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Velocity fluctuations resulting from the interaction of a bubble
with a vertical wall
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The interaction and motion of a spherical bubble with a vertical wall moving in an ideal fluid are
analyzed. This case is representative of a bubble that moves at a high Reynolds number and has a
small Weber number. Using potential flow theory, the velocity potential is obtained using a double
expansion in spherical harmonics. The presence of the wall is approximated by considering the
motion of a bubble and its virtual image. The motion equations, obtained considering an energy
conservation argument, are solved numerically for a range of initial conditions. The mean and
variance of the bubble velocity are calculated. In particular, the bubble velocity variance is obtained
as a measure of the bubble velocity fluctuations resulting from the interaction with the wall. The
predictions of this model are in good qualitative agreement with some recent experimental
results. © 2005 American Institute of Physics. �DOI: 10.1063/1.2074707�
When a gas bubble moves in a clean liquid, free of sur-
factants, of relatively small viscosity, its motion and the mo-
tion of the surrounding fluid can be modeled using potential
theory. In particular, if the Reynolds number is high and the
Weber number is small, the agreement between theoretical
predictions and experiments is very good.1 The Reynolds
number is defined as Re=Ubdb /�, where � is the fluid kine-
matic viscosity, and Ub and db are the velocity and diameter
of the bubble, respectively. The Weber number is defined as
We=�Ub

2db /�, where � is the surface tension of the liquid-
gas interface and � is the density of the fluid. Air bubbles of
1–2 mm in diameter moving in clean water satisfy this dual
limit.

Based on this fact, many authors have proposed theories
to describe the flow properties of bubbly liquids �see, for
example, Ref. 2 and references therein�. Although these the-
oretical attempts have been proved to qualitatively describe
the behavior of monodispersed noncoalescing bubbly
liquids,3 improvements should be considered to achieve
proper quantitative predictions. One of the limitations of
these models is that the influence of the containing walls is
not considered. Zenit et al.3 identified this effect as one of
the possible mechanisms responsible for the limited agree-
ment between experimental and theoretical results. In par-
ticular, these authors identified that the mean rise velocity of
bubbles ascending in a vertical column was somehow
smaller than that observed for individual bubbles. They ob-
served that the bubbles in the column interacted with each
other but also significantly with the containing walls. There
have been recent studies that analyze the behavior of a
bubble moving near a wall, for the dual limit of high Re and
low We numbers.4,5 Both studies observed that, for this flow
regime, the bubbles were attracted to the wall and collisions
and rebounds occurred repeatedly. Figure 1 shows the mo-
tion of a small nitrogen bubble moving in clean water, in the
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vicinity of a vertical wall �obtained from Ref. 4�. It can be
clearly observed that the bubble is attracted towards the wall
and repeatedly collides with it. During the collision, the
mean velocity of the bubble is reduced. After a short time,
the bubble continues to move away from the wall, but it is
attracted to it again. The hydrodynamic interactions between
pairs of bubbles were recently reported by Legendre et al.6

They found that the direction of the force between two
bubbles changes direction from repulsion to attraction as the
bubble Reynolds number increases.

In this paper the effect of a wall on the motion of an
individual bubble using potential flow theory is explored. A
system of two identical bubbles moving side by side at the
same velocity is considered to simulate the presence of a
vertical wall. The movement of a pair of bubbles in potential
flow has been investigated by several authors.7–10 In particu-
lar, we followed closely the work of Kok9 and Kumaran10 to
implement the problem of our interest. In this manner, the
wall-induced fluctuations are calculated for an idealized sys-
tem. Clearly the predictions obtained from potential flow
theories are of limited use; however, no other reliable models
that include viscous and wake effects are yet available.

Following the framework first proposed by Biesheuvel
and van Wijngaarden,8 Kok9 and Kumaran10 modeled the
case of different sized bubbles moving in arbitrary directions
in a perfect irrotational fluid. The velocity potential for the
bubble pair can be obtained using a double expansion in
spherical harmonics considering the size and velocity of each
bubble and the separation between them. The coefficients of
the spherical harmonics are obtained considering the bound-
ary conditions over the bubbles’ surfaces. Once the potential
function is obtained, the equation of motion of the bubble
pair can be obtained in two different ways. The first one,
used by Kok,9 consists in calculating the kinetic energy of
the system and obtain the motion equation from Lagrange
equations.7 The second formulation, used by Kumaran,10 cal-

culates the pressure around the spheres, using Bernoulli’s

© 2005 American Institute of Physics6-1

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.2074707
http://dx.doi.org/10.1063/1.2074707
http://dx.doi.org/10.1063/1.2074707


098106-2 Moctezuma, Lima-Ochoterena, and Zenit Phys. Fluids 17, 098106 �2005�
equation. Once the forces are known, a momentum balance
equation can be written for each bubble considering the
added mass for each bubble. We have verified that these two
approaches give identical results.11 The results presented
here were obtained considering the conservation of energy
approach. The kinetic energy of the fluid7 is calculated, inte-
grating the fluid motion around the bubble pair. Once the
kinetic energy is known, Lagrange’s equations7 are used to
obtain the equation of motion for each bubble.

As mentioned above, these equations were obtained for a
general case both by Kok9 and Kumaran.10 Our interest is to
use these equations to study the motion of a single bubble in
the vicinity of a solid wall. The motion of two equal bubbles
aligned horizontally, moving at the same vertical velocity, is
considered. One bubble will be considered the image of the
other one; the half distance between their centers will there-
fore be the distance to the wall. The case under consideration
is shown in Fig. 2.

The simplified equations of motion are

�lVb
d

dt
�a11

dx

dt
� = F1, �1�
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�a33

ds

dt
� =

1

2
�lVb�ẋ2 �
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where Vb is the bubble volume, and ẋ is the bubble velocity
in the vertical direction. The half distance between the
bubble and wall is s and ṡ is velocity at which the bubble
approaches the wall. F1 and F3 are the external forces on the
bubble �drag, buoyancy, etc.�. The coefficients a11 and a33

FIG. 1. Bubble moving near a wall. db=1.5 mm, Re=210, We=0.51, S /R
=4.2. Two different experiments for the same nominal conditions are shown.
The bubble image was captured in the same plate for different time instants.
Taken from Lima �Ref. 4�.
are calculated from the velocity potential of the bubble pair.
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The following functional form for the coefficients, in powers
of R /s, can be deduced:

a11 = − 1 +
3

2
�R

s
�3

−
3

4
�R

s
�6

+ ¯ , �3�

a33 =
1

4
+

3

4
�R

s
�3

+
3

4
�R

s
�6

+ ¯ , �4�

where R is the bubble radius. The system of equations �1�
and �2� can be solved for given initial conditions
�x�0� , ẋ�0� ,s�0� , ṡ�0��. External forces, F1 and F3, could be
considered; however, for this analysis we are interested on
the free motion of spheres in an ideal environment to only
evaluate the inertial effects. A program was written in MAT-

LAB© to solve this system. The program was written such
that any number of terms could be used to calculate a11 and
a33.

The bubble is placed at t=0 at a certain distance away
from the wall, s�0�, at x�0�=0. An arbitrary initial vertical
velocity is also imposed ẋ�0�=U�, with zero horizontal ve-
locity, ṡ�0�=0. The system evolves with time; the position,
velocity, and acceleration are calculated using a Runge-Kutta
scheme for each time step. The time step is refined according
to an optimization algorithm to ensure the accuracy of the
integration.

The coefficients a11 and a33 could be calculated up any
order of the power �R /s�. The numerical accuracy of the
coefficients was evaluated by calculating their values using
an increasing number of terms. For instance, using 100 terms
in the expansions results in a 0.65% difference compared to
the calculations of Kok who used only five terms. To ensure
a consistent accuracy, N=20 was chosen for all the results
shown in this paper. A complete analysis of the dependence
of the results on the number of terms, and an analysis of the
convergence of the series as s /R→1, can be found in Ref.
11.

Typical results of the trajectory are shown in Fig. 3.
Several initial conditions were tested, keeping the initial di-
mensionless distance fixed. The bubble moves initially up-

FIG. 2. A bubble moving parallel to a wall.
wards, but it is attracted to the wall. For the first case the
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initial separation is only s /R=4 but the first collision with
the wall occurs at height of x /R=7, approximately. This at-
traction results from the hydrodynamics force that the fluid
exerts on the bubble. It can also be observed that the bubble
collides against the wall �as its center reaches a distance of
s /R=1�. To observe the evolution of the bubble trajectory for
longer times, and repeated collisions, an artificial collision
condition was imposed. When s /R reached 1.0001, an in-
stantaneous elastic rebound was imposed: the direction of the
horizontal velocity, ṡ, was inverted. After the rebound the
simulation was allowed to continue. Since no dissipation
mechanisms are considered, the bubble returns to its original
horizontal position and recovers its initial velocity.

Clearly, the results presented in this dimensionless form
are nearly the same despite the different initial conditions.
For the case of the vertical and horizontal velocities, shown
in Fig. 4, the results for the different cases are again col-

FIG. 3. Trajectories of a bubble interacting with a wall. First case �thin
lines�, different bubble diameters and initial velocities, initial distance to
wall s�0� /R=4: solid line, R=0.5 mm, U�=0.25 m/s; dashed line, R
=0.25 mm, U�=0.25 m/s; dash-dotted line, R=0.7 mm, U�=0.25 m/s;
dotted line, R=0.7 mm, U�=0.5 m/s. Second case �thick lines�, R=1 mm,
U�=0.25 m/s; dashed line, s�0� /R=3; dash-dotted line, s�0� /R=4.

FIG. 4. Horizontal and vertical velocities as a function of time. The results

for the same cases are shown in Fig. 3.
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lapsed onto approximately the same curve. As the bubble
moves closer to the wall, the horizontal velocity increases; as
a result, the vertical velocity decreases. At the moment when
the bubble touches the wall, the collision condition is applied
and the direction of motion of the bubble is reversed. The
velocity reversal models the collision-rebound process in the
simplest manner. Note also that at the moment of collision,
the vertical bubble velocity reaches its minimum value of
approximately 80% of the unperturbed value. A similar ve-
locity reduction is observed in the experiments of single
bubbles interacting with a vertical wall.5 However, one must
keep in mind that the experiments show a much more com-
plex process during the collision.

The results for different initial distances to the wall are
also shown in Figs. 3 and 4 �thick lines�. For all cases the
same general behavior is observed: the bubble is attracted to
the wall and its horizontal velocity increases as it moves
towards the wall. The vertical velocity decreases reaching a
minimum at the moment of collision, of the same magnitude
for all initial distances. Clearly, as the distance from the wall
increases the strength of the hydrodynamic force decreases;
hence, the vertical distance at which the bubble collides with
the wall increases with the initial distance from the wall. In
other words, the bubble collision frequency decreases as the
initial distance to the wall increases. For all cases, the initial
position and velocity are recovered after the collisions with
the wall.

To obtain a measure of the wall-induced velocity fluc-
tuations the mean and variance of the bubble velocity were
calculated. The mean vertical velocity, 	Vx
, and the standard
deviation of the vertical and horizontal velocity components,
�	Vx�

2
 and �	Vs�
2
, were obtained for a range of initial wall

distances. Figure 5 shows the mean dimensionless vertical
velocity as a function of the normalized initial bubble posi-
tion. The mean vertical velocity shows an interesting non-
monotonic behavior. The curve shows a minimum value at a
certain distance from the wall, approximately s /R=1.45. For
this case, the maximum amount of velocity reduction is ap-
proximately 4%. For large distances the mean value ap-

FIG. 5. Dimensionless mean vertical bubble velocity as a function of the
normalized wall distance.
proaches the unperturbed velocity, as expected. However, for
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very small distances the velocity of the bubble appears to
increase. As it can be seen in Figs. 3 and 4, the trajectory of
the bubble changes with the initial distance. If the distance is
large, the collision frequency is small. On the other hand,
when the bubble is very near the wall, although the collision
frequency is high, the deceleration caused by each collision
is small; therefore, the mean velocity does not decrease. This
effect can be clearly observed in Fig. 6, which presents a
measure of the fluctuating components of the bubble veloc-
ity. The velocity fluctuations reach a maximum value at ap-
proximately the same distance where the mean vertical ve-
locity shows a minimum value. Actually, experiments have
shown that for such small velocities sliding on the wall,
rather than repeated bouncing, is observed. Again, for such
small initial distances the results of the model are not ex-
pected to give accurate results. Note also that the horizontal
component is significantly larger than the vertical one.

A comparison with experimental results is possible.
Lima4 and DeVries5 performed experiments to investigate
the motion of small air bubbles near a vertical wall in water;
however, the experiments by DeVries were performed with
clean bubbles which behavior is expected to be closer to that
predicted by potential flow theory. In Fig. 6, along with the
model predictions, experimental measurements of the two
components of the velocity fluctuations are also shown for
several of the experimentally obtained bubble trajectories ob-
tained by DeVries,5 for different bubbles sizes, velocities,
and initial distances to the wall. Only the experiments that
showed repeated bouncing were considered. The experimen-
tal results have been grouped in three different ranges of Re
number.

For all cases the vertical velocity fluctuations calculated
with the model are under predicted by approximately a factor
of 3. Clearly, the bubble velocity does not decrease as much
as what is observed experimentally. However, the predicted
fluctuations are of the same order of magnitude as the ex-

FIG. 6. Dimensionless fluctuating velocity as a function of the normalized
wall distance: circles, horizontal component; squares, vertical component.
The filled symbols show the model predictions. The empty symbols show
the experimental measurements calculated from Ref. 5.
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perimental measurements. On the other hand, the predicted
horizontal fluctuations are approximately four times larger
than those observed experimentally.

A comparison of the predicted reduction of the mean
velocity with other experimental measurements can also be
obtained. The experiments performed by DeVries5 showed
that the velocity of individual bubbles is reduced signifi-
cantly �up to 50% of the terminal bubble velocity� during
one collision event. The reduction calculated in this investi-
gation was only of the order of 20%. This is a clear indica-
tion that the calculation ceases to be valid when the bubble is
very near the wall.

In summary, this investigation presents the predictions of
a model to calculate the motion of a clean spherical bubble
near a wall at a high Re number. The results show that the
inertial hydrodynamic interaction of a bubble with a wall
results in an attractive force that makes the bubble to migrate
towards the wall and collide with it repeatedly. In particular,
these results are in relative agreement with experiments.
With the model near-analytic predictions can be obtained for
the bubble velocity fluctuation resulting from the wall inter-
action. Moreover, the comparison with experimental mea-
surements clearly shows the limitations of the idealized
model and demonstrates that viscous effects must be ac-
counted for to properly predict wall-induced fluctuations. We
hope that these calculations can be used to guide future more
complete models. In order to fully calculate the bubble-wall
interaction process, a complete Navier-Stokes solver would
have to be implemented for the problem studied here. We
intend to pursue this objective in the future.
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