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Apartado Postal 70-360, 04510 México, D.F., Mexico.

G. Ramı́rez-Santiago
Instituto de Fı́sica, Universidad Nacional Autónoma de México,
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We present an algorithm for constructing polymers with defined branching structure and whose morphology is determined by diffusion. We
apply this procedure to the construction of star-branched polymers, and we calculate their fractal dimension. This algorithm may be useful
for building large branched polymers near their relaxed configurations, which in turn may help determine the properties of the equilibrium
configurations of dilute solutions made of these polymers.
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En este trabajo presentamos un algoritmo para construir polı́meros con una estructura ramal predeterminada y cuya morfologı́a está de-
terminada por procesos difusivos. Aplicamos este procedimiento para construir polı́meros de estrella con distintos números de brazos y
calculamos su dimensión fractal. Este algoritmo puede ser útil para construir polı́meros ramificados de gran tamaño cerca de sus configura-
ciones de equilibrio, lo cual a su vez puede ayudar a determinar las propiedades de los estados de equilibrio de soluciones diluidas hechas de
estos polı́meros.

Descriptores: Polı́meros de estrella; agregados limitados por la fusión.

PACS: 61.43.Hv; 05.40.-a; 82.70.Dd; 82.35.Lr

1. Introduction

The properties of star-branched polymers have been studied
using a variety of methods, both experimentaly and theoret-
ically [1, 2]. Such systems are interesting from the theoret-
ical point of view because the understanding of the details
of the structure should help in predicting important proper-
ties of polymeric systems on a macroscopic scale, such as
viscoelasticity. Star-branched molecules are nice stepping-
stone model objects for studying systems in which the topol-
ogy of the molecules plays an important role. Such objects
often exhibit properties different from their linear counter-
parts; the differences are mostly caused by the nonuniform
density of stars as well as by the interactions between the
arms. During the last two decades, some simple computer
models star-branched polymers have shown how these struc-
tures are made up and have pointed out the differences be-
tween static and dynamic properties when compared with
linear chains [3]. However, these studies are limited since a
small number of arms as well as a small number of monomers
were considered, and they were usually done on a lattice. The
main difficulty is to relax efficiently these polymeric struc-
tures with several branches and a relatively large number of
monomers due to steric effects.

The purpose of this work is to introduce a novel numer-
ical algorithm based on a diffusive procedure to build up ef-
ficiently two-dimensional star-branched polymers made of
several branches and many thousands of monomers. This
algorithm produces quenched structures that are not in a
fully equilibrated configuration. Nonetheless, it permits the

growth of very large structures that appear to have a slightly
larger fractal dimension than their thermodynamically equi-
librated counterparts obtained with a much lower total of
monomers (lass than one thousand). This means that the
configurations obtained are expected not to be very differ-
ent from their equilibrated counterparts and may be useful
in approximately determining the physical properties of the
equilibrated structures.

2. Construction of the diffusion-limited star-
branched polymers

Here we will present the algorithm for constructing a
diffusion-limited star-branched polymer (DLSP) in two di-
mensions. First, we propose the branching topology of
the desired DLSP, that is, we define the number of arms
or branches that the star polymer will have. For exam-
ple, in Fig. 1 we show the topology of a DLSP with three
branches. The monomers are conveniently numbered so that
a given monomer is linked to a target monomer. In the ex-
ample shown in Fig. 1, monomers 2, 3, and 4 are linked
to monomer number 1. Monomer number 5 is linked to
monomer 2, monomer 6 is linked to monomer 3, and so
on. All N monomers of the structure are linked to a spe-
cific target monomer. Once the topology is defined and the
monomers are numbered, the building procedure starts with a
monomer of diameter a located at the origin. This is the seed
monomer and it is numbered 1. Then, we release a second
monomer from a circle of arbitrary radius centered at the tar-
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get monomer as sketched in Fig. 2. This monomer is allowed
to move randomly until it reaches the target monomer, in
which case it is attached to it at the contact point. Successive
identical particles are attached to the aggregate in the same
way. That is, once the structure has been partially grown, the
next numbered monomer is released from a random point on
a circular shell of arbitrary radius centered at the respective
target monomer. This monomer moves randomly until the
distance between the released particle and any of the other
particles of the aggregate happens to be less than a; then,
the released particle is “killed” and a new one with the same
number is released. Only in the case in which the incoming
particle is close to the target particle (within a distance less
than a) the particle sticks to its target particle at the contact
point and a new one with the next number is released. If the
particle moves to a distance too far away from the aggregate,
this particle is also “killed” and a new one, with the same
number, is released. To speed up the simulation we used a
step-size control based on a recursive procedure to permit a
rapid approach of the particle to the aggregate without hin-
dering large excursions [4]. In all simulations the “killing”
disc had size 2rmax, where rmax is the farthest distance be-
tween the origin and the monomers of the cluster.

FIGURE 1. Schematic sketch of the topology of a three-arm star
polymer.

FIGURE 2. Sketch that shows the procedure for building a DLBP.
The black disc represents the target monomer.

3. Results

In Figs. 3a, b, c, and d, we show typical configurations of
the DLSP obtained using the algorithm described in the pre-
vious section for star-branched polymers with p = 1, 3, 6,
and 12 arms and N = 10, 000 monomers. We observe that
the arms of the branched structures are wiggled due to the
diffusive process used to build them up. In order to make a
quantitative estimate of the compactness of the structures, we
calculated their fractal dimension from the particle-particle
correlation functions of the aggregates. This is done by the
usual histogram method [5].

From a randomly chosen monomer, the distances r
to all other monomers are calculated, and the histogram
N(r,∆) of the distance distribution is obtained by count-
ing the number of distances in the interval (r, r + ∆).
The histogram is further averaged after all the monomers
of the aggregate are swept and for a number of different
DLSP configurations. The pair-correlation function for two-
dimensional objects is then obtained by means of the for-
mula, g(r) = N(r, r + ∆)/(2πr∆). Finally, from the curves
for g(r) versus r, we extracted the fractal dimensions by
obtaining the slopes of the linear regions of the curves and
using the formulae df = 2+slope, with df the fractal di-
mension. In order to exemplify the procedure, in Fig. 4a,
b, c, and d we show the pair-correlation function for star-
branched polymers with N = 10, 000 monomers and p = 1,
3, 6, and 12 arms, respectively. These results were obtained
by averaging over 10 different DLSP configurations. In this
case the fractal dimensions obtained were df = 1.22± 0.01,
df = 1.25± 0.01, df = 1.25± 0.01, and df = 1.35± 0.01,
for p = 1, 3, 6, and 12, respectively. As expected, as the
number of branches increases, the structure becomes more
compact. This is more clearly shown in Fig. 5 where we have
plotted the pair-distribution
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FIGURE 3. Typical configurations of DLSP. (a) single-arm star or equivalently linear polymer, (b) three-arm star polymer, (c) six-arm star
polymer, and (d) 12-arm star polymer.

FIGURE 4. Pair-distribution function for (a) p = 1, (b)p = 3, (c)p = 6, and (d)p = 12 arm DLSP. Straight lines represent the slopes of the
linear regions from which the fractal dimensions are obtained.
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FIGURE 5. Pair-distribution functions for all the DLSP considered.

functions for all the DLSP considered. Notice that not only
the fractal dimension of the star increase as the number of
branches increases, but, a second linear region also shows up
for the star with 12 arms. However, this second linear re-
gion is related to the average density profile rather than to
the fractal dimension of the structure [6]. For stars with a
very large number of arms, this second region should ap-
pear more clearly. We should notice that the fractal di-
mensions obtained for the DLSP structures of this paper are
systematically smaller than their thermodynamically equi-
librated counterparts. That is, if we considered polymers
with the same branched structure but in which the monomers
can move freely maintaining the connectivity and avoiding
overlapping, their fractal structure would be larger than that
obtained here. For example, for a two-dimensional self-
avoiding walk linear polymer the fractal dimension is 1.33,

a value larger than 1.22, the value obtained for the equivalent
diffusively-built linear structure. Also, we can compare our
results with those of Ref. 7, where equilibrated star-branched
polymers with p = 3 arms were considered but embedded in
a three-dimensional space. In this case the fractal dimension
of very small aggregates with a maximum of 799 monomers
was df = 1.2. The star-branched polymers considered in the
present paper are made of N = 10, 000 monomers, which
is enough to show that the algorithm to construct the DLSP
works properly. However, the procedure can easily handle
much larger structures in a reasonable computation time.

4. Conclusions

In conclusion, we have proposed a diffusion-based numeri-
cal algorithm to construct branched polymers with any de-
sired topology and total number of monomers, as long as the
branching is not too high, and excluding closed loops. We
exemplified the procedure with the construction of a num-
ber of star-branched polymers. This mechanism produced
quenched structures in states that are more stretched than
their thermodynamically equilibrated counterparts. This is
due to the directed process used to build them. In the near
future we will extend these results to include structures with
different topologies like dendrimers, stars with polydispersed
arms, and other kinds of hyperbranched structures in both two
and three dimensions.
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