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Abstract

In this work, the dynamics of a transient network is analyzed with a model that includes two coupled kinetic processes to describe the rheologica
behavior of complex fluids. Five microstates are defined, representing the complexity of interactions among the macromolecules suspended
a Newtonian fluid. These microstates represent statistically networks with varying entanglement density, such as a dense entangled network
one extreme, and free chains or dangling ends (pendant chains) on the other extreme. It is assumed that the energy barrier required to mod
the complexity of the system can be provided by flow, and that the flow-induced change in the network complexity is modelled as a coupled
kinetic scheme constituted by a set of reversible kinetic equations describing the evolution of the microstates. The average concentration ¢
microstates at a given time defines the maximum segment length joining the entanglement points in the transient network. The rheological materi;
functions are calculated according to the classical statistical description of a transient network, but with a variable maximum segment lengtt
(variable extensibility), which is a function of the kinetics of the microstates. The model predicts shear banding in steady simple shear and time:
dependent non-linear rheological phenomena, such as thixotropy, stretched exponential relaxation and other interesting responses of compl
fluids.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction The entropic force in the segments is modelled as the inverse
Langevin function, and in some of these models the probability
The transient network modgl—3] envisages a polymer solu- of segment breakage increases and diverges as the segments are
tion as a transient network defined by nodes and segmentstretched near to their maximum length. The segments evolu-
The nodes are joined by polymer chains (segments) undetion is simplified by replacing the exact entropic force law for
going continuous collisions, due to thermal motion. The rhe-each segment with an ensemble average. This “preaveraging”
ological behavior of the system depends on the kinetics ofuggested by Peterl[d] allows a closed set of equations to be
breakage and reformation of the network made of interactinglerived for the stress tensor and the moments of the distribution
polymer molecules suspended in a Newtonian fluid. The concerfunction.
trated polymer solution is composed of a network of polymer In this work, the maximum segment length, i.e., the critical
molecules interacting each other at some specific sites alorigngth above which rupture of nodes occursis notaconstantbuta
the molecules called junctions or nodes. In the transient netsariable resulting from a kinetic process describing the dynamics
work model formulation, the dynamics of segments joining theof various microstates. These microstates reflect the complex-
entanglement points is described statistically, in such a way thétty of interactions among the polymer molecules in suspension,
entanglements break and reform due to the deformation imposenhich can be free chains or pendant chains of the network, on
by the applied flow. one extreme, or the many-node interactions available in a dense
network, on the other extreme. Within a statistical description,
the properties of a system with a large amount of particles can
* Corresponding author. be calculated by summation of the properties of each individ-
E-mail address: manero@servidor.unam.mx (O. Manero). ual micro-system that comprises the entire system. The formal
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calculation of a property in a real system is a huge problem; an © \
option is to propose an idealization to obtain an approximate 0 2

solution. _— /—>{<
Very simple microstates are defined representing all the possi-
ble structures that the transient network has when it is perturbed l M,

by an external force. The variation in the concentration of the
microstates (creation and destruction of nodes in the network) is
described by a system of coupled kinetic equations, such as the _— \

forward rate constants are function of temperature, as in ther- 1 ) ®
mally activated processes. The reverse rate constants, togethe w, 0 !

with viscous dissipation due to flow, drive the system into a less
entangled network. Variation in the number of nodes is calcu-
lated by defining an average dynamic distance between nodes ﬁ

~

which represents the maximum elongation of the chains under-
going deformation. The distance between nodes is calculated as /o)
4

an average of the five basic microstates, which represent all the
possible structures in the network.
The model is consistent with classical descriptions of tran- (O} >< R W,

sient networks. For example, when the concentration of free | —
chains is large or when there is little structure modification due
to the flow, the maximum segment length becomes constant| —1— / \
with large magnitude. In this situation the system behaves as
a Maxwell fluid, eqUivalem to a network of constant connectiv- Fig. 2. The five basic microstates of a random arrangement of linear chains.
ity or a suspension of linear dumbbells.

1.1. The model of linear molecules. This network possesses statistically similar
properties of the network shown Fig. l1a, where the segment
The system is a transient network composed of a large grouiength is the average over that between nodes of polygons shown
of flexible chains interacting as shown schematicallfgigy 1a.  in Fig. 1b.
A node is defined as the point of physical interaction between A microstate reflects the complexity of interactions amongst
two molecules, and a segment is the section of the moleculehains in a given region of space, and is defined in terms of
between nodes. The concept of node is equivalent to a physihe number of nodes. IRig. 2, the microstates are schemati-
cal entanglement forming the transient networkFlg. 1b, the  cally represented in a random arrangement of chains, and these
nodes, or points of contact between chains, are drawn and joindive rise to five basic configurations shown in the same fig-
with straight lines. This composition gives rise to a mesh ofure. Among the possible number of configurations available, the
triangles, squares or polygons, where the nodes represent th@me number of nodes may represent microstates with different
vertex points of these polygons and they are linked by segmenngmber of chains. However, a preferable state is that with the
lower energy, which corresponds to that with a minimum number
of chains.

In this approach, five microstates represent the possible con-
figurations of the entire network, as illustratedHig. 2 In this
form of representationy represents the specific microstate and
the sub-index represents the number of nodes that define the
microstate. For exampleg represents a pendant (dangling end)
or a free chain with no nearby interactions, as in a dilute system.
w1 represents a configuration with one node and two chains.
Similarly, three extra configurations are proposed, representing
a more packed state with two, three and four nodes.

The next task is to calculate the average properties of the
network considering these five microstates. Under a given defor-
mation or flow, some microstates are favored, depending on the
properties of the system represented by the network and also on
the characteristics of the deformation process.

In terms of average quantities, let us defipethe maximum

@ () length of one extended free chain afi), which is the
Fig. 1. Model of a random arrangement of linear molecules (a) and reductiofaximum end-to-end distance between nodes in the network
to a non-regular polygon arrangements (b). (segments), including the dangling ends. By conservation of
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Table 1 multiplied by the number of nodes of every microstate (column

Microstate configurations and properties 3 of Table 1) times the total volume of the system:

Microstate Geometry Number Number of Number 1(r)

of nodes segments of chains n(w;) = V(4Cy, + 3Cuwz + 2Cy, + Coyy) (5)

wo — 0 1 1 1 The description that follows considers that flow and prop-

w1 + 1 4 2 2=1 erties of the system modify the concentration of microstates at
s a given time. A system of kinetic equations, similar to com-

w2 ‘H’ 2 7 3 7 plex chemical kinetics, provides for the concentration of every

w3 7‘& 3 9 3 3I=1 microstate at time. Since the network is transient, the number

of nodes in the network is modified by flow or temperature. The
@4 # 4 12 4 =3  transition between given microstates is described by reversible

kinetics, where the forward “reaction” induces the formation of

) . ) . a more complex configuration (i.e., that with larger number of

chains, the following relation arises: nodes) and the reverse “reaction” gives rise to a configuration

1 with lesser number of nodes. The forward process is thermally

activated, whereas the reverse process depends on the viscous

The total length of the chains is the product of the length ofdissipation.

one free chain multiplied by the number of chains. The number

of chains is the product of the concentration of chai@sif 1.2. Kinetic equations

every microstate times the occupied volume of the chdif)s (

Similarly, the number of segments in the network is the product The microstates are characterized by the number of nodes.

of the occupied volume times the concentration of segments iCollisions between molecules subjected to Brownian diffu-

every microstate, including the dangling endiable 1shows sion and formation of physical entanglements require a state

the geometry of every microstate and the number of nodes, segf thermal energy, which amounts to the energy of interaction

ments and chains of each configuration. The number of chains [setween chains making a node. Under flow, the number of nodes

just the sum of products of the number concentrations of chaingecreases because the deformation energy overcomes the inter-

and a weighted factor in every microstate. Thus, the number ddction energy between molecules involved in a node.

segments is the sum of products of segment concentrations and Table 2shows the energy change involved in the process

weighted factors in every microstate. Edj) becomes: of modification of configurations or number of nodes. Conser-

, VLp(Cuwy + 2Coy + 3Cop + 3Co3 + 4C,,) vation of phgiqs is required for each transitiqn. Bt be the

I'(t) = (2) characteristic interaction energy corresponding to the energy

V(Cap +4Cuy + 7Cup + 9Cug + 12C0,) associated in the collision between two molecules to form a

Interms of the non-dimensional distance between ndfgs, junction or a single node.

Eq. (2) becomes: In the first couple of transitions the change in energy corre-

sponds t& (see firstand second rowsiiable 2. As depictedin

I'(t) _ Cuy+2Cu; + 3Cuw, + 3Cag + 4Cuy (3) thesecond row, three single node configurations (six chains with

Lp " Cug +4Cp, + 7Coy + 9C,, + 12C,,, energy content By) give two double node configurations (six

chains with energy content4). The energy difference between
ese microstates ISE = Ep. The total change in energy i&d.

(7'(r)) (number of segments} (number of chains)(p)

I(r) =

In the numerator we have the number concentration of chai

of e;’:\ch rrtchrostatE (colfumn S ﬁatble ? andin the de:[n?mlna}tor %imilarly, inrow three, a double node configuration (three chains
we have the number of segments of every microstate (co UMN Fith energy content 2y) plus three single node configurations

of Table J). In addition, the non-dimensional average dlstanceFsix chains with energy conteng) give three triple node con-

between nodes for every microstate is shown in column 6 of. . . : :
o L igurations (nine chains with energy conte The ener
Table 1 The limits ofi(r) correspond to the situation where all 9 ( 9y o} 9y

chains are freel(f) =1) and that where all chains are in con-
figuration w4(I(r) = 1/3). Hence, the non-dimensional distance
between nodes lies in the interval:

Table 2
Energy change involved in structure transformations

Equation Structure transformation AE AEotal
T =1 @
3= "= ®) 2 — < - 1 Er=Eo
The definition for the distance between nodes may also cong) 3 4’» i {_\‘ 1 E»=4E,
sider the case where a single chain may have various microstates.
Then, the total length of the chain is divided by a large numbef®8) ‘H‘ 3 + = 37\A/< 4 E3=9Eg
of segments, giving rise tifr) values lower than 1/3. This case 5 ) «— 3 _
is not treated here at this stage of the model development. ©) 7\% <H» - 2 Es=12%p
The total number of nodes(w;), can be obtained by sum- g, 4 X 5 j:t 0 Er =125

mation of the products of the concentration of each microstate



E. Rincon et al. / J. Non-Newtonian Fluid Mech. 131 (2005) 6477 67

difference between the microstates is W= 4Fyandthetotal microstates as in complex chemical kinetics systems, we have:
energy change isk. qc

For the last transition we observe that microstatecan  —“0 — ¢ : leBcwl — e—(Eo/KT)kch%O (10)
be obtained following two different paths. However, path 9B dr o
possesses zero energy difference, and as a consequence, the
probability of its creation is the same as that for microstage dCo; _ e (Eo/KT) A2 | o piBe2 4 . B3
In this work, only one path for microstate, is considered (Eq.  dr 1Foo T2 =2 ey T2 203
(9)- —z: DKBC,, — e (/KT A 3

In terms of the microstate transitions shownTable 2 the = = @1
following forward and reverse constants can be defined for — e /Kb C,, C3 (11)
ea}\ch transition. In these equations, the forward rate constants
(k™) are the structure-formation kinetic quantities that have ardc,, B
Arrhenius dependeng8] with temperature, associated to a ther- 72 = e FKDIRCS + 2 DRECS, +1: DKECY,
mally activated process. The energy barrier is proportional to the B2 (4Eo/KT) A 3
energy change involved in the transition from one microstate —z:Dk;C,, € k3 Cop Copy
into another, as disclosed Trable 2 The reverse rate constants _ g RE/KT) A2 (2 (12)
(kB) times the dissipation function represent the breakage or 4 wores
modification process of the transient network at a given time dc
Then, the reverse process givenldﬁg : Dis a function of the —=
stress level (flow strength) and type of flow through the velocity-
gradient tensor. As the flow strength increases, one expects that — e @E/KT 2 €2 — 1 DKSC3, (13)
the breakage process overcomes the reformation process, favor-
ing microstates with low number of nodes. On the contrary, ifdC,,
the flow is weak, formation of more complex structures with g,
larger number of nodes are preferred.

= e WE/kDr2C,,C3 + 1 DECE,

— e CE/KTIAC2 2 _ ¢ DkBC3, (14)

wherek? andkBare variable rate constants whose relative values
are related to the energy content of the process. Many dynamic

2 — A -E,/KT + situations can be envisaged depending on the values of the
kie rate constants. For example, some configurations or microstates
20 i I may be more likely than others, giving rise to the possibility
0 — ] . - .
kB T:D 6 to predict flow-induced structuring of the system. Furthermore,
1== (6) time-dependent phenomena are also predicted, since the system
) of coupled Eqs(10)+14) are a function of time and the prop-
3 + A -Eo/KT ‘H‘ erties of the imposed flow. In this work, attention is restricted
koe to simple situations where the rate constants can take values
3o, P 2w, according to the difference in energy for each process shown in
sz *D @) Table 2 The kinetic constants are given numerical values assum-
ing that the ratio between them is equal to the energy ratio of
2 ‘H‘ 3 + 3 each kinetic equation. Under these assumptions these constants
kA -4E /KT are related as follows:
3€
- A —(Eo/KT A —(Eo/KT A —(4Eo/KT
o, N 30, — 304 A:kle(O/ ):kze(O/ )=4k39( o/KT)
k3 ='2 (8) — Zkﬁe_(ZEO/KT) (15)
2 2 3
< 1T A =2E,/KT 4-‘:': B=1k{ =k; = 4k3 = 2kj (16)
kge
— Substituting Eqs(15) and(16) into Eqs.(10)+14), the sim-
2 w3 t 2@ T TiD 3 oy plified system of kinetic equations can be written as follows:
kg =2 9)
dc
20 = Bt : D(Coy) — A(C) (17)

In equilibrium state, the temperature of the system is pro- dr
portional to the number of nodes. As external forces act on the
system, they modify the number of nodes and subsequently théC,,,
system reacts to recover its equilibrium properties. The velocity ¢;
of the recovery process is proportional to temperature through
the Arrhenius equation and also is proportional to the constants +A [Cf) _ Cf) — }szcf) ] (18)
kAe~(Eo/KT)  Following the method to write the kinetics of ° o4 '

=B

I3

. 2 1 3
1D |~Coy +Cl, + 53
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dc 1 1 whereG represents the rate of creation of the network junctions
d;”Z =Br:D [4Cf)3 + §C3)4 Cf)z} andg represents the rate of destruction of the network segments.
r is the rate of change of the end to end veetoks long as the
1 1 chain remains Gaussian, the grand canonical function is defined
+u4{c§l 4(;chl—-zcgzc§4 (19) oo g
3
L 2.2
dc 1 1 9=(>€¢’ (27)
S =BiD|5C, - 403,3] VT
1 5 1, with
+A|2C,,Co — =C5 C2, (20) 3
4 2 2__° (28)
~ 2Nb?
dCoy _ Ez  D[—C3 ] + é[Cf) 2] 21) _Inequilibrium,G = Bgo. The equations for the moments of the
dr 2= = a2 e distribution function, specifically, the second moment equations,

Several flow situations may be explored by assigning value§an be obtained by multiplying E(26)by - and averaging over
to the overall kinetic constantsandB, based on experimental the configuration space. The convected time derivativ¥ &f
; ; i iati inati v
mformauon. Summarizing, once the charac_terlstlcs of K'net'cdenoted by symbak;, this leads to:
equations of the system are defined according to experimental =

data, there are two constants to describe the behavior of thg,

. . -2
creation—destruction process of structures. (rr) = EﬂL 3 — B(rr) (29)

For example, the microstate representing a dilute system is _ _ _ o _
wo. The series of constants describing déeconfiguration are: The creation function of the segments is Gaussian in equi-

librium conditions, and the segments are modelled as entropic
springs with elastic tensiafi. The breakage process of segments
_ kﬁef(ZEo/KT) -0 (22) is expec;ted to be weakly dppendent on chain extension, unless
the chain becomes essentially fully stretched.

The elastic tensiorF in the chain varies linearly with the
end-to-end distangeaccording to Hooke’s law:

In this case, the creation of nodes is absent as in a dilute
I~ T 3KT
system, because the probability of collision is too small. Con-f = Hr = — | (30)
sequently, onlywg is different from zero. The description of a Nb
dilute system involves the following initial conditions:

A = ke (E0/KT) _ kA (Eo/KT) _ jAg-(4E0/KT)

B=k2 =k =15 =48>0 (23)

whereH is the elastic constant artdis the length of the Kuhn
Coy = Cup=Cay=Cuy =0 and C,y #0 (24)  segment. The fully extended segment lengthiswhich in the
present model is a dynamic variald. This linear law prevails
In contrast, for a concentrated solution, a specific number ofg long as the tensioA remains well undek7/b, a situation,
microstates according to a particular concentration should b@hich corresponds to an energy level much less than the energy
defined. barrierKT necessary to induce changes in the microstates; and
_ _ _ _ hence, lower than the energy required for segment breakage.
Cop = Cap = Cup = Cuy =0 and Co, #0 (25) In strong flows, the segments become almost fully stretched
The concentration of the five microstates at timdeter-  and hence the probability of segment breakage increases. In this
mines the entanglement density of the network. The maximurmodel, the force follows the modified Warr{ét approximation
length of segments between nodgg)), is a dynamic average of the inverse Langevin function, namely:
variable representing the concentration of given microstate con- -
figurations in a single parameter. To specify the dynamics of(r) = -H———
the segment end-to-end distance, a second kinetic process is 1-r2/1)
proposed. This process follows the classical description of the The end-to-end distance between nodes,js bounded
dynamics of transient networks. between the equilibrium value and the maximum end-to-end
length (Vb2 <2 <i(t)?).

(31)

1.3. The distribution function
The classical description of the transient netwiirk3] for-  1-# The moment equations
mulation assumes that the distribution functipfr,r) for the

segments can be described by the equation. Under simple shear flow, the shear rate is givenyby

aV,/dy (x is the flow direction ang is that of the velocity gra-
(26) dient), and therefore E¢29) leads to the following system of

% V=G-8
R - 7 — —_ . . . H
ag ¢ coupled differential equations for the components of the config-

ot
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uration tensor: Nr— L 202 41)
1d L7 BohZ =42
i <r§:"> = alrery) — alrery) = hirer) + G (32) o
0 N1
=—— 42
1 d{ryry) N2 2 (42)
— ———— = —a(riry) — alryry) — h{ryry) + G (33) ) )
Bo dt In steady simple-shear, the relation between stress and shear
1 dir,r.) rate depends in a complicated manner on the kinetic constants
Bt —h{r;r;) + G (34) A and B, which govern the breakage and reformation pro-
0 cesses of the transient network.depends on the Brownian
1 d{r,ry) o motion through the Arrhenius expression ahdepresents the
Bo dt E[(rym = (el = hirary) 35 flow-induced modification of the microstructure. The dynamic
heren is i b balance of both constants governs the relative stability of the
whereh 1S given by network as the system flows. It is convenient to define the non-
L B(r) 1 36 dimensional ratiogt’ = A/k} andB’ = B/ k. To simplify the
T B0 1—r2/0(r)2 (36) notation, constant$’ andB’ are written agl andB subsequently.
Bo is a constant and is defined as 1.5. Method of solution
o= v (37) . .
- (A) For a given shear ratg, we select values fot andB to
Po \ .
. determine the breakage/reformation structural balance of
The rate of segment creatichis therefore the system. Values for the elastic constAr(proportional
Nb2 to the elastic modulus) and const#gt(inverse of the main
G = 3 (38) relaxation time) in the second moment equations can be

Consistent with the above expression, the destruction func-
tion for the segments remains linearly dependent on the chain
extension unless the chain becomes almost fully extended
(r— 1(1)), when the destruction function diverges.

The stress tensor consistent with the force B4) is given
by:

! (
1—r2/1(t)?

wheren is the limiting viscosity at very high shear rates, and
it is usually of the order of the solvent viscosity. (B)

As pointed out, the maximum end-to-end distance of the seg-
ments/(z) is calculated from the kinetic Eq610)(14), which (©)
themselves are functions of the dissipation, and hence they are
functions of the stress tensor. To start the calculations for a
given flow, an initial condition for the variables should be given.
The procedure to calculate the rheological material functions i%D)
described in detail later.

It is necessary to point out that the model proposes two dif-
ferent kinetics: one related to the dynamics of the microstates)
which render the average maximum end-to-end distance of the
segments(r), and the kinetics of breakage and reformation of
the segments in the transient network. Other models propose
in the current literature, for example. Chilcott and Rallison F)
[7] have examined the problem of variable maximum segment
length, with interesting physical significance. Here, the kinetics
of microstates is suggested to calculate such maximum Iengti{.G)

The system of Eqq32)+35) in steady simple shear gives
the following expressionf8] for the stress and normal stress (H)
differences:

Txy

_ L o
H ~ Boh?— 402

(39)

I=H rr) + ooy

(40)

determined from known linear viscoelastic data. Given an
initial stress, the kinetic equations are solved for a defined
initial concentration of microstates, E@5), for a concen-
trated system. For example,

Coy =25

Let us begin with 100 linear molecules corresponding to
100 microstatesg, or equivalently, 2504 configurations
(seeTable 1. Hence l(z) is equal to 1/3, according to Eq.
).

Microstate concentrations are calculated using Egs.
(A7)+212).

For agiven shear ratg), Bo andH, the segment elongations
are calculated with the second moment Eg2)~(35). The
initial conditions for the equilibrium end-to-end distance at
agiveny are(rr)o = Nb°.

From known maximum segment end-to-end distari(s
andH, the stress components can be calculated using Eq.
(39).

The viscous dissipation is readily evaluated for shear flows:

T:D=y1y (43)

New values for the microstate concentrations can be calcu-
lated and an updated distance between nodes can be readily
evaluated using E¢3).

The segment end-to-end distance is updated, and subse-
quently, new values for the stress components are obtained.
This calculation scheme is repeated from step B until a
steady state value for the stress is obtained. The material
functions (i.e., viscosity and normal stresses) are evalu-
ated as well as the distance between nodes and the updated
microstates concentrations.
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Fig. 3. Dimensionless shear stress vs. normalized sheageate (H = 0.08).  Fig_ 4. Dimensionless shear viscosity vs. normalized shear rate. Model predic-

The inset shows an amplified window of the high shear rate region. Modetions: continuous lines. Experimental d§@ from Fig. 3 open circles.
predictions for various values of the parametarand B: continuous lines.

Experimental data of a telechelic (HEUR-type) associative poly®leropen

circles. equal to 1/3. This case belongs to classical network model pre-

dictions, where the largest distance between nodes is constant.
Inthis case, for low shear rates, the behavior is Newtonian. Then

Predictions of the present model include those of the clas-

sical network model (with constant maximum segment Iength)Fhe viscosity shear-thins and approaches a second linear region

Hence, in Eq(39), /() is constant. This limit can be predicted ﬁgz'?h shear rates. A transition region between the '”.‘e"’“ and
assuming that: on-linear regimes as the shear rate increases is predicted. The
critical stress for the onset of the non-linear regime depends on

. S . the network resistance to deformation by flow. The span of the

1. The network reastanqe t.o ﬂ.OW c.ieformgulon |s.h|_gh. In thlsIinear regime rises as the largest end-to-end distance between
caseB — 0 and the d|35|payon is negligible, 1.6z, ~ nodes increases due to structure breakage, and hence the system
0. Egs.(17){21) have solutions foiCu, = Co, = Co, = supports increasing stresses within the linear regime.
Cos =0 anc_j Cay # 0. . . . _ Predictions are generated for various value$ ahdB. In all

2. The reformation of the netV\_/o_rk is carned ou_t In atime Scalecases, for low shear rates, the system retains its structure and the
shorter than that characterizing the flow. Distance bewVeeBehavior is Newtonian, coinciding with the case of fixed largest

nodes tends to 1/3 for a wide range of shear rates. In this Cas§egment length. The effect of reducing the rate of reformation
we assume that > B.

. . . of the network or increasing the rate of flow-modification of
3. The ﬂOW. is weak, S0 that the energy asspmated with th‘?‘ne structure is to increase the stress level because the limiting
deformation process is lower than that required to break thaistance between nodes increases with shear rate. A remarkable
network. prediction is the multi-valued region at high shear rates, where
for a given stress three values of the shear rate coexist (see inset).
In a working examplei(r) constant requires, for example, & A maximum in the stress is predicted at a critical shear rate.
combination of large A and small B (i.e., 10 and 0.1, respecThjs is the so-called “shear banding” regime, where bands of
tively) with the purpose to limit the network destruction and to gifferent shear rates appear at constant stress. Other viscoelastic
extend the range of the linear regime, reproducing the Maxwelkonstitutive equations show this strongly shear-thinning behav-

behavior with linear springs. ior corresponding to a platel0] in the shear stress—shear rate
curve. Along the unstable range where the incremental viscosity
2. Results and discussion is negative, various possibilities can be predicted: the flow takes
very long times to become steady or may become inhomoge-
2.1. Steady state neous in space. Agreement of the predicted curve AvitiB = 1

with experiments is apparent.

The steady state stress versus shear rate curves for severalWhen plotted as shear viscosity versus shear rate, predictions
values of the constan#sandB are shown irFig. 3. Inthe inset, and data irFig. 4describe a plateau (the first Newtonian viscos-
an enlargement of the region at high shear rates is reproduceity) at low shear rates. Subsequently, past a critical shear rate,
Experimental data by Berret et §)] of a telechelic associative there is a power-law region, which ends into a second Newtonian
polymer are shown in open circles. plateau at high enough shear rates. The slopes of the power-law

These curves present extreme cases of the distance betwese —0.97 for A =10, B=0.1), —1.38 for A =1, B=10) and
nodes,i.e., between 1/3 and one. Newtonian or constantviscosityl.62 for @ =1,B=1).

Maxwell behavior is represented by the curve predicted whenthe The latter region cannot be reproduced by the classical net-
distance between nodes is sufficiently large so the segments enderk models. A remarkable prediction observed between the
to-end distances under flow are kept in the linear regime (as inllewtonian plateau and the shear-thinnidd] region is the
Hookean spring). The lower limiting curvd € 10,B=1) cor-  shear-thickening regime whé(r) approaches a constant value
responds to the case when the distance between nodes remadtese to 1/3. In this case, the rate of structure rebuilding is shorter
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Fig. 6. (a) Experimental dafa3] of the first normal stress difference vs. shear
than the characteristic time of the flow, and hence a flow-induceffte of a HEUR-type associative polymer. (b). Model predictions of the first
structure prevails within a range of shear rates. For larger shegg:?niggsjnzgerence vs. normalized shear rate for various values of the
rates, the rate of network deformation overcomes its rate of ref- '
ormation and degradation leads to shear-thinning. This effe
has been observed in associative polymers and wormlike surf
tants, and it has been predicted by Vaccaro and Marfa@g¢i
Once ag‘f’“”’ quantltatlvg agreementin t.he Ca.se of a.n aSS(.)CIatIZ%’. Stress relaxation after cessation of shear flow
polymer is found including the shear-thickening region prior to
the pronounced shear-thinning.

(fjeproduces qualitatively the maximum exhibited in the data for
Ao sets of parameters.

Fig. 7depicts the predictions of stress relaxation after cessa-

forlggg(’:g tﬁ/reed'g}'ogzrgé?eésrgﬁg?ilng)v ngirgrgngrgﬂ da(/:/lijt(r:]m tion of steady shears flow for various shear ratesQ.1,8 = 10).
poly P . At very low shear rates, the relaxation time is 17.3 s when the

those of the present model (broken lines). The shear-thickenin

. . . ﬁon-dimensional shear rate is 1. At these low shear rates the
region at low shear rates and the slope of minus one at hig . : . : \
rt?laxanon approaches a single exponential behavior, characteris-

predicts a second Newtonian region at very high shear rate§C of the Maxwell model. This behavior is predicted by network

which is not predicted by the Vaccaro and Marrucci model. modelg W'.th con_stant maximum segmept I.ength: In the cases
shown inFig. 7, single exponential behavior is attained at shear

rates lower than 1. As the shear rate increases, two relaxation
modes are observed: a short and a long relaxation. The short
time relaxation is a function of the previous shear rate, while

2.2. Normal stress differences

In Fig. 6a and b, data from Kaffashi et 41L3] for HEUR-
type associative polymer§ig. 6a) are compared with model .
predictions of the first normal stress difference as a function of H
shear rateRig. 6b). !

Predictions do not cover the region of the quadratic depen-
dence ofv; at very low shear rated/; attains larger values in the
less structured network, as compared to those of the more elastic
one. At low shear rates, the behaviom\afis quadratic with the
shear rate (Maxwell limit) and the slope diminishes as the shear 102
rate increases. An interesting prediction is the abrupt drag of
at a critical shear rate, which is not predicted by the classical net-
work models. This behavior at high shear rates is associated with
predominant microstates of a less-entangled network (or broken
network) past a critical shear rate. The systems that exhibit such 44+
behavior are those that present shear banding, where there is s)
strong structure modification. 0 5 10 15 20 25 30 35 40 45 50

Since the normal stresses are associated directly with th'g - . . .

.. . . ig. 7. Predictions of the stress relaxation after cessation of shear flow in a
elasticity _of the network, it is consistent to re_late the networlgNeakly structured networka(=0.1, B= 10, 1o = 18.85), for various values of
rupture with the fall of the normal stresses. Notice that the modehe normalized shear rate.

[

101}

108
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the long-time relaxation follows closely the longest (Maxwell) &y
relaxation time. IrFig. 7, the long relaxation does depart from Ty
the Maxwell value and relaxation time increases, as the slope 12
of the relaxation curves diminishes. A remarkable prediction is
the complex behavior shown at high shear rates 100) for 1
times longer than the Maxwell relaxation time. In this case, in
addition to the short- and long-time relaxation modes, a curve
following a stretched exponentidl5] is predicted atlong times, 0.6
which would correspond to a spectrum of relaxation times. This
behavior is ascribed to high breakage rate combined with a slow 0.4
reformation rate of the network.
A limiting behavior is predicted as the shear rate increases
in Fig. 7, in such a way that for larger shear rates a single lim- . , 2
iting relaxation curve is obtained. This effect is associated to a 102 10° 100 10!
saturation of the damping function at large shear rates, althougﬂg. 9. Predictions of the stress growth upon inception of shear flow vs. time in
the damping function is usually measured in stress relaxatio highly structured networld(= 1, B = 1) for various imposed shear rates. The
experiments followed a step-strain. However, an estimation ofset shows the stress growth as a function of strain.
the damping in stress relaxation analyzed here would correspond
to the ordinate magnitude (extrapolation of the long-time stresken line) is plotted with data of wormlike micelles by Berret et
relaxation curves to zero time) of the stress relaxation curvesil. [14].
The explanation of this limiting behavior may be ascribed to a
maximum level of structure modification by flow, i.e., a domi- 2.4. Stress growth upon inception of shear flow
nant microstatesg. Two characteristic times govern the stress
relaxation: the Maxwell time and the limiting time, whichiscon-  Figs. 9 and 1@epict the stress response at the inception of
sistent with the limiting behavior of the steady shear viscosityshear flow for various imposed shear rateg. 9 shows the
at low and high shear rates. non-dimensional stress versus reduced time for the case where
The stretched exponential behavior has been usually reprd-=B=1. The stressis normalized by the value of the steady state
sented according to the following expression: stress, for imposed shear rategetween 30 and 100. For this
case, which corresponds to a well-structured system, the behav-
ior observed is that of a mono-exponential growth at sufficiently
low shear rates. Overshoots are observed for increasing imposed

Predictions of the stretched exponential region can pshear rates, with maxima appearing at shorter times, similarly to
obtained with the following values @f 0.71 for 4 = 1, B= 10) polymer solutions and melts. As the shear rate increases beyond
0.61for @=1,B=1) and 0.768 for{ =0.1,B = 10) v,vhich ar,e 50, overshoots followed by undershoots are predicted. For the

very close to those values predicted for associative polymerjé‘rgeSt applied shear rate 100 small oscillations superposed on
or in wormlike micelle systems and in nanocomposites]. the main curve are observed. This behavior may correspond to

An example of the agreement is showrFitg. 8, in which the ~ & highly non-damped system, where the effects of the elastic

stretched exponential region of the stress relaxation curve (br¢GPring are dominant upon those of the medium viscosity. The
kinetics of the microstates involves at each stage a degree of

dissipation, which is responsible for the damped oscillations in
Q) this flow. Predictions for this case, where the maximum segment
length departs little from the value of 1/3, corresponds closely

0.2

T _ &
% =@ (t/20)

(44)

Renormalized Shear Stress

%0
0.8 ¢ to network models with constant maximum segment length. In
3 the inset, the stress growth is plotted with strain, which leads
0.6 to maxima located at almost the same value of strain (ca. 3), as

0.4

observed in polymer solutions and melts. In this case the network
maintains its structure witl{r) around 1/3.
When the constantd and B are given values of 0.1 and

0.2 S A=1, B=1 10, respectively, the stress growth is no longer monotonic for
' AN imposed shear rates larger than 1, as observed kfig. 10a.
* \ e A relative maximum is observed at short times, followed by a
o 05 PN R e minimum and a saturation at long times. The steady state value
T=t/t is larger than the overshoot value. In the inset, the stress growth

versus strain shows that the first maxima is approximately

Fig. 8. Predictions of the stress relaxation after cessation of shear flow for F ted at th trai di ith sh te. Stead
highly structured (flow-resisting) networkd €1, B=1, A0=17.3s), showing OcCated at tne same strain and increase with shear rate. steady

the stretched exponential region (broken lines). Experimental data of a wormiikstate is attained at lower strains the larger the imposed shear
micellar solution14]: open circles. rate.
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Fig. 11. Maximum segment-length as a function of time at the inception of shear
flow, for various shear rates and several combinationsafdB.

with time for various shear rates. For low imposed shear rates
in an entangled and flow-resistant netwolf) departs little
from 1/3, which corresponds to the more entangled microstate,
wgq. To shift the maximum segment length to larger values (for
instance|(r) = 0.8) corresponding to less entangled microstates,
it is necessary to apply much higher values of the shear rate
(e =1000).

In the case of a less flow-resistant netwotk=(0.1,B = 10) in
which structure breakage dominates over structure rebuilding,

small shear rates lead to less entangled microstatesn(dws),
and hence to large values &f). As shown inFig. 11, steady

0 values ofi(z) close to one are predicted with this network at

T T
0 100 200 300 400
(b) Strain

Fig. 10. (a) Predictions of the stress growth upon inception of shear flow vs
time in a weakly structured networld € 0.1, B =10) for various imposed shear

shear rates of 100.

The nodes number as a function of the flow conditions can
be obtained from the known microstate concentrations(gy.

In general, the number of nodes in the network decreases with

rates. The inset shows the stress growth as a function of strain. (b) Experimentmcreasmg ﬂow strength. AS the applied shear rate is i!”nposed,
data[17] of the stress growth vs. strain are shown for various imposed sheafOr most situations the relative number of nodes versus time goes

rates of a viscoelastic emulsion.

through a minimum and thereafter levels off at long times, as

shown inFig. 12 For a loose network, the minimum is more

Predictions depicted iRig. 10a (A =0.1,B=10) correspond
to a highly degradable network with slow reformation rate.

Network breakage increases as compared to the previous case

(Fig. 9 and the overshoots tend to fade. The elastic properties p

are overshadowed by increasing dissipation, and a trend to a less
structured state is revealed.

In Fig. 1, experimental data of stress versus time for various
imposed strains from Lee and DefiY] are shown. The system
studied is a viscoelastic emulsion. As observed, the maximum at
small strains is followed by a second maximum at large strains.
The first maximum appears at the same strain and increases with
imposed shear rate. PredictionsHig. 10a show that the first

maximum is approximately located at the same strain (see inset) |

and increases with shear rate, when the stress is plotted with
strain. The second maximum in the data is shallow with small
magnitude, whereas predictions of the model with the material
parameters used show no maximum.

At the inception of shear flow, the maximum segment length

100

pronounced and the equilibrium value of node concentration is
lower for long times.

T
\A=01v »

a=10

o=60

=100

A=0.1, B=10]

A=0.1, B=10)

A=1,B=10

10-3 L \ L .
108 106 104 10-2 100

102

104

changes withtime, in aform that depends on the kinetic ConStanﬁg. 12. Variation of the number of nodes as a function of time at the inception

A andB. In Fig. 11, the maximum segment lengif) is plotted

of shear flow for various shear rates and combinations afidB.
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J:ig. 15. Relaxation times predicted in stress relaxation after cessation of a slow
and fast flows, respectively, as a function of the inverse forward kinetic constant
A (B=10).

Fig. 13. Microstate concentrations as a function of time for a highly structure
network at the inception of shear flow € 1, B=1, @ =100).

In Figs. 13 and 14the microstate concentrations for given
flow conditions are shown, where the interplay between flowhetwork begins to rebuild by thermal motion. In this regard, it is
effects and network structure is clearly illustrated. Comparisofinteresting to compare the time scales of the reformation process
betweerFigs. 13 and 14hows that increasing dissipation and and that of the relaxation time.
diminishing the rate of structure reformation leads to a change In Fig. 15 the main relaxation (Maxwell) time is plotted as a
in the concentration of the dominant microstate. In the casgunction of inverset (which represents a time scale) for a fixed
whereA =B =1 (network reformation favored), concentrations value ofB and two shear rates. These shear rates are the extreme
of microstatesw, and ws increase as a function of time and values shown iffFig. 7. The largest (Maxwell) relaxation time is
become dominant at long times for an applied shearaaié  predicted at low shear rates £ 1), and the limiting relaxation
100. For the same shear rate, in the case illustratédgnl4  time is predicted at high shear rates<100). As the rate of
(A=0.1,B=10) where network breakage is favoreg,domi-  network reformation increases with 1/A would give the time
nates at the expense of microstatge The physical significance scale of the reformation process, which can be readily com-
of these results is that in networks where structure breakage fsared to the time scale of the stress relaxation process. When
favored, a high proportion of free chains and low proportion ofthe shear rate is sufficiently small, within the linear viscoelas-
nodes are expected. tic (Maxwell) regime, a small change in the relaxation time is
The kinetic constant is related to the forward rate constants predicted throughout the range ofA1/On the other hand, for
that drive the network into a more complex and structured syshigh shear rates, the variation of the relaxation time withig/
tem, and therefore is also related to the time scale of the rai@ore accentuated. In fact, the relaxation time becomes shorter
at which the network reforms after the deformation processas the rate of rebuilding increases, but the ratio between the
The macroscopic relaxation time is thus also related to thesgvo processes is not linear, implying that they vary in different
processes. As soon as the deformation process is arrested, tiiie scales. These differences are important in time-dependent
experiments, when the rate of rebuilding of the structure is small
o, (long times) but the stress relaxation is shorter. In this case, as
102 T T T T the stress comes to zero and the system seems to be close to
equilibrium, the structure has not reformed yet, and thixotropic
phenomena may arise.
Another interesting aspect revealedrig. 15is the predic-
tion of relaxation times longer than those corresponding to linear
viscoelasticity. The linear viscoelastic time (Maxwell time) is

101k

102} commonly referred to as the largest relaxation time in most
systems. However, very large reformation times correspond to

103 very lowA, accompanied with relaxation times larger than those

10-4L shown when the shear rate is very small. Point P signals the crit-
ical point where for smalled, times longer than the Maxwell

10°°r time are predicted.

10 ) ) ) ) Lf) The kinetic constan® refers to the backward rate constants

102 101 100 10! 102 108 0

that drive the network into a more disentangled microstate. It
Fig. 14. Same as ifiig. 13for a weakly structured networkd0.1,8=10,  depends strongly on the viscous dissipation, and therefore is
«=100). related to the processes that modify the state of the network.
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Fig. 16. Viscous dissipation as a function of the inverse kinetic condtant
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.
Fig. 16 depicts the variation of the viscous dissipatief/H)

0
as a function of invers8. The curve presents two asymptotic 12,
regions at low and higR, with a regime of strong variation & (B)
with viscous dissipation. In fact, the examples analyzed previ- 4 “W
ously assigned values fBdocated in the low dissipation region. 9‘: R e —
It would be interesting to explore higher dissipative systems cor-
responding to large values B8f(B > 10). 10

102

j S (©)
2.5. Thixotropy T 7S woseee
E : -

Time-dependent phenomena arise when the time scale of the «

reformation process after structure modification is different to 100 , ,
that of the stress relaxation process. In this section we carry out (p) 10° 107 100 102
transient flow predictions on networks with varying connectiv- ¥ (s)

ity by assigning various values to the kinetic constanésds. Fig. 18. (a) Non-dimensional stress vs. normalized shear rate for a continuous
The imposed shear rate varies as a function of time, followingamp of ascending—descending shear rates, as shown in the inset. Three different
a step-like increasing-and-decreasing deformation history or eembinations of the kinetic constants are considered. (b) Experimentdl 8ata
continuous increasing-and-decreasing ramp of shear rates. Hy&/amellar liquid crystals.

teretic curves are predicted for the stress versus shear rate for

both deformation histories, as depictedHigs. 17 and 18 Fig. 17 depicts the ascending and descending trajectory of

the flow curve as a result of the imposed deformation history

% shown in the inset. The largest thixotropic area is predicted by
14 m reducing the time interval at each step to allow the rebuilding
500 time (represented by~1) be larger than the relaxation time
12 w0 of the stress during that time interval. For the next increase in
ol Zzz shear rate, the structure is not fully rebuilt and hence structure
100 modification is increasing gradually at each step in shear rate.
sl o @ The accumulated breakage of the network leads to lower values
0 10 %o of the stress in the descending path. This is a manifestation of the
6f memory of past deformations in the system, which influences
the present stress state. Highly dissipating networks favoring
4r less entangled microstates lead to larger thixotropic areas in the
flow curves, as shown iRig. 17whered =0.1 and3=10. A full
2r analysis of the flow curves for various valueskfeveals that
this kinetic constant determines the hysteretic area of the flow

0

1 1 1 o
0 100 200 300 400 500 curves.

Fig. 17. Non-dimensional stress vs. normalized shear rate for a step-like ramp 1N Fig. 18, the flow history consists of a continuous
of ascending and descending shear rates, as shown in thedrs@tl(,B = 10). mcreasmg—decreasmg ramp in shear rate. Three cases are ana-
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lyzed, including a flow-resistant network € B=1) and a net- of a given microstate is influenced by previous associations
work with large breakage rate of segmems-(1, B=10). through a complex kinetic system of equations. The dynamics
A remarkable prediction for the first case is the crossingof the microstates depends on flow and the thermal state of the
of the flow curves; the ascending path lies above the descendystem.
ing curve, but this pattern reverses in the region of high shear To understand the relations among the kinetic constants is
rates. The pattern of the flow curves changes from a dominatmportant to assume that the energy difference of each process,
ing anti-thixotropic 4 =0.1,B=1) to a thixotropic oneA=1,  which leads to a given microstate (Seble 2 where the energy
B=10). The mixed thixotropic—anti-thixotropic pattern where difference for each processAsE) is proportional to the magni-
the curves cross each other is predicted wherB=1. These tude ofrate constants and thatthe constants ratios are unchanged.
flow patterns have been observed in lamellar liquid crystals andihis is, the ratio of the forward rate constants times the expo-
in other complex fluids. For example, ig. 18, data is shown nential term is equal to the energy difference of each kinetic
on the time-dependent behavior of surfactant-based lamellar ligprocess. These assumptions lead to(E§). In the same form,
uid crystalq18], illustrating the transition from a thixotropic to the ratio of the backward kinetic constants is equal to the energy
an anti-thixotropic behavior. The model is able to capture thalifference of each kinetic process, which leads to(E6). Since
thixotropic loop and also the transition to the anti-thixotropic we deal with systems in which no chemical reactions occur, the

loop. The mixed loops are also predicted. “kinetic constants” should not be widely different to each other,
and the assumptions made are notinconsistent with real complex
3. Concluding remarks kinetics.

In the present model, it is assumed that thermal motion only

This model has been developed on the basis of a transient neentributes to structure formation. However, it may also con-
work formulation in which the instantaneous distance betweetribute to node destruction, and detachment can also be thermally
nodes is calculated from the average over all structures preserastivated. Although such contributions can also be incorporated
in a given time. The complex interactions among the moleculain the model, here we assume that the flow strength has a larger
chains are represented by a group of five microstates, which aedfect on node destruction than that of the thermal motion. This
functions of temperature and viscous dissipation. is in agreement with transient network model formulations pro-

The average distance between nodes is calculated from thmsed by Green and Tobolsk®], Yamamoto[3] and Vaccaro
individual contributions of each microstate at a given time. Fiveand Marrucci12].
basic microstates are defined to include the most representative To incorporate in the model the notion of variable maximum
ways of chain interaction in a complex system. Consideratiorsegment length, the Warner expression for the entropic force is
of complex structures in addition to the general two-chains/onemodified, in which this variable is a function of the concentration
node microstate has several implications. Microstates with moref the five basic microstates. The distance between association
than two chains can provide, to a first approximation, the exispoints along the polymer chain is one of the main ingredients
tence of a more entangled (or structured) network. The reason tif the model.(z), the non-dimensional distance between asso-
go beyond microstate two (that involving three chains) is to allowciations points, as given in E3), is the average ratio of the
the possibility of a three-chain contact besides the more probabkegments concentration with respect to the number of chains,
two-chain contact. There are various examples in kinetic theorgnd depends on the dynamics of the microstates. This distance
of simple systems in which three-body collisions are includecchanges according to flow strength and thermal motion.
besides the two-body collisions. However, there is indeed a rea- Some of the remarkable predictions of this model include
son to limitthe number of microstates inthe model. The segmerghear banding flow under steady state conditions, shear-
length (distance between nodes) is the same for configuratiorikickening of the viscosity followed by shear-thinning, stretch
with more than three nodes, as described in E2)sand(3). exponential behavior in stress relaxation at long times, non-
From the ratio of the number of chains to the number of segmonotonic growth of the stress with time after inception of
ments of a given microstate, it is not possible to go beyond 1/3hear flow, and the variety of hysteretic curves (thixotropic and
in a simple topology (excluding loops or cycles). This{g,in  anti-thixotropic behavior) under transient deformation histories.
Eq.(3) will attain values of 1/3 when three chains arrange them-Particular cases of the model include those where the maximum
selves in a microstate with nine segments (three nodes), and fosegment length is constant, corresponding to classical transient
chains will arrange in a microstate with 12 segments (four nodes)etwork models.
and so on. The reason of this result is that the energy involved in
the generation of a given microstate is the same for microstateégcknowledgement
with more than three nodes, and hence configurations with more
than three nodes influence equally the calculation of the stress Support from CONACYT through project NC-204 is grate-
in the transient network. fully acknowledged.
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