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Abstract

A novel method combining the renormalization and convolution techniques is developed for the Kubo–Greenwood formula. Using
this method, the dc and ac conductance at zero temperature in two-dimensional (2D) quasiperiodic systems are studied. The results show
that the ac conductance of quasiperiodic systems could be significantly modified by the presence of periodic leads, which are usually
employed as the measurement connections. Furthermore, when the system is periodic along the applied electrical field, a quantized
dc conductance spectrum is observed at zero temperature and this quantized spectrum is destroyed when an oscillating electrical field
is introduced. However, when the electric field is applied along a quasiperiodic direction of the system, the ac conductance spectrum
shows a non-Drude behaviour, in good agreement with experiment results.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decades, the thin-film technology had an ex-
tremely fast grow and development. Nowadays, it is possi-
ble to produce truly two-dimensional (2D) systems, where
many quantum phenomena are observed at low tempera-
tures, such as the quantum Hall effect [1]. In addition,
the thin-film conductors are pervasive in numerous appli-
cations. For example, they are widely used in microelec-
tronics, solar cells, flat panel displays, and sensors. The
physical properties of these films are determined by their
atomic order and in general, an aperiodic ordering of
atoms leads a multiband structure of excitations, such fact
could yield new applications. For instance, efficient second-
and third-harmonic generations are observed from a quasi-
periodic multilayer of nonlinear optical materials [2]. More
recently, a quasiperiodic ultrathin film is obtained by the
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deposition of Cu atoms on the fivefold surface of an icosa-
hedral quasicrystal [3]. On the theoretical side, the elec-
tronic transport in 2D aperiodic systems is an interesting
but not widely studied subject, since the electronic trans-
port and aperiodic lattices both per se are not easy topics.
The absence of reciprocal space makes difficult the study of
macroscopic systems. In this paper, we investigate the elec-
tronic transport in periodic and quasiperiodic 2D lattices
within the Kubo formalism. This analysis is carried out
by means of a new method that combines the renormaliza-
tion and convolution techniques developed for the Kubo–
Greenwood formula [4]. This method has the advantage
of being able to quantify, in an exact way within the Kubo
formalism, the electrical conductance of multidimensional
periodic or quasiperiodic systems at macroscopic scale.

2. The renormalization + convolution method

There are several ways to examine the localization and
the electronic transport in solids [5]. In this study, we
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Fig. 1. The electrical conductance at zero temperature of a 2D tape
[g(l,x,0)] as a function of the Fermi energy (l) and the frequency (x). This
tape contains 121394 · 22 atoms and they are arranged periodically and
quasiperiodically, with c = tB/tA = 0.8, in its longer and shorter sides,
respectively. The external electric field is applied along the longer side.
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choose the Kubo formalism to calculate the dc and ac elec-
trical conductivity (r) of multidimensional Fibonacci sys-
tems. The Kubo–Greenwood formula can be written as [6]

rxxðl;x; T Þ ¼
2e2�h
Xpm2

Z 1

�1
dE

f ðEÞ � f ðE þ �hxÞ
�hx

� Tr pxImGþðE þ �hxÞpxImGþðEÞ½ � ð1Þ

where X is the volume of the system, px is the projection
of the momentum operator along the applied electrical
field, G+ is the retarded one-particle Green’s function,
and f(E) = {1 + exp[(E � l)/kBT]}�1 is the Fermi–Dirac
distribution with the Fermi energy l and temperature T.
In order to isolate the quasicrystalline effects on the con-
ductivity, we consider a simple 2D s-band tight-binding
Hamiltonian with null self-energies, given by

H ¼
X

i;j

tði;jÞ;ðiþ1;jÞ i; jj i iþ 1; jh j þ tði;jÞ;ði�1;jÞ i; jj i i� 1; jh j
�

þ tði;jÞ;ði;jþ1Þ i; jj i i; jþ 1h j þ tði;jÞ;ði;j�1Þ i; jj i i; j� 1h j
�

where t(k,l),(m,n) denotes the hopping integral between near-
est-neighbour sites indicated by (k,l) and (m,n). Using
px = (im/�h)[H,x], then px ¼ ima

�h

P
i;jftði;jÞðiþ1;jÞji; jihiþ 1; jj�

tði;jÞði�1;jÞji; jihi� 1; jjg.
Recently, we have developed a novel renormalization

method for the Kubo–Greenwood formula in Fibonacci
chains [7], and we address the multidimensional quasi-
periodic systems using the convolution technique, when
the Hamiltonian of the system is separable, i.e., H =
Hk � I? + Ik � H?, being Hk(Ik) and H?(I?) respectively
the Hamiltonian (the identity of the corresponding Hilbert
space) of the parallel and perpendicular subsystem with re-
spect to the applied electric field [8]. For instance, the dec-
agonal quasicrystals can be visualized as a periodic
stacking of quasiperiodic layers and their Hamiltonian
can be expressed as a sum of the periodic and quasiperiodic
parts within the nearest-neighbour tight-binding approxi-
mation. Therefore, the electrical conductivity can be ex-
pressed as [4]

rðl;x; T Þ ¼ 1

X?

Z 1

�1
dyrkðl� y;x; T ÞDOS?ðyÞ ð2Þ

or

rðl;x; T Þ ¼ 1

X?

X
b

rkðl� Eb;x; T Þ ð3Þ

where rk is the electrical conductivity of the parallel subsys-
tem; X?, DOS? and Eb are respectively the volume, the
density of states and the eigenvalues of the perpendicular
subsystem, i.e., H?jbi = Ebjbi.

3. Results

Let us consider a square-type lattice, in which the atoms
in each direction can be arranged periodically or quasiperi-
odically. The latter is obtained by alternating two sorts
of bonds, tA and tB, following the Fibonacci sequence.
This bond Fibonacci sequence (Fn) is defined as F1 = A,
F2 = BA, and Fn = Fn�1 � Fn�2. For example, F5 =
BAABABAA. For the sake of simplicity, a uniform bond
length (a) is taken.

In Fig. 1 we show the electrical conductance (g) at zero
temperature, defined by g(l,x,0) = rxx(l,x,0)X?/Xk, for a
2D lattice of 121394 · 22 atoms, whose atoms on the long
and short sides are respectively arranged periodically and
quasiperiodically with c = tB/tA = 0.8. The electrical field
is applied along the lengthy direction that is connected to
two semi-infinite periodic leads with null self-energies and
hopping integrals t = tA. Observe the quantized conduc-
tance with a uniform step height g0 = 2e2/h at x = 0, as
found experimentally in 2D electron gas devices [9]. How-
ever, these steps are not uniformly placed, whose positions
are defined by the eigenvalues, Eb, of the perpendicular
quasiperiodically-ordered cross section, as shown in Eq.
(3). For frequencies x50, these quantum steps are quickly
destroyed.

Fig. 2 illustrates a comparison of the ac conductance
spectra at l = 0 of the same lattice as in Fig. 1 with (open
circles) and without (solid circles) semi-infinite leads. No-
tice that for the latter case many resonant peaks appear
due to the discrete energy spectrum and the resonant fre-
quencies are located at ⁄x = ea � eb, being ea and eb eigen-
values of the system, since the Kubo–Greenwood formula
can be obtained from the Fermi’s golden rule within the
linear response approximation [10].

Finally, let us consider an isolate finite square lattice,
containing 121394 · 121394 atoms, arranged periodically
in one direction and quasiperiodically with c = 0.8 in the
other direction. In Fig. 3(a–c) its optical conductance at
high frequencies are shown for different values of l located
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Fig. 2. The ac conductance (g) versus the frequency (x) of the applied
electric field for the same system of Fig. 1, with (open circles) and without
(solid circles) semi-infinite periodic leads.
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Fig. 3. The frequency dependence of the optical conductance at zero
temperature (g) for the Fermi energy (l) located at (a) l = 0, (b)
l = 1.215jtj, and (c) l = 2.559jtj, which are indicated by dashed lines in
the spectra of the density of states (DOS). These conductance spectra are
obtained from a square lattice of 121394 · 121394 atoms arranged
periodically and quasiperiodically in each direction, when the electric
field direction is applied along the first (open circles) and the second (solid
circles) direction.
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at local minimums (dashed lines in their corresponding in-
sets), when the electrical field is applied along periodic
(open circles) and quasiperiodic (solid circles) directions.
Observe that for the former case g(l,x,0) / x�2, as pre-
dicted by the Drude theory [11], while for the latter case
an oscillating behaviour is observed, both in qualitative
agreement with the experimental results obtained from a
decagonal quasicrystal [12].
4. Conclusions

The renormalization plus convolution method could be
an interesting approach to the multidimensional aperiodic
systems. Using this method we have performed an analysis
of dc and ac 2D electrical conductance in an exact way
within the Kubo–Greenwood formalism. The results show
a clear quantized dc conductance when the system is
periodic along the applied electric field. The boundary con-
ditions of a system seem to be crucial for its ac conduc-
tance, which depends significantly on the nature of the
measurement contacts. The optical conductance without
contacts evaluated at a pseudo gap shows a quadratic
power–law decay with the frequency, in accordance with
the Drude theory, when the electric field is applied along
the periodic atomic arrangement direction. On the other
hand, an oscillating dependence on the frequency is
observed when the electric field is applied along the quasi-
periodic direction, as found in a one-dimensional ac con-
ductivity analysis [13].
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