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Abstract

The analysis of trilinear commutation relations for the Cooper pair operators reveals that they correspond to the

modified parafermi statistics of rank p = 1. Two different expressions for the Cooper pair number operator are pre-

sented. We demonstrate that the calculations with a Hamiltonian expressed via pairon operators is more convenient

using the commutation properties of these operators without presenting them as a product of fermion operators. This

allows to study problems in which the interactions between Cooper�s pairs are also included. The problem with two

interacting Cooper�s pairs is resolved and its generalization in the case of large systems is discussed.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Cooper�s pair commutation relations; Pairing interactions; Strongly correlated electron systems
1. Introduction

It is well-known that the theory of the low

temperature superconductivity was created by
Bardeen, Cooper, and Schrieffer (BCS) [1] only

after Cooper [2] had shown that two electrons

interacting above the Fermi sea of non-interacting

electrons can couple in a stable pair, if the interac-
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tion resulting from virtual exchange of phonons is

attractive near the Fermi surface. As was demon-

strated in a more sophisticated study [3], in full

agreement with the Cooper assumption, the largest
binding energy of the Cooper pair corresponds to

electrons with the opposite momenta and spins. In

the second quantization formalism, the operators

of creation, bþk , and annihilation, bk, of Cooper�s
pair in a state (ka,�kb), are defined as simple

products of the electron creation and annihilation

operators, cþkr and ckr, satisfying the fermion com-

mutation relations,
ed.
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bþk ¼ cþkac
þ
�kb;

bk ¼ c�kbcka:
ð1Þ

Let us call these operators, following Schrieffer [3],

as �pairon� operators.
The Cooper pair has the total spin S = 0.

Hence, in accordance with the Pauli principle,

the wave functions describing the Cooper pair sys-

tem have the boson permutation symmetry, that is,

they are symmetric under permutations of pairs.
But the pairon operators (1) do not obey the boson

commutation relations [1,3]. It is easy to show by

direct calculation. Namely,

½bk; bþk0 �� ¼ ½bþk ; bþk0 �� ¼ ½bk; bk0 �� ¼ 0

for k 6¼ k0; ð2Þ

½bk; bþk �� ¼ 1� n̂ka � n̂�kb; ð3Þ

ðbþk Þ
2 ¼ ðbkÞ2 ¼ 0; ð4Þ

where n̂ka ¼ cþkrckr is the electron number operator.

As follows from Eqs. (2)–(4), for k5 k 0 the Coo-

per pairs are bosons, while for k = k 0 they do not

obey the boson commutation relations, although
they obey the Pauli principle and have the fermion

occupation numbers for one-particle states.

Thus, the pairon operators may not be consid-

ered neither as the Bose operators, nor as the

Fermi operators. This is the reason that the prob-

lem with the model Hamiltonian of the BCS

theory

H ¼
X
k

ekb
þ
k bk þ

X
k0 ;k

V kk0b
þ
k0bk ð5Þ

cannot be directly solved by transforming Hamil-

tonian (5) to the diagonalized form

H ¼
X
n

e0kB
þ
k Bk ð6Þ

by means of some unitary transformation

Bn ¼
X
k

unkbk; Bþ
n ¼

X
k

u�nkb
þ
k : ð7Þ

The unitary transformation is canonical only for

the Bose or Fermi operators. In general case, it is
not canonical; it does not preserve the commuta-

tion properties of the operators transformed.

Therefore, practically all calculations in the BCS
approach were performed using the fermion prop-

erties of electron operators forming the Cooper pair.

In this paper we analyze the commutation rela-

tions for the pairon operators and reveal that they

correspond to the modified parafermi statistics of
rank p = 1. The general expression for the Cooper

pair number operator is analyzed and it is proved

that the same expression as for the boson (fer-

mion) number operator can be also used in the

pairon case. We demonstrate that the calculations

with a Hamiltonian expressed via the pairon oper-

ators more convenient to perform using the com-

mutation properties of these operators without
presenting them as a product of fermion operators.

This allows to study problems in which the interac-

tions between Cooper�s pairs are also included.

The solution of the simplest problem with two

interacting Cooper�s pairs is presented.
2. Statistics of Cooper�s pairs

As was discussed in the introduction, the pairon

operators, Eq. (1), obey boson commutation rela-

tions only in the case of different momenta. For
equal momenta, the right-hand part of commuta-

tion relation (3) contains the products of fermion

operators that reflects the fermion structure of

pairon operators.

½bk; bþk �� ¼ 1� cþkacka � cþ�kbc�kb: ð8Þ

To operate with the pairon operators, the commu-
tation relations for these operators do not have to

include other kinds of operators. One of the ways

to achieve this goal is to calculate trilinear commu-

tation relations, as it is formulated in the parasta-

tistics [4], for a short description see Refs. [5,6].

The direct calculation leads to the following tri-

linear commutation relations

½bþk ; bk0 ��; b
þ
k00

� �
� ¼ 2dkk0dkk00b

þ
k ; ð9Þ

½bþk ; bk0 ��; bk00
� �

� ¼ �2dkk0dkk00bk: ð10Þ

These relations coincide with the trilinear commu-

tation relations of the parafermi statistics for

k = k 0 = k00. For different k, k 0 and k00 the relations

are different. In the parafermi statistics in relations
corresponding to Eq. (9) instead of the two pre-
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sented Kroneker symbols there is one, namely,

dk 0k00; and in relation corresponding to Eq. (10),

dkk 0 is absent. Thus, the pairon operators satisfy

some modified parafermi statistics of the rank

p = 1. The latter follows from Eq. (4), since for
the parastatistics of rank p

ðaþk Þ
N j 0i 6¼ 0 for N 6 p; ð11Þ

ðaþk Þ
pþ1 j 0i ¼ 0: ð12Þ

As follows from the definition of the particle num-

ber operator bN kbN k j Nki ¼ Nk j Nki: ð13Þ
For the boson and fermion number operators the

well-known expression bN ¼ aþk ak is valid. But it

is quite not evident that the same expression is

valid for the pairon number operator. In the para-

fermi statistics, the particle number operator is

defined as

bN k ¼
1

2
½aþk ; ak�� þ p
� �

; ð14Þ

for pairons p = 1 and

bN k ¼
1

2
½bþk ; bk�� þ 1
� �

: ð15Þ

As follows from the trilinear commutation rela-

tions (9) and (10), the operator (15) satisfies the

commutation relations for the particle number

operator that were established earlier for bosons

and fermions, see Ref. [7],

½bN k; b
þ
k �� ¼ bþk ; ð16Þ

½bN k; bk�� ¼ �bk: ð17Þ
It is easy to check that for fermions, Eq. (15) is

equivalent to the standard expression n̂k ¼ cþk ck.
Let us study it in the pairon case.

Using Eq. (3), the expression for the pairon

number operator (15) can be written as

bN k ¼
1

2
ðn̂ka þ n̂�kbÞ: ð18Þ

This is quite natural that the number of Cooper�s
pairs is two times less than the number of electrons

forming pairs. It can be proved that from Eq. (18)

follows that the expression bN k ¼ bþk bk may be also

used for the pairon number operators. Let us do it.
The product bþk bk is equal to the product of the

fermion number operators n̂kan̂�kb, but in the gen-

eral case

n̂kan̂�kb 6¼
1

2
ðn̂ka þ n̂�kbÞ: ð19Þ

Pairons operators possess the fermions occupation

numbers, nka and n�kb equal to 0 or 1, in this case,

and only in this case, the left-hand part of Eq. (19)

is equal to its right-hand part. Thus,

1

2
ðn̂ka þ n̂�kbÞ ¼ bþk bk ð20Þ

and from Eqs. (18) and (20) follows that although

Cooper�s pairs are neither bosons nor fermions,

for the operators of their number, the traditional

form bN k ¼ bþk bk can be used.

If one substitutes the equality

n̂ka þ n̂�kb ¼ 2bþk bk; ð21Þ
into the commutation relation (3), it transforms

into

½bk; bþk �� ¼ ð1� 2bþk bkÞ ð22Þ
or

½bk; bþk �þ ¼ 1: ð23Þ

Thus, for equal k, the pairon operators obey the

fermion commutation relations, while for different

k, they obey the boson commutation relations.

Despite the fact that each Cooper�s pair has the
total spin S = 0, the pairons are not bosons, be-

cause for equal momenta k they behave as ferm-

ions. However, for different k, the pairons obey

the Bose–Einstein statistics and can occupy one

energy level, that is, they can undergo the phenom-

enon of the Bose–Einstein condensation. However,

all electrons composed into the condensed Cooper

pairs must have different momenta k.
The Eqs. (2) and (22) can be combined into one

commutation relation

½bk; bþk0 �� ¼ dkk0 ð1� 2bþk bkÞ: ð24Þ

The application of pairon operators to the vacuum

state follows from their definition, Eq. (1),

bk j 0i ¼ 0; bkb
þ
k0 j 0i ¼ dkk0 j 0i: ð25Þ

The relations (24) and (25) are sufficient for per-

forming calculations using only the pairon

operators.
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3. Generalized model Hamiltonian and the problem

with two interacting Cooper�s pairs

Let us add to the BCS Hamiltonian the term

describing the interaction among Cooper�s pairs.
The generalized model Hamiltonian is

H ¼ 2
X
k

�kb
y
kbk �

X0

k;k0
V k;k0b

y
k0bk

þ 1

2

X0

k0
1
;k0
2

X0

k00
1
;k00
2

V k0
1
k0
2
;k00
1
k00
2
byk00

1
byk00

2
bk0

1
bk0

2
ð26Þ

where primes in sums denote that k 5 k 0, k01 6¼ k02
and k001 6¼ k002. The other restriction is concern with
the potential energy of interpair interaction in

which k001 6¼ k01 and k002 6¼ k02. While according to

the Cooper model, V k;k0 > 0, the sign of V k0
1
k0
2
;k00
1
k00
2

is not restricted, it can be both positive for a repul-

sive interpair interaction and negative for an

attractive interaction.

In general, the variational wave function of the

system with N pairs can be presented as

j Wð1; 2; . . . ;NÞi ¼
X0

k1;k2;...;kN

aðk1; k2; . . . ; kN Þ

� bþk1b
þ
k2
. . . bþkN j 0i; ð27Þ

where k1 6¼ k2 6¼ � � � 6¼ kN because of the fermion

condition (4), or it can be presented in the BCS

form, which is not as precise as the variational

function (27) but easier for calculations.

j Wð1; 2; . . . ;NÞi ¼
YN
k¼1

ðuk þ vkb
þ
k Þ j 0i: ð28Þ

As an illustration of operations with the Cooper

pair operators using their properties (24) and

(25), we consider the model of two interacting

pairs described by the BCS wave function

j Wð1; 2Þi ¼
Y2

kj¼1

ðukj þ vkjb
y
kjÞ j 0i

¼ uk1uk2 þ uk1vk2b
y
k2
þ uk2vk1b

y
k1

�
þvk1vk2b

y
k1
byk2

�
j 0i: ð29Þ

Following the BCS theory, we assume in the gen-

eral Hamiltonian (26) that the interaction energies

do not depend upon the value of moments.
H ¼ 2
X
k

�kb
y
kbk � V 0

X0

k;k0
byk0bk

þ V 1

2

X0

k0
1
;k0
2

X0

k00
1
;k00
2

byk00
1
byk00

2
bk0

1
bk0

2
: ð30Þ

Using the properties of Cooper�s pair operators,

Eqs. (24) and (25), we calculate the expectation

value for the energy W = hW(1,2)jHjW(1,2)i with

the Hamiltonian (30) and wave function (29).

The results is

W ¼ 2v2k1�k1 þ 2v2k2�k2 � 2V 0uk1vk1uk2vk2

þ V 1v2k1v
2
k2
: ð31Þ

By a minimization procedure respect to vk1 and vk2
using the Lagrange multiplicators, the following

definitions

Dk1 � V 0uk2vk2 ; D0
k1
� V 1v2k2 ; ð32Þ

Dk2 � V 0uk1vk1 ; D0
k2
� V 1v2k1 ð33Þ

and introducing

E0
k1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k1 þ

D0
k1

2

� 	2

þ D2
k1

s
;

E0
k2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 þ

D0
k2

2

� 	2

þ D2
k2

s
ð34Þ

we obtain that

v2k1 ¼
1

2
1�

�k1 þ
D0
k1
2

E0
k1

0@ 1A;

u2k1 ¼
1

2
1þ

�k1 þ
D0
k1
2

E0
k1

0@ 1A; ð35Þ

v2k2 ¼
1

2
1�

�k2 þ
D0
k2
2

E0
k2

0@ 1A;

u2k2 ¼
1

2
1þ

�k2 þ
D0
k2
2

E0
k2

0@ 1A; ð36Þ

and

uk1vk1 ¼
1

2
1þ

�k1 þ
D0
k1
2

� �
E02
k1

8><>:
9>=>;

1=2

¼ Dk1

2E0
k1

: ð37Þ
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The calculation of the quasiparticle excitation en-

ergy results in

E0
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k þ

D0
k

2

� 	2

þ D2
k

s
: ð38Þ

Thus, the quantities introduced by Eq. 34 and en-

tered into Eqs. (35)–(37) have the physical sense as

the quasiparticle excitation energies.

Using, as in the BCS theory, the approximations

Dk1 ¼ Dk2 ¼ D;

D0
k1
¼ D0

k2
¼ D0;

�k1 ’ �k2 ¼ �

ð39Þ

we obtain the explicit expressions for the parame-
ters D 0 and D

D0 ¼ V 1

V 0 � 2�

2V 0 þ V 1

; ð40Þ

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 0

2

� 	2

� �þ V 1

2

V 0 � 2�

2V 0 þ V 1

� 	
 �2
s

ð41Þ

In the expression for E0
k and u2k and v2k , as well, the

electron energy enters with the additive term D0
k=2.

According to Eq. 40, this term depends upon the

interactions energies V1 and V0, and it disappears

when V1 = 0. Thus, one can say that the interpair

interaction leads to the renormalization of the elec-

tron energy.

For comparison with the BCS theory, we have

to neglect the interaction between pairs, V1 = 0.
With this condition, expressions for u2k ; v

2
k and Ek

are reduced to the BCS expressions. But in the case

of D (Eq. 41), it is not so, it is reduced to

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 0

2

� 	2

� �2

s
: ð42Þ

This formula differs from the exponential expres-

sion for the energy gap in the BCS theory. The dif-

ference is connected with the fact that in a system

with a finite number of particles, the distances be-

tween the energy levels are also finite, there is a dis-

crete set of energy levels. The approximation

�k1 ¼ �k2 ¼ �, Eq. (39), is valid only for systems
with N � 1, for which the energy spectrum is con-
tinuous and after integration one obtains the expo-

nential dependence as in the BCS theory.

Finally, it is important to mention that the two-

pairon system was considered as an illustration of

applying the commutation relation for pairons,
Eq. (24). The employment of pairon operators

bþk , bk in place of presenting them as product of

fermion operators reduces twice the number of

operators in the Hamiltonian. For instance, for

the two-pairon system the interaction term con-

tains four pairon operators instead of eight fer-

mion operators.

Let us note that the two interacting pairon
problem has been solved exactly. The real physical

problem for N interacting pairons with N ! 1 is

very complicated and can be solved only approxi-

mately. For its solution one should, similar to the

BCS theory, consider the interacting pairons in the

nearest neighborhood of the Fermi level and take

into account an approximation similar to that

given by Eq. (39), so the summation over k can
be replaced by an integration.
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