r- (30)

hereH is the elastic constant andb is the length of the Kuh
egment. The fully extended segment length isNb, which in the
resent model is a dynamic variablel(t). This linear law prevail
s long as the tensionF- remains well underKT/b, a situation
hich corresponds to an energy level much less than the e
arrierKT necessary to induce changes in the microstates
ence, lower than the energy required for segment breaka

In strong flows, the segments become almost fully stret
nd hence the probability of segment breakage increases.
odel, the force follows the modified Warner[6] approximation
f the inverse Langevin function, namely:

- (r-) = −H
r-

1 − r2/l(t)2
(31)

The end-to-end distance between nodes,r-, is bounded
etween the equilibrium value and the maximum end-to

ength (Nb2 < r2 < l(t)2).

.4. The moment equations

Under simple shear flow, the shear rate is given byγ̇ =
Vx/∂y (x is the flow direction andy is that of the velocity gra
ient), and therefore Eq.(29) leads to the following system
oupled differential equations for the components of the co
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uration tensor:

1

β0

d〈rxrx〉
dt

= α〈rxry〉 − α〈rxrx〉 − h〈rxrx〉 + G (32)

1

β0

d〈ryry〉
dt

= −α〈rxry〉 − α〈ryry〉 − h〈ryry〉 + G (33)

1

β0

d〈rzrz〉
dt

= −h〈rzrz〉 + G (34)

1

β0

d〈rxry〉
dt

= α

2
[〈ryry〉 − 〈rxrx〉] − h〈rxry〉 (35)

whereh is given by

h = β(r)

β0
= 1

1 − r2/l(t)2
(36)

β0 is a constant andα is defined as

α = γ̇

β0
(37)

The rate of segment creationG is therefore

G = Nb2

3
(38)

Consistent with the above expression, the destruction func-
t chai
e nde
(

b
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N1 = L

β0

2α2

h2 − 4α2 (41)

N2 = −N1

2
(42)

In steady simple-shear, the relation between stress and shear
rate depends in a complicated manner on the kinetic constants
A and B, which govern the breakage and reformation pro-
cesses of the transient network.A depends on the Brownian
motion through the Arrhenius expression andB represents the
flow-induced modification of the microstructure. The dynamic
balance of both constants governs the relative stability of the
network as the system flows. It is convenient to define the non-
dimensional ratiosA′ = A/kA

1 andB′ = B/kB
1 . To simplify the

notation, constantsA′ andB′ are written asA andB subsequently.

1.5. Method of solution

(A) For a given shear ratėγ, we select values forA andB to
determine the breakage/reformation structural balance of
the system. Values for the elastic constantH (proportional
to the elastic modulus) and constantβ0 (inverse of the main
relaxation time) in the second moment equations can be
determined from known linear viscoelastic data. Given an
initial stress, the kinetic equations are solved for a defined

-

g to

q.

Eqs.

ns

e at

( s
g Eq.

ows:

alcu-
eadily

( ubse-
ined.

( til a
terial
valu-
dated
ion for the segments remains linearly dependent on the
xtension unless the chain becomes almost fully exte
r → l(t)), when the destruction function diverges.

The stress tensor consistent with the force Eq.(31) is given
y:

= H
1

1 − r2/l(t)2
〈r-r-〉 + η∞γ̇ (39)

hereη∞ is the limiting viscosity at very high shear rates,
t is usually of the order of the solvent viscosity.

As pointed out, the maximum end-to-end distance of the
entsl(t) is calculated from the kinetic Eqs.(10)–(14), which

hemselves are functions of the dissipation, and hence the
unctions of the stress tensor. To start the calculations
iven flow, an initial condition for the variables should be giv
he procedure to calculate the rheological material functio
escribed in detail later.

It is necessary to point out that the model proposes two
erent kinetics: one related to the dynamics of the microst
hich render the average maximum end-to-end distance o
egmentsl(t), and the kinetics of breakage and reformatio
he segments in the transient network. Other models prop
n the current literature, for example. Chilcott and Ralli
7] have examined the problem of variable maximum segm
ength, with interesting physical significance. Here, the kine
f microstates is suggested to calculate such maximum le

The system of Eqs.(32)–(35) in steady simple shear giv
he following expressions[8] for the stress and normal stre
ifferences:

τxy

H
= L

β0

α

h2 − 4α2 (40)
n
d

-

e

,
e

d

t

.

initial concentration of microstates, Eq.(25), for a concen
trated system. For example,

Cω0 = Cω1 = Cω2 = Cω3 = 0, Cω4 = 25

Let us begin with 100 linear molecules correspondin
100 microstatesω0, or equivalently, 25ω4 configurations
(seeTable 1). Hence,l(t) is equal to 1/3, according to E
(3).

(B) Microstate concentrations are calculated using
(17)–(21).

(C) For a given shear rate (γ̇),β0 andH, the segment elongatio
are calculated with the second moment Eqs.(32)–(35). The
initial conditions for the equilibrium end-to-end distanc
a givenγ̇ are〈r-r-〉0 = Nb2.

D) From known maximum segment end-to-end distancel(t)
andH, the stress components can be calculated usin
(39).

(E) The viscous dissipation is readily evaluated for shear fl

τ : D = γ̇τxy (43)

(F) New values for the microstate concentrations can be c
lated and an updated distance between nodes can be r
evaluated using Eq.(3).

G) The segment end-to-end distance is updated, and s
quently, new values for the stress components are obta

H) This calculation scheme is repeated from step B un
steady state value for the stress is obtained. The ma
functions (i.e., viscosity and normal stresses) are e
ated as well as the distance between nodes and the up
microstates concentrations.
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Fig. 3. Dimensionless shear stress vs. normalized shear rate (β0η∞/H = 0.08).
The inset shows an amplified window of the high shear rate region. Model
predictions for various values of the parametersA and B: continuous lines.
Experimental data of a telechelic (HEUR-type) associative polymer[9]: open
circles.

Predictions of the present model include those of the clas-
sical network model (with constant maximum segment length).
Hence, in Eq.(39), l(t) is constant. This limit can be predicted
assuming that:

1. The network resistance to flow deformation is high. In this
caseB → 0 and the dissipation is negligible, i.e.,γ̇τxy ≈
0. Eqs.(17)–(21) have solutions forCω0 = Cω1 = Cω2 =
Cω3 = 0 and Cω4 �= 0.

2. The reformation of the network is carried out in a time scale
shorter than that characterizing the flow. Distance between
nodes tends to 1/3 for a wide range of shear rates. In this case,
we assume thatA  B.

3. The flow is weak, so that the energy associated with the
deformation process is lower than that required to break the
network.

In a working example,l(t) constant requires, for example, a
combination of large A and small B (i.e., 10 and 0.1, respec-
tively) with the purpose to limit the network destruction and to
extend the range of the linear regime, reproducing the Maxwell
behavior with linear springs.

2. Results and discussion
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Fig. 4. Dimensionless shear viscosity vs. normalized shear rate. Model predic-
tions: continuous lines. Experimental data[9] from Fig. 3: open circles.

equal to 1/3. This case belongs to classical network model pre-
dictions, where the largest distance between nodes is constant.
In this case, for low shear rates, the behavior is Newtonian. Then
the viscosity shear-thins and approaches a second linear region
at high shear rates. A transition region between the linear and
non-linear regimes as the shear rate increases is predicted. The
critical stress for the onset of the non-linear regime depends on
the network resistance to deformation by flow. The span of the
linear regime rises as the largest end-to-end distance between
nodes increases due to structure breakage, and hence the system
supports increasing stresses within the linear regime.

Predictions are generated for various values ofA andB. In all
cases, for low shear rates, the system retains its structure and the
behavior is Newtonian, coinciding with the case of fixed largest
segment length. The effect of reducing the rate of reformation
of the network or increasing the rate of flow-modification of
the structure is to increase the stress level because the limiting
distance between nodes increases with shear rate. A remarkable
prediction is the multi-valued region at high shear rates, where
for a given stress three values of the shear rate coexist (see inset).
A maximum in the stress is predicted at a critical shear rate.
This is the so-called “shear banding” regime, where bands of
different shear rates appear at constant stress. Other viscoelastic
constitutive equations show this strongly shear-thinning behav-
ior corresponding to a plateau[10] in the shear stress–shear rate
curve. Along the unstable range where the incremental viscosity
i akes
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.1. Steady state

The steady state stress versus shear rate curves for s
alues of the constantsA andB are shown inFig. 3. In the inset
n enlargement of the region at high shear rates is reprod
xperimental data by Berret et al.[9] of a telechelic associativ
olymer are shown in open circles.

These curves present extreme cases of the distance be
odes, i.e., between 1/3 and one. Newtonian or constant vis
axwell behavior is represented by the curve predicted whe
istance between nodes is sufficiently large so the segment

o-end distances under flow are kept in the linear regime (a
ookean spring). The lower limiting curve (A = 10,B = 1) cor-

esponds to the case when the distance between nodes r
ral

d.

en
ty
e
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s negative, various possibilities can be predicted: the flow t
ery long times to become steady or may become inhom
eous in space. Agreement of the predicted curve withA = B = 1
ith experiments is apparent.
When plotted as shear viscosity versus shear rate, predi

nd data inFig. 4describe a plateau (the first Newtonian visc
ty) at low shear rates. Subsequently, past a critical shear
here is a power-law region, which ends into a second Newto
lateau at high enough shear rates. The slopes of the pow
re−0.97 for (A = 10, B = 0.1), −1.38 for (A = 1, B = 10) and
1.62 for (A = 1, B = 1).
The latter region cannot be reproduced by the classica

ork models. A remarkable prediction observed between
ewtonian plateau and the shear-thinning[11] region is the
hear-thickening regime whenl(t) approaches a constant va
lose to 1/3. In this case, the rate of structure rebuilding is sh
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Fig. 5. Predictions of the model by Vaccaro and Marrucci[12] for two values
of the parameterN (continuous lines) and those of the present model (broken
lines) forA = 1 andB = 10. The slopem is indicated.

than the characteristic time of the flow, and hence a flow-induced
structure prevails within a range of shear rates. For larger shear
rates, the rate of network deformation overcomes its rate of ref-
ormation and degradation leads to shear-thinning. This effect
has been observed in associative polymers and wormlike surfac-
tants, and it has been predicted by Vaccaro and Marrucci[12].
Once again, quantitative agreement in the case of an associative
polymer is found including the shear-thickening region prior to
the pronounced shear-thinning.

In Fig. 5, predictions of the model by Vaccaro and Marrucci
for associative polymers[12] (solid lines) are compared with
those of the present model (broken lines). The shear-thickening
region at low shear rates and the slope of minus one at high
shear rates are predicted by both models. Notice that our model
predicts a second Newtonian region at very high shear rates,
which is not predicted by the Vaccaro and Marrucci model.

2.2. Normal stress differences

In Fig. 6a and b, data from Kaffashi et al.[13] for HEUR-
type associative polymers (Fig. 6a) are compared with model
predictions of the first normal stress difference as a function of
shear rate (Fig. 6b).

Predictions do not cover the region of the quadratic depen-
dence ofN1 at very low shear rates.N1 attains larger values in the
less structured network, as compared to those of the more elastic
o e
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Fig. 6. (a) Experimental data[13] of the first normal stress difference vs. shear
rate of a HEUR-type associative polymer. (b). Model predictions of the first
normal stress difference vs. normalized shear rate for various values of the
parametersA andB.

reproduces qualitatively the maximum exhibited in the data for
two sets of parameters.

2.3. Stress relaxation after cessation of shear flow

Fig. 7depicts the predictions of stress relaxation after cessa-
tion of steady shears flow for various shear rates (A = 0.1,B = 10).
At very low shear rates, the relaxation time is 17.3 s when the
non-dimensional shear rate is 1. At these low shear rates the
relaxation approaches a single exponential behavior, characteris-
tic of the Maxwell model. This behavior is predicted by network
models with constant maximum segment length. In the cases
shown inFig. 7, single exponential behavior is attained at shear
rates lower than 1. As the shear rate increases, two relaxation
modes are observed: a short and a long relaxation. The short
time relaxation is a function of the previous shear rate, while
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ne. At low shear rates, the behavior ofN1 is quadratic with th
hear rate (Maxwell limit) and the slope diminishes as the s
ate increases. An interesting prediction is the abrupt dropN1
t a critical shear rate, which is not predicted by the classica
ork models. This behavior at high shear rates is associate
redominant microstates of a less-entangled network (or br
etwork) past a critical shear rate. The systems that exhibit
ehavior are those that present shear banding, where th
trong structure modification.

Since the normal stresses are associated directly wit
lasticity of the network, it is consistent to relate the netw
upture with the fall of the normal stresses. Notice that the m
-
h
n
h
is

e

l

ig. 7. Predictions of the stress relaxation after cessation of shear flow
eakly structured network (A = 0.1, B = 10, λ0 = 18.8 s), for various values

he normalized shear rate.
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the long-time relaxation follows closely the longest (Maxwell)
relaxation time. InFig. 7, the long relaxation does depart from
the Maxwell value and relaxation time increases, as the slope
of the relaxation curves diminishes. A remarkable prediction is
the complex behavior shown at high shear rates (α = 100) for
times longer than the Maxwell relaxation time. In this case, in
addition to the short- and long-time relaxation modes, a curve
following a stretched exponential[15] is predicted at long times,
which would correspond to a spectrum of relaxation times. This
behavior is ascribed to high breakage rate combined with a slow
reformation rate of the network.

A limiting behavior is predicted as the shear rate increases
in Fig. 7, in such a way that for larger shear rates a single lim-
iting relaxation curve is obtained. This effect is associated to a
saturation of the damping function at large shear rates, although
the damping function is usually measured in stress relaxation
experiments followed a step-strain. However, an estimation of
the damping in stress relaxation analyzed here would correspond
to the ordinate magnitude (extrapolation of the long-time stress
relaxation curves to zero time) of the stress relaxation curves.
The explanation of this limiting behavior may be ascribed to a
maximum level of structure modification by flow, i.e., a domi-
nant microstateω0. Two characteristic times govern the stress
relaxation: the Maxwell time and the limiting time, which is con-
sistent with the limiting behavior of the steady shear viscosity
at low and high shear rates.
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Fig. 9. Predictions of the stress growth upon inception of shear flow vs. time in
a highly structured network (A = 1, B = 1) for various imposed shear rates. The
inset shows the stress growth as a function of strain.

ken line) is plotted with data of wormlike micelles by Berret et
al. [14].

2.4. Stress growth upon inception of shear flow

Figs. 9 and 10depict the stress response at the inception of
shear flow for various imposed shear rates.Fig. 9 shows the
non-dimensional stress versus reduced time for the case where
A = B = 1. The stress is normalized by the value of the steady state
stress, for imposed shear ratesα between 30 and 100. For this
case, which corresponds to a well-structured system, the behav-
ior observed is that of a mono-exponential growth at sufficiently
low shear rates. Overshoots are observed for increasing imposed
shear rates, with maxima appearing at shorter times, similarly to
polymer solutions and melts. As the shear rate increases beyond
50, overshoots followed by undershoots are predicted. For the
largest applied shear rate 100 small oscillations superposed on
the main curve are observed. This behavior may correspond to
a highly non-damped system, where the effects of the elastic
spring are dominant upon those of the medium viscosity. The
kinetics of the microstates involves at each stage a degree of
dissipation, which is responsible for the damped oscillations in
this flow. Predictions for this case, where the maximum segment
length departs little from the value of 1/3, corresponds closely
to network models with constant maximum segment length. In
t ads
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The stretched exponential behavior has been usually r
ented according to the following expression:
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xy

= e−(t/λ0)ε (44)

Predictions of the stretched exponential region can
btained with the following values ofε: 0.71 for (A = 1,B = 10),
.61 for (A = 1, B = 1) and 0.768 for (A = 0.1,B = 10), which are
ery close to those values predicted for associative poly
r in wormlike micelle systems and in nanocomposites[16].
n example of the agreement is shown inFig. 8, in which the
tretched exponential region of the stress relaxation curve

ig. 8. Predictions of the stress relaxation after cessation of shear flow
ighly structured (flow-resisting) network (A = 1, B = 1, λ0 = 17.3 s), showin

he stretched exponential region (broken lines). Experimental data of a wo
icellar solution[14]: open circles.
he inset, the stress growth is plotted with strain, which le
o maxima located at almost the same value of strain (ca.
bserved in polymer solutions and melts. In this case the ne
aintains its structure withl(t) around 1/3.
When the constantsA and B are given values of 0.1 an

0, respectively, the stress growth is no longer monotoni
mposed shear ratesα larger than 1, as observed inFig. 10a.

relative maximum is observed at short times, followed b
inimum and a saturation at long times. The steady state

s larger than the overshoot value. In the inset, the stress g
ersus strain shows that the first maxima is approxima
ocated at the same strain and increase with shear rate. S
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Fig. 10. (a) Predictions of the stress growth upon inception of shear flow vs.
time in a weakly structured network (A = 0.1,B = 10) for various imposed shear
rates. The inset shows the stress growth as a function of strain. (b) Experimental
data[17] of the stress growth vs. strain are shown for various imposed shear
rates of a viscoelastic emulsion.

Predictions depicted inFig. 10a (A = 0.1,B = 10) correspond
to a highly degradable network with slow reformation rate.
Network breakage increases as compared to the previous case
(Fig. 9) and the overshoots tend to fade. The elastic properties
are overshadowed by increasing dissipation, and a trend to a less
structured state is revealed.

In Fig. 10b, experimental data of stress versus time for various
imposed strains from Lee and Denn[17] are shown. The system
studied is a viscoelastic emulsion. As observed, the maximum a
small strains is followed by a second maximum at large strains
The first maximum appears at the same strain and increases wi
imposed shear rate. Predictions inFig. 10a show that the first
maximum is approximately located at the same strain (see inse
and increases with shear rate, when the stress is plotted wit
strain. The second maximum in the data is shallow with small
magnitude, whereas predictions of the model with the materia
parameters used show no maximum.

At the inception of shear flow, the maximum segment length
changes with time, in a form that depends on the kinetic constant
A andB. In Fig. 11, the maximum segment lengthl(t) is plotted

Fig. 11. Maximum segment-length as a function of time at the inception of shear
flow, for various shear rates and several combinations ofA andB.

with time for various shear rates. For low imposed shear rates
in an entangled and flow-resistant network,l(t) departs little
from 1/3, which corresponds to the more entangled microstate,
ω4. To shift the maximum segment length to larger values (for
instance,l(t) = 0.8) corresponding to less entangled microstates,
it is necessary to apply much higher values of the shear rate
(α = 1000).

In the case of a less flow-resistant network (A = 0.1,B = 10) in
which structure breakage dominates over structure rebuilding,
small shear rates lead to less entangled microstates (ω2 andω1),
and hence to large values ofl(t). As shown inFig. 11, steady
values ofl(t) close to one are predicted with this network at
shear rates of 100.

The nodes number as a function of the flow conditions can
be obtained from the known microstate concentrations (Eq.(5)).
In general, the number of nodes in the network decreases with
increasing flow strength. As the applied shear rate is imposed,
for most situations the relative number of nodes versus time goes
through a minimum and thereafter levels off at long times, as
shown inFig. 12. For a loose network, the minimum is more
pronounced and the equilibrium value of node concentration is
lower for long times.
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sig. 12. Variation of the number of nodes as a function of time at the ince
f shear flow for various shear rates and combinations ofA andB.
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Fig. 13. Microstate concentrations as a function of time for a highly structured
network at the inception of shear flow (A = 1, B = 1,α = 100).

In Figs. 13 and 14, the microstate concentrations for given
flow conditions are shown, where the interplay between flow
effects and network structure is clearly illustrated. Comparison
betweenFigs. 13 and 14shows that increasing dissipation and
diminishing the rate of structure reformation leads to a change
in the concentration of the dominant microstate. In the case
whereA = B = 1 (network reformation favored), concentrations
of microstatesω2 and ω3 increase as a function of time and
become dominant at long times for an applied shear rateα of
100. For the same shear rate, in the case illustrated inFig. 14
(A = 0.1,B = 10) where network breakage is favored,ω0 domi-
nates at the expense of microstateω4. The physical significance
of these results is that in networks where structure breakage is
favored, a high proportion of free chains and low proportion of
nodes are expected.

The kinetic constantA is related to the forward rate constants
that drive the network into a more complex and structured sys-
tem, and therefore is also related to the time scale of the rate
at which the network reforms after the deformation process.
The macroscopic relaxation time is thus also related to these
processes. As soon as the deformation process is arrested, the

F
α

Fig. 15. Relaxation times predicted in stress relaxation after cessation of a slow
and fast flows, respectively, as a function of the inverse forward kinetic constant
A (B = 10).

network begins to rebuild by thermal motion. In this regard, it is
interesting to compare the time scales of the reformation process
and that of the relaxation time.

In Fig. 15, the main relaxation (Maxwell) time is plotted as a
function of inverseA (which represents a time scale) for a fixed
value ofB and two shear rates. These shear rates are the extreme
values shown inFig. 7. The largest (Maxwell) relaxation time is
predicted at low shear rates (α = 1), and the limiting relaxation
time is predicted at high shear rates (α = 100). As the rate of
network reformation increases withA, 1/A would give the time
scale of the reformation process, which can be readily com-
pared to the time scale of the stress relaxation process. When
the shear rate is sufficiently small, within the linear viscoelas-
tic (Maxwell) regime, a small change in the relaxation time is
predicted throughout the range of 1/A. On the other hand, for
high shear rates, the variation of the relaxation time with 1/A is
more accentuated. In fact, the relaxation time becomes shorter
as the rate of rebuilding increases, but the ratio between the
two processes is not linear, implying that they vary in different
time scales. These differences are important in time-dependent
experiments, when the rate of rebuilding of the structure is small
(long times) but the stress relaxation is shorter. In this case, as
the stress comes to zero and the system seems to be close to
equilibrium, the structure has not reformed yet, and thixotropic
phenomena may arise.

Another interesting aspect revealed inFig. 15is the predic-
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The kinetic constantB refers to the backward rate consta
hat drive the network into a more disentangled microsta
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elated to the processes that modify the state of the net
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Fig. 16. Viscous dissipation as a function of the inverse kinetic constantB
(A = 10).

Fig. 16depicts the variation of the viscous dissipationα(τ/H)
as a function of inverseB. The curve presents two asymptotic
regions at low and highB, with a regime of strong variation ofB
with viscous dissipation. In fact, the examples analyzed previ-
ously assigned values forB located in the low dissipation region.
It would be interesting to explore higher dissipative systems cor-
responding to large values ofB (B > 10).

2.5. Thixotropy

Time-dependent phenomena arise when the time scale of the
reformation process after structure modification is different to
that of the stress relaxation process. In this section we carry out
transient flow predictions on networks with varying connectiv-
ity by assigning various values to the kinetic constantsA andB.
The imposed shear rate varies as a function of time, following
a step-like increasing-and-decreasing deformation history or a
continuous increasing-and-decreasing ramp of shear rates. Hys-
teretic curves are predicted for the stress versus shear rate for
both deformation histories, as depicted inFigs. 17 and 18.

F ramp
o

Fig. 18. (a) Non-dimensional stress vs. normalized shear rate for a continuous
ramp of ascending–descending shear rates, as shown in the inset. Three different
combinations of the kinetic constants are considered. (b) Experimental data[18]
of lamellar liquid crystals.

Fig. 17 depicts the ascending and descending trajectory of
the flow curve as a result of the imposed deformation history
shown in the inset. The largest thixotropic area is predicted by
reducing the time interval at each step to allow the rebuilding
time (represented byA−1) be larger than the relaxation time
of the stress during that time interval. For the next increase in
shear rate, the structure is not fully rebuilt and hence structure
modification is increasing gradually at each step in shear rate.
The accumulated breakage of the network leads to lower values
of the stress in the descending path. This is a manifestation of the
memory of past deformations in the system, which influences
the present stress state. Highly dissipating networks favoring
less entangled microstates lead to larger thixotropic areas in the
flow curves, as shown inFig. 17whereA = 0.1 andB = 10. A full
analysis of the flow curves for various values ofB reveals that
this kinetic constant determines the hysteretic area of the flow
curves.

In Fig. 18a, the flow history consists of a continuous
increasing–decreasing ramp in shear rate. Three cases are ana-
ig. 17. Non-dimensional stress vs. normalized shear rate for a step-like
f ascending and descending shear rates, as shown in the inset (A = 0.1,B = 10).



76 E. Rincón et al. / J. Non-Newtonian Fluid Mech. 131 (2005) 64–77

lyzed, including a flow-resistant network (A = B = 1) and a net-
work with large breakage rate of segments (A = 1, B = 10).

A remarkable prediction for the first case is the crossing
of the flow curves; the ascending path lies above the descend-
ing curve, but this pattern reverses in the region of high shear
rates. The pattern of the flow curves changes from a dominat-
ing anti-thixotropic (A = 0.1,B = 1) to a thixotropic one (A = 1,
B = 10). The mixed thixotropic–anti-thixotropic pattern where
the curves cross each other is predicted whenA = B = 1. These
flow patterns have been observed in lamellar liquid crystals and
in other complex fluids. For example, inFig. 18b, data is shown
on the time-dependent behavior of surfactant-based lamellar liq-
uid crystals[18], illustrating the transition from a thixotropic to
an anti-thixotropic behavior. The model is able to capture the
thixotropic loop and also the transition to the anti-thixotropic
loop. The mixed loops are also predicted.

3. Concluding remarks

This model has been developed on the basis of a transient net-
work formulation in which the instantaneous distance between
nodes is calculated from the average over all structures presents
in a given time. The complex interactions among the molecular
chains are represented by a group of five microstates, which are
functions of temperature and viscous dissipation.

The average distance between nodes is calculated from the
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of a given microstate is influenced by previous associations
through a complex kinetic system of equations. The dynamics
of the microstates depends on flow and the thermal state of the
system.

To understand the relations among the kinetic constants is
important to assume that the energy difference of each process,
which leads to a given microstate (seeTable 2, where the energy
difference for each process is�E) is proportional to the magni-
tude of rate constants and that the constants ratios are unchanged.
This is, the ratio of the forward rate constants times the expo-
nential term is equal to the energy difference of each kinetic
process. These assumptions lead to Eq.(15). In the same form,
the ratio of the backward kinetic constants is equal to the energy
difference of each kinetic process, which leads to Eq.(16). Since
we deal with systems in which no chemical reactions occur, the
“kinetic constants” should not be widely different to each other,
and the assumptions made are not inconsistent with real complex
kinetics.

In the present model, it is assumed that thermal motion only
contributes to structure formation. However, it may also con-
tribute to node destruction, and detachment can also be thermally
activated. Although such contributions can also be incorporated
in the model, here we assume that the flow strength has a larger
effect on node destruction than that of the thermal motion. This
is in agreement with transient network model formulations pro-
posed by Green and Tobolsky[2], Yamamoto[3] and Vaccaro
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To incorporate in the model the notion of variable maxim

egment length, the Warner expression for the entropic fo
odified, in which this variable is a function of the concentra
f the five basic microstates. The distance between assoc
oints along the polymer chain is one of the main ingred
f the model.l(t), the non-dimensional distance between a
iations points, as given in Eq.(3), is the average ratio of th
egments concentration with respect to the number of ch
nd depends on the dynamics of the microstates. This dis
hanges according to flow strength and thermal motion.

Some of the remarkable predictions of this model inc
hear banding flow under steady state conditions, s
hickening of the viscosity followed by shear-thinning, stre
xponential behavior in stress relaxation at long times,
onotonic growth of the stress with time after inception

hear flow, and the variety of hysteretic curves (thixotropic
nti-thixotropic behavior) under transient deformation histo
articular cases of the model include those where the max
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