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Abstract

The effect of an external applied electric field on the electronic ground-state energy of a quantum box with a

geometry defined by a wedge is studied by carrying out a variational calculation. This geometry could be used as an

approximation for a tip of a cantilever of an atomic force microscope. We study theoretically the Stark effect as

function of the parameters of the wedge: its diameter, angular aperture and thickness; as well as function of the intensity

of the external electric field applied along the axis of the wedge in both directions; pushing the carrier towards the wider

or the narrower parts. A confining electronic effect, which is sharper as the wedge dimensions are smaller, is clearly

observed for the first case. Besides, the sign of the Stark shift changes when the angular aperture is changed from small

angles to angles y4p. For the opposite field, the electronic confinement for large diameters is very small and it is also

observed that the Stark shift is almost independent with respect to the angular aperture.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the last few years, the study of the properties
of nanostructures has become very important in
looking for new technological applications. Spe-
e front matter r 2005 Elsevier B.V. All rights reserve
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queda).
cially, the behavior of their electronic and optical
properties in the presence of an external electric
field has been widely studied, both theoretical and
experimentally [1–8]. For example, in the case of
semiconductor nanocrystals, the external field can
be used to control electron transfer in quantum
dot-based single electron devices and to control
elementary qubit operations in such systems [9,10].
Also, the electric field makes possible the mapping
of the electronic wave functions of quantum dots
d.
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in scanning-tunneling-microscopy experiments
[11]. Furthermore, the mechanisms of carrier
transport in quantum well structures and the
capture process as function of an electric field,
which may be due to a piezoelectric effect, have
attracted much interest for the design and optimi-
zation of electronic and photonic devices [12].
On the other hand, from the standpoints of

practical device application and fundamental
science, new detection techniques using micro/
nanomechanical beams and cantilevers have re-
ceived increasing attention. Thus, research about
the influence of quantum effects on the piezo-
resistance of two-dimensional heterostructures has
been made [13]. Moreover, since cantilever-based
sensors have become a standard on micro- and
nano-electromechanical systems (MEMS and
NEMS) for detection of magnitudes with resolu-
tion in the pico-scale, there is recent work in
developing electromechanical models for a trans-
ducer based on a lateral resonating cantilever [14],
a feedback controlled nanocantilever device [15],
and biosensors based on polymer microcantilevers
[16]. Additionally, very recently, Qi Ye et al. have
beginning a large-scale fabrication of carbon
nanotube probe tips for atomic force microscopy
(AFM) imaging applications [17] and Liwei
Chen, et al. have already made imaging of gold
nanoclusters and biomolecules in ambient
and fluid environments with this kind of AFM
probes [18].
As said above, the study and understanding of

electronic properties of systems on the nano-scale
is very important for a wide range of possible
applications. One example of this is the modeling
of the tip and sample surfaces in scanning-
tunneling microscopy as confocal hyperboloids
[19] and the consequent construction of their
normal modes and Green functions by using
prolate spheroidal coordinates [20]. Another ex-
ample is the importance on electrostatic force
gradient microscopy of the electrostatic forces
between sharp tips and metallic and dielectric
samples given the geometry of the tip [21]. Finally,
it results that these electrostatic forces, and even
Casimir force, have influence on the mechanical
properties of cantilevers very dependent on the
geometry of the cantilever tip [22]. Following this
motivation and the experience obtained in the
study of Stark effect with variational techniques in
several geometries [7,8,23], we decided to study
this effect in the tip of a typical cantilever of an
atomic force microscope (AFM) using as a first
approximation the geometry given by a wedge
since, as a matter of fact, there exist commercial
triangular-shaped silicon microcantilevers (ther-
momicroscopes) for instance, these cantilevers
were used by F. Tian et al. [24] to study the
potential-induced surface stress of a solid electrode
in an electrochemical cell. Therefore, in the present
work, as a first approximation to the AFM tip, we
carry out a variational calculation to study the
influence of an external applied electric field on the
electronic ground-state energy of a wedge-shaped
quantum box as function of the parameters of the
wedge (diameter, angular aperture and thickness)
and the intensity and direction of the electric field.
This last is applied along the axis of the wedge in
both directions, to the wider and to the narrower
parts. For our calculations we suppose that the
dielectric constant of the wedge is the same as the
medium where it is embedded. In future works, we
will consider variations of the dielectric constant of
the wedge as well as other electric fields, calcula-
tions for excited states and the inclusion of
impurities inside the tip.
In Section 2 we present our calculations. Then,

in Section 3 we discuss our results, and finally, we
give our conclusions.
2. Calculation

In cylindrical coordinates, the Hamiltonian of a
carrier in a quantum box defined by the geometry
of a wedge with an electric field applied along its
symmetry axis as shown in Fig. 1, is given by

H ¼
p2

2mn
� ej jFr cos yþ V c r; y; zð Þ, (1)

where F is the electric field, m* and |e| are the
electron effective mass and charge, respectively,
and Vc is the confining potential, which vanishes
inside the wedge and becomes infinite outside
using the infinite well model. For electrons and
F40, the+sign corresponds to the electric field
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Fig. 1. The geometry of the wedge and the electric field applied along its symmetry axis in two directions: to the tip and to the wider

part. This last corresponds to the positive direction of the axis x. 0prpd; �y0=2pypy0=2; �l=2pzpl=2.
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pointing to the positive direction of the axis x and
the�sign to the field in the opposite direction as
shown in Fig. 1.
The energy levels of the quantum box in the

absence of the field are given by

En;m;l ¼
_2

2m�

am0;n

d

� �2
þ

lp
L

� �2
" #

, (2)

where am0;n is the nth zero of the Bessel function of
order m0, Jm0 ; with m0 ¼ mðp=y0Þ ¼ ð2ny þ 1Þ
ðp=y0Þ; l¼2nz þ 1; n¼1; 2; 3; . . .; ny; nz¼0; 1; 2; . . .
and d, L and y0 are the dimensions of the wedge.
For the ground state, n ¼ m ¼ l ¼ 1, this energy is
given by

E1;1;1 ¼
_2

2m�

am0;1

d

� �2
þ

p
L

� �2� �
, (3)

where m0 ¼ p=y0, and the related wave function is

C0 r; y; zð Þ ¼ N0Jm0

am0;1

d
r

� �
cos

p
y0

y
� �

cos
p
L

z
� �

,

(4)

with N0 the normalization constant. Evidently,
C0 r; y; zð Þ ¼ 0 outside the wedge.
Now, when the electric field is applied, we will
use as our variational function this ground state
wave function multiplied for an exponential
factor, which accounts for the Stark effect, as
follows:

C r; y; zð Þ ¼ C0 r; y; zð Þ exp 
br cos yð Þ, (5)

with b the variational parameter that depends on
the electric field. For electrons, the�sign corre-
sponds to the electric field pointing to the
positive direction of the x-axis and the+sign to
the opposite field and vice versa for holes.
We calculate the ground-state energy of the
system when there is an applied electric field by
minimizing

E bð Þ ¼ Ch jH Cj i ¼

Z L
2

�
L
2

Z y0
2

�
y0
2

Z d

0

CHCrdrdydz

(6)

with respect to b and then, we define the Stark
shift as

DE ¼ E bð Þ � E1;1;1. (7)
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Fig. 2. It is shown the first zero of the correspondent Bessel

function given the angular aperture, y0, of the wedge.
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3. Results and discussion

All the results will be presented in reduced
atomic units (a.u.*), which correspond to a length
unit of an effective Bohr radius, an ¼ _2�

mne2
, and an

effective Rydberg, Rn ¼ mne4

2_2�2
. The electric field is

also given in atomic units as F0 ¼
e

2�an2, with e ¼ 1
as it was stated above.
It is worthwhile to discuss what happens to the

ground-state energy of the wedge as we vary its
dimensions in the absence of applied electric field.
In Table 1, it is possible to observe that the
dependence of the energy on the thickness L/a* is
weak in the range from 1 to 100. This behavior is
more notorious for small angles since the coeffi-
cient am0;1 in Eq. (3) sharply increases as y0
decreases reaching values much larger than p, as
it is shown in Fig. 2. This fact means that the first
term in the right-hand side in Eq. (3) is much
greater than the second one, and then also its
contribution to the energy. Moreover, we may
observe from Table 1 that for the smallest angle,
p=20, the change of the energy is about two orders
of magnitude as d/a* varies from 1 to 10.
Obviously, the Stark shift does not depend on

the thickness L since the confinement due to the
electric field lies in the x direction as it is shown in
Table 1

The system electronic ground state energy when there is not applied

d/a* L/a* E1,1,1(p/20) E1,1,1(p/10)

1 1 655.90 219.40

10 646.12 209.63

100 646.03 209.54

2 1 171.37 62.25

10 161.60 52.48

100 161.50 52.38

4 1 50.24 22.96

10 40.47 13.19

100 40.37 13.09

6 1 27.81 15.69

10 18.04 5.91

100 17.94 5.82

8 1 19.96 13.14

10 10.19 3.37

100 10.09 3.27

10 1 16.32 11.96

10 6.55 2.19

100 6.46 2.09
the Hamiltonian, Eq. (1). Hence, for simplicity and
in order to better simulate the tip of the cantilever,
we chose for the rest of the calculations to take the
thickness as L/a* ¼ 1.
For the electric field applied in the positive

direction of the x-axis (i.e. to the wider part of the
wedge), the electron is pushed to the tip of the
wedge. Fig. 3 shows the Stark shift as a function of
field is shown as a function of its dimensions

E1,1,1(p/2) E1,1,1(p) E1,1,1(3p/2)

36.24 24.55 21.26

26.47 14.78 11.49

26.37 14.68 11.39

16.46 13.54 12.71

6.69 3.76 2.94

6.59 3.67 2.84

11.51 10.78 10.58

1.74 1.01 0.81

1.64 0.91 0.71

10.60 10.27 10.18

0.83 0.50 0.41

0.73 0.40 0.31

10.28 10.09 10.04

0.51 0.32 0.27

0.41 0.23 0.17

10.13 10.01 9.98

0.36 0.24 0.21

0.26 0.14 0.11
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Fig. 3. The Stark shift of the electron’s energy, DE, is shown as

a function of the wedge radius for two electric fields, which are

applied directed to the positive direction of the axis x.

Fig. 4. DE is shown as a function of the angular aperture y0 for
d=a� ¼ 5 and F=F0 ¼ 1.

Fig. 5. Similar to Fig. 3, but with angles yXp. The particular
shape of the wedge in the case of y ¼ 3p=2 is shown in the inset.

Fig. 6. DE is shown, for the two extreme angular apertures, as a

function of the electric field directed to the positive direction of

the axis x for various wedge radii.
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radius for angles yop. In this figure, it can be
observed that the Stark shift of the system
increases as the electric field increases and it is
larger for smaller angles as it is also evident from
Fig. 4. These two facts are a consequence of the
quantum confinement of the electron in the tip
since this confinement is responsible of an incre-
ment of the kinetic energy of the electron. On the
other hand, for y4p, the geometry of the wedge
changes to a Pacman-like shape rather than a tip
(as shown in the inset of Fig. 5 for y0 ¼ 3p=2). In
this case, depending on the field, the Stark shift
could be either positive or negative as it is also
shown in Fig. 5.
In Fig. 6, DE is shown as a function of the

electric field for various wedge radii. In the case
y0 ¼ p=20, it can be observed that for a given
radius, the electric field enhances the energy of the
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electron since this is more strongly confined to the
tip of the wedge. This fact is not true anymore for
y0 ¼ 3p=2. Indeed, in this figure, it can be observed
the change of the sign of DE as the radius increases
for y0 ¼ 3p=2. For d=an ¼ 1, EðbÞ is still larger
than E1,1,1, but for d=an ¼ 5 or 10 this is no longer
true. The change of sign in DE, for a given value of
the electric field, is a direct consequence of the
choice of the origin for the electric potential,
V F ¼ jejFx, at x ¼ 0, as we will discuss later.
In Fig. 7, we plot the ground-state electronic

density, C2ðx; y; z ¼ 0Þ, for the wedge-shaped
geometry with no applied electric field (panel a)
and with an applied electric field (panel b). The
effect of the field is to push the electron towards
the tip of the wedge as shown by the maximum of
C2, which represents the most probable position of
Fig. 7. The ground-state electronic density, C2ðx; y; z ¼ 0Þ, for y0 ¼
F=F 0 ¼ 10 (panel b). The analog one-dimensional potential is shown
the electron. On the other hand, for the Pacman-

shaped geometry, if there is no applied field, the
situation is very similar to that of the wedge-
shaped case in which C2 presents a maximum
located at some point x40, as shown in Fig. 8).
When we apply a small electric field, the maximum
of C2 is only slightly shifted towards the origin
(Fig. 8b). However, if the electric field is strong
enough, then the maximum shifts to a position
with xo0 and C2 shows two peaks of the same
height due to the shape (Fig. 8c). This height is the
same because it is equally probable to find the
electron located in any of the two sides (jaws) of
the Pacman-shaped geometry.
The change of sign in DE of Figs. 5 and 6 can be

understood more clearly if we consider a one-
dimensional analogy of the system. First, we
p=20 and d=an ¼ 10, is shown for F=F0 ¼ 0 (panel a) and

in panels c and d. The Stark shift, DE, is positive in this case.
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Fig. 8. The ground-state electronic density, C2ðx; y; z ¼ 0Þ, for y0 ¼ 3p=2 and d=an ¼ 2, is shown for F=F 0 ¼ 0 (panel a), F=F 0 ¼ 0:5
(panel b) and F=F0 ¼ 10 (panel c). The analog one-dimensional potential is shown in panels d, e and f. The Stark shift, DE, is positive

or negative depending on the magnitude of the applied electric field.
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discuss the wedge-shaped geometry. In absence of
an electric field, the electron can be seen as a
particle moving in a one-dimensional potential
with a minimum near the position of the maximum
of C2, as it is shown in Fig. 7c. The horizontal line
represents the ground-state energy, E1,1,1, of this
system. When an electric field is applied, the
resulting potential in which the particle is moving
can be approximated by the potential without
electric field plus the potential of the applied
electric field, V F ¼ jejFx. These potentials are
shown in Fig. 7d. As it can be seen in the figure,
the resulting potential presents a minimum shifted
towards the tip of the wedge, in accordance with
the behavior of C2. It is also evident that the
minimum is shallower than in the case in which
there is no applied field, and therefore, its ground-
state energy, EðbÞ, is larger than E1,1,1, giving rise
to a positive value of the Stark shift, DE40. The
situation is very similar for the Pacman-shaped

geometry. In absence of applied field, the electron
moves in a potential with a minimum located near
the maximum of the electronic density, with a
ground-state energy, E1,1,1, as shown in Fig. 8d.
When a small electric field is applied, the resulting
potential presents a shallower minimum shifted
towards the origin but always with x40. The
corresponding ground-state energy, EðbÞ, is larger
than E1,1,1, giving again rise to a positive value of
the Stark shift, DE40 (Fig. 8e). However, if the
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field is large enough, then the potential may
present a deeper minimum shifted towards xo0,
with a corresponding ground-state energy, EðbÞ,
smaller than E1,1,1. This gives rise to a negative
value of the Stark shift, DEo0, which is not
present in the wedge-shaped geometry (Fig. 8f). As
it results clear, this change in sign is only a
consequence of choosing the origin of the electric
potential at x ¼ 0, and it could be suppressed, for
a given field, with a different choice. The
important fact is that, the application of an electric
field pointing to the wider part of the wedge pushes
the electron to the opposite side, confining it either
to the tip of the wedge or to its two tips for the
Pacman-shaped geometry.
For an electric field applied to the opposite

direction (i.e. to the narrower part of the wedge)
the electron is pushed to the wider side of the
wedge and then the quantum confinement is
smaller (if the field is not very strong) than in the
case in which there is not applied field. Therefore,
DE is always negative as it is shown in Fig. 9. It
can be also observed that, given an angle and a
radius, the magnitude of the Stark shift increases
as the electric field is increased. However, the most
important result in this case is that the Stark shift
is very insensitive to the angular aperture of the
Fig. 9. DE is shown as a function of the wedge radius for

various electric fields, which are applied directed to the tip of

the wedge.
wedge. For instance, when F=F0 ¼ 10, it can be
observed in Fig. 9 that the Stark shift is almost the
same for p=20, p=15 and p=10 and also for p=2, p
and 3p=2. Moreover, we found that EðbÞ tends to
almost zero for small fields (F=F0 ¼ 0:5 and 1) as
the radius is increased, while for F=F0 ¼ 10 it
tends to a negative value, in an almost independent
way of the angular aperture in both cases.
4. Conclusions

We have analyzed the effect of an applied
electric field on the electronic ground-state energy
of a quantum box with a geometry defined by a
wedge. We have shown how the quantum confine-
ment effect strongly depends on the geometry of
the system and the direction of the electric field.
When the field is applied directed to the wider part
of the wedge, the electron is pushed to the opposite
side, then being strongly confined either to the tip
of the wedge or to its two tips for the Pacman-

shaped geometry, increasing in both cases its
kinetic energy. However, due to the choice of the
origin of the electric potential, for a particular
value of the applied electric field, the Stark shift
may even be negative. This change of sign may be
avoided by changing adequately the origin of the
electric potential. Finally, for the field applied in
the opposite direction (to the tip of the wedge),
there is no electronic confinement for the con-
sidered applied electric fields and, given that the
electronic energy decreases, the Stark shift is
always negative and is very insensitive to the
angular aperture of the wedge. As a future work,
we will consider the influence of the dielectric
constant of the wedge, to incorporate more
complicated applied electric fields, and calculate
the energies of excited states as well as the
inclusion of impurities in the system, in order to
make a more realistic modeling of the tip of a
typical cantilever of an atomic force microscope.
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