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The Cooper pair has the total spin 0S = . So, in accordance with the Pauli principle, the wave functions 
describing the Cooper pair system should have the boson permutation symmetry, but the pairon operators 
(Cooper’s pair operators) do not obey the boson commutation relations. The pairon operators may not be 
considered neither as the Bose operators, nor as the Fermi operators. In this work, we analyze the statisti-
cal properties and the commutation relations for the pairon operator and reveal that they correspond to the 
modified parafermi statistics of rank p = 1. Two different expressions for the Cooper pair number opera-
tor are presented. We demonstrate that the calculations with a Hamiltonian expressed via pairon operators 
is more convenient using the commutation properties of these operators without presenting them as a 
product of fermion operators. This allows to study problems in which the interactions between Cooper’s 
pair are also included. The problem of two interacting Cooper’s pairs is discussed. 
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1 Introduction 

As is now well established, the largest binding energy of the Cooper pair corresponds to electrons with 
the opposite momenta and spins. In the second quantization formalism, the operators of creation, kb+ , and 
annihilation, kb , of Cooper’s pair in a state ( )k ka b, - , are defined as simple products of the electron 
creation and annihilation operators, kc

s

+  and kc
s

, satisfying the fermion commutation relations, 

 k k k k k kb c c b c ca b b a
+ + +

- -
= = .  (1) 

 Let us call these operators, following Schrieffer [1], as “pairon” operators. 
 The Cooper pair has the total spin 0S = . Hence, in accordance with the Pauli principle, the wave 
functions describing the Cooper pair system have the boson permutation symmetry, that is, they are 
symmetric under permutations of pairs. But the pairon operators (1) do not obey the boson commutation 
relations [1, 2]. It is easy to show by direct calculation. Namely, 

 
′ ′ ′

′0 fork k k k k kb b b b b b k kÈ ˘
Í ˙
Î ˚

+ + +È ˘ È ˘
Í ˙ Í ˙ -Î ˚ Î ˚- -

, = , = , = π ,  (2) 

 1 ˆ ˆk kk kb b n na b
+È ˘

Í ˙ -Î ˚-
, = - - ,  (3) 

where ˆk k kn c c
s s s

+

=  is the electron number operator. As follows from Eqs. (2)–(3), for ′k kπ  the Cooper 
pairs are bosons, while for ′k k=  they do not obey the boson commutation relations. It can be shown that 
they obey the Pauli principle and have the fermion occupation numbers for one-particle states. 
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 Thus, the pairon operators may not be considered neither as the Bose operators, nor as the Fermi op-
erators. This is the reason that the problem with the model Hamiltonian of the BCS theory cannot be 
directly solved by transforming it to the diagonalized form by means of some unitary transformation. 
Therefore, practically all calculations in the BCS approach were performed using the fermion properties 
of electron operators forming the Cooper pair. 
 In this paper we analyze the commutation relations for the pairon operators and reveal that they corre-
spond to the modified parafermi statistics of rank 1p = . The general expression for the Cooper pair 
number operator is analyzed and it is proved that the same expression as for the boson (fermion) number 
operator can be also used in the pairon case. We demonstrate that the calculations with a Hamiltonian 
expressed via the pairon operators more convenient to perform using the commutation properties of these 
operators without presenting them as a product of fermion operators. This allows to study problems in 
which the interactions between Cooper’s pairs are also included [3]. 

2 Statistics of Cooper’s pairs 

As was discussed in the introduction, the pairon operators, Eq. (1), obey boson commutation relations 
only in the case of different momenta. For equal momenta, the right-hand part of commutation relation 
(3) contains the products of fermion operators that reflects the fermion structure of pairon operators. 

 1k k k k k kb b c c c ca a b b
+ + +È ˘

Í ˙ - -Î ˚-
, = - - .  (4) 

To operate with the pairon operators, the commutation relations for these operators must not include 
other kinds of operators. One of the ways to achieve this goal is to calculate trilinear commutation rela-
tions, as it is formulated in the parastatistics [4], for a short description see Refs. [5, 6]. 
 The direct calculation leads to the following trilinear commutation relations 

 
′ ″ ′ ″

2k k k kk kk kb b b bd d
È ˘
Í ˙
Í ˙Î ˚

+ + +È ˘
Í ˙Î ˚- -

, , = ,  (5) 

 
′ ″ ′ ″

2k k k kk kk kb b b bd d
È ˘È ˘
Í ˙Í ˙
Í ˙Í ˙Î ˚Î ˚

+

- -

, , = - .  (6) 

 These relations coincide with the trilinear commutation relations of the parafermi statistics for 
′ ″k k k= = . For different k , ′k  and ″k  the relations are different. In the parafermi statistics, in relations 

corresponding to Eq. (5), instead of the two presented Kroneker symbols there is one, namely, 
′ ″k kd , and 

in relations corresponding to Eq. (6), 
′kkd  is absent. Thus, the pairon operators satisfy some modified 

parafermi statistics of rank 1p =  (the latter because of the Fermi occupation numbers). 
 As follows from the definition of the particle number operator ˆ

kN , ˆ
k k k kN N N N= . For the boson 

and fermion number operators, the well-known expression ˆ
k kN a a+=  is valid. But it is quite not evident 

that the same expression is valid for the pairon number operator. In the parafermi statistics, the particle 
number operator is defined as 

 1
2

ˆ ([ ] ) ,k k kN a a p+

-
= , +  (7) 

for the case of pairons 1p = . Using Eq. (3) it is easy to show that Eq. (7) is equivalent to 

 1
2

ˆ ˆ ˆ( ) .k k kN n na b-

= +  (8) 

 This is quite natural that the number of Cooper’s pairs is two times less than the number of electrons 
forming pairs. It can be proved that from Eq. (8) follows that the expression ˆ

k k kN b b+=  may be also used 
for the pairon number operators. Let us do it. 
 The product k kb b+  is equal to the product of the fermion number operators ˆ ˆk kn na b-

, but in general case 

 1
2 ( )ˆ ˆ ˆ ˆ

k kk kn n n na ab b- -

π + .  (9) 
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 Pairons operators possess the fermions occupation numbers, kn
a

 and kn b-

 equal to 0 or 1, in this case, 
and only in this case, the left-hand part of Eq. (9) is equal to its right-hand part. Thus, 

 1
2

ˆ ˆ( )k k k kn n b ba b
+

-
+ = , (10) 

and from Eqs. (8) and (10) follows that although Cooper’s pairs are neither bosons nor fermions, for the 
operators of their number, the traditional form ˆ

k k kN b b+=  can be used. 
 The substitution of 2ˆ ˆ

k k k kb bn na b-

+

+ = , into the commutation relation (3) transforms it into 

 ( )1 2 or 1k k k k k kb b b b b b+ + +È ˘ È ˘
Í ˙ Í ˙Î ˚ Î ˚- +

, = - , = .  (11) 

 Thus, for equal k, the pairon operators obey the fermion commutation relations, while for different k, 
they obey the boson commutation relations. 
 The Eqs. (2) and (11) can be combined into one commutation relation 

 ( )1 2k k kk kk
b b b bd

¢ ¢

+ +È ˘
Í ˙Î ˚-

, = - .  (12) 

 The application of pairon operators to the vacuum state follows from their definition, Eq. (1), 

 0 0 0 0k k k kk
b b b d

¢ ¢

+

= , = .  (13) 

 The relations (12) and (13) are sufficient for performing calculations using only the pairon operators. 

3 Two interacting Cooper’s pairs 

As an illustration of operations with the Cooper pair operators using their properties (12) and (13), we 
consider the model of two interacting pairs described by the BCS wave function 

 ( )
1

2
†1 2 ( ) 0

j j j

j

k k k
k

u v bY

=

, = +’ 1 2 1 2 2 2 1 1 1 2 1 2

† † † †( ) 0k k k k k k k k k k k ku u u v b u v b v v b b= + + + . (14) 

 Following the BCS theory, we assume that the interaction energies do not depend upon the value of 
moments, so the Hamiltonian is given by 

 ′ ′ ′

1 2 1 2

1 2 1 2

† † † †1
0

, , ,

2 .
2k k k k k k k k k

k k k k k k k

V
H b b V b b b b b be

¢ ¢¢ ¢¢ ¢ ¢

¢ ¢ ¢ ¢¢ ¢¢

= - +Â Â Â Â  (15) 

 Calculation of the expectation value for the energy ( )1 2 (1, 2)W HY Y= ,  gives 

 
1 1 2 2 1 1 2 2 1 2

2 2 2 2
0 12 2 2k k k k k k k k k kW v v V u v u v V v ve e= + - + ,  (16) 

and by a minimization procedure respect to 
1kv  and 

2kv  using the following definitions 

 
1 2 2 1 2

2
0 1k k k k kV u v V vD D

¢

∫ ; ∫ ,  (17) 

 
2 1 1 2 1

2
0 1 ,k k k k kV u v V vD D

¢

∫ ; ∫  (18) 

we obtain that 

 2 2 21 21 1
2

k
k

k k k
k

v u v
E

D
e

¢

¢

Ê ˆ
+Á ˜

= - ; = - ,Á ˜
Á ˜Ë ¯

 (19) 

 
2

2

2
k

k k kE
D

e D

¢

¢
Ê ˆ

= + + .Á ˜Ë ¯
 (20) 
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 It can be shown that kE ¢  is the quasiparticle exitation energy. As in the BCS theory, using the approxi-

mations 

 
1 2k kD D D= = , 

 
1 2k kD D D= =¢ ¢ ¢ , (21) 

 
1 2
�k ke e e= , 

we obtain the explicit expressions for the parameters D¢  and D  

 0
1

0 1

2
2
V

V
V V

e
D

-
= ,¢

+
 (22) 

 
22

0 1 0

0 1

2
2 2 2
V V V

V V

e
D e

-Ï Ê ˆ¸Ê ˆ= - +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯+Ó ˛
. (23) 

 In the expression for kE ¢  and 2
ku  and 2

kv , as well, the electron energy enters with the additive term 2k
¢

D / . 
According to Eq. (22), this term depends upon the interaction energies 1V  and 0V , and it disappears  
when 1 0V = . Thus, one can say that the interpair interaction leads to the renormalization of the electron 
energy. This renormalization is proportional to the interaction potential 1V  between pairs. On the other 
hand, the interpair interaction leads to an augmentation of the gap, which is according to Eq. (20) equal  
to 2 2( 2)k kD D+ /¢ , the interpair interaction increases the energy of creating the excited quasiparticle. 
 For comparison with the BCS theory, we have to neglect the interaction between pairs, 1 0V = . With 
this condition, expressions for 2

ku , 2
kv  and kE  are reduced to the BCS expressions. But in the case of D 

(Eq. 23), it is not so, it is reduced to 

 
2

20

2
V

D e
Ê ˆ= - .Á ˜Ë ¯  (24) 

 This formula differs from the exponential expression for the energy gap in the BCS theory. The differ-
ence is connected with the fact that in a system with a finite number of particles, the distances between 
the energy levels are also finite, there is a discrete set of energy levels. The approximation 

1 2k ke e e= = , 
Eq. (21), is valid only for systems with 1�N , for which the energy spectrum is continuous and after 
integration one obtains the exponential dependence as in the BCS theory. 
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