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The motion of air bubbles in aqueous solutions of a hydrophobic alkali-swellable associative
polymer is studied in this work. The associative nature of these polymer systems dictates their
rheological properties: for moderate values of the shear rate, the formation of structure can lead to
a shear-thickening behavior and to the appearance of first normal stress difference. For larger shear
rates, the polymer associations can be broken, leading to shear thinning. In general, these fluids
show a Newtonian behavior for small values of the shear rate, but behave as viscoelastic liquids for
large shear rates. Experimental results show the appearance of a critical bubble volume at which a
discontinuity in the relation velocity-volume occurs; however, the velocity increase found in this
case is not as large as that previously reported for the case of shear-thinning viscoelastic fluids. The
discontinuity is associated with a significant change of the bubble shape: before the critical volume,
the bubbles are convex spheroids, while past the critical volume a sharp cusped end appears. The
appearance of the tail is also associated with the appearance of an inflection point (change of
curvature) on the bubble surface. Moreover, since the rheology of the liquids is measured it was
found that the discontinuity, and hence the change of shape, occurs when the elastic nature of the
liquid first manifests itself (appearance of a first normal stress difference). A comparison of the
measured velocities for small bubbles with predictions from a Stokes-Hadamard law shows a
discrepancy. The Newtonian viscosity measured in a viscometric flow was smaller than that
determined from a falling-ball arrangement. Considering the viscosity measured under this
nonviscometric flow, the comparison between theory and experiments was very good for bubbles
having volumes lower than the critical one. Moreover, due to the importance of the elasticity, and
due to the change of the shape of the bubble, a dimensionless number formed as the ratio of elastic
to surface tension forces clearly defines the change of the behavior for the bubbles rising in these
fluids. Finally, a photographic study of the peculiar shapes of the bubble tails, tip-, and
edge-streaming phenomena is presented. To our knowledge, experiments in this class of fluids have

not been reported to date. © 2006 American Institute of Physics. [DOI: 10.1063/1.2397011]

I. INTRODUCTION

The study of the motion of air bubbles in liquids has
received much attention because of its fundamental and prac-
tical importance. For the case of Newtonian liquids, there is
a vast collection of investigations that report interesting be-
haviors in many regimes.1 The understanding of such a sys-
tem is quite complete. For the case of the motion of gas
bubbles in non-Newtonian liquids, there are several unex-
pected phenomena that remain to be fully understood.>?

Among the peculiar phenomena observed in the case of
non-Newtonian liquids, of particular interest is the so-called
bubble velocity discontinuity. In a Newtonian fluid, the mag-
nitude of the rising velocity of a gas bubble is proportional to
the bubble size and the relation velocity-volume is mono-
tonically increasing. For the case of non-Newtonian liquids,
many authors* ™" have reported that there exists a critical
value of the volume of the bubble for which a discontinuity
of the velocity occurs: the bubble velocity increases mono-
tonically as the bubble size increases, but once a critical
volume is reached, the bubble velocity increases in a discon-
tinuous manner. In other words, the bubble velocity can in-
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crease many times for a slight increase of the bubble volume.
Astarita and Apuzzo4 were the first to report that the ratio of
the velocity after and before the jump ranged from 2 to 6,
depending on the polymer present in the solution. They ar-
gued that this discontinuity of the velocity was a result of a
transition from the Stokes regime to the Hadamard regime (a
change from a rigid to a free interface). However, it can be
shown that the velocity increase resulting from such a
change of the boundary conditions would be equal to 1.5.
Due to the fact that no discontinuity of the velocity has been
reported to occur for the case of falling spheres, some
authors™ have supported this argument, even though it does
not predict correctly the increase of velocity. Astarita and
Apuzzo4 also pointed out that the shape of the bubbles
changed before and after the velocity discontinuity.
Rodrigue et al® proposed an explanation for the discon-
tinuity. They argued that it results from a balance between
elastic and Marangoni instabilities, providing another major
difference between Newtonian and non-Newtonian hydrody-
namics. They have also studied the effect of surfactants in
the liquid,9 and concluded that surface active agents as well
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as elastic forces must be simultaneously present in order to
generate a sudden jump in velocity.

Recently, Herrera-Velarde et al."® studied the velocity
field around bubbles before and after the critical volume by
means of a particle image velocimetry (PIV) technique. They
reported that the appearance of the velocity discontinuity is
associated with the presence of the so-called negative wake:
for small bubbles (with a volume smaller than the critical
volume) the flow is similar to that of a bubble moving in a
Newtonian liquid; for large bubbles (with a volume larger
than the critical volume), the flow is strongly different and a
negative wake is present. The wake is called “negative” be-
cause the velocity, very close to the trailing end, is in the
direction of the motion of the bubbles; a short distance away
from the trailing end, the velocity reverses direction. For a
bubble rising in a Newtonian liquid, the wake is normal, as
the velocity in the wake is in the same direction as the mo-
tion of the bubble. Hassagar” was the first to observe this
behavior for bubbles and coined the term ‘“negative wake.”
Negative wakes have also been observed for spheres falling
in viscoelastic liquids.12 Many explanations have been pro-
posed to explain the appearance of this discontinuity; how-
ever, a complete self-consistent explanation is not yet avail-
able.

In order to acquire certain desired rheological character-
istics in commercial products, rheology modifiers are used,
i.e., surfactants (worm-like micellar systems), polymers
(cellulose derivates), and hydrophobically modified or
associative polymers (hydrophobically modified
hydlroxyethylcellulose).15’]6 In particular, surfactants and as-
sociative polymers are formed by two main parts: one hydro-
phobic and the other hydrophilic. In aqueous solutions, the
hydrophilic part is surrounded by water while the hydropho-
bic parts associate themselves with forming agglomerates
called micelles. The formation and rupture of these structures
dictate the rheological behavior of these solutions. In gen-
eral, for associative polymers and surfactants, modifications
of rheological properties can be accomplished with smaller
concentrations, compared to those needed for ordinary poly-
mers, hence reducing the amount of residual products.

In this investigation, experiments to determine the termi-
nal velocity of air bubbles in solutions of a hydrophobically
modified alkali soluble polymer (HASE) were conducted.
HASE is an associative polymer formed by a hydrophilic
principal backbone and some pendant hydrophobic groups in
a comb-like arrangement.ls’16 HASE solutions display com-
plex rheological properties because they exhibit a shear
thickening and/or thinning in addition to viscoelasticity. At
some specific concentrations HASE solutions have a region
of constant viscosity, but with the presence of elasticity, it is
possible to isolate elastic and shear-thinning effects. Another
advantage of using these liquids is that they serve as model
systerns.”’18

To our knowledge, experiments to determine terminal
velocities of gas bubbles on HASE-type fluids have not been
reported to date. Belmonte'” reported experimental results of
gas bubbles rising in worm-like micellar liquids, which share
a similar complex rheology as the HASE system presented
here. For these solutions, the bubbles develop a cusped edge
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FIG. 1. Experimental device to study the motion of air bubbles in a liquid.
Two cameras (one high speed and one high resolution) allow us to determine
the velocity and shape of the bubble.

and, for some conditions, self-trajectory oscillations ap-
peared. Some authors”* reported that the motion of settling
spheres in micellar-type fluids also shows trajectory oscilla-
tions.

In this paper, we present experimental results for single
bubbles rising in a HASE associative polymer. In Sec. II, the
experimental methods are presented. The theory concerning
bubbles moving in a Newtonian liquid at low Re is briefly
summarized (Sec. IIT). After presenting the experimental re-
sults (Sec. IV) and their comparison with the theory (Sec. V),
we present an explanation of the discontinuity of the velocity
based on the rheological properties of the liquid. In the last
section (Sec. VI), we present a short study of the shape of
bubble tails that appears after the discontinuity.

Il. EXPERIMENTAL METHODS
A. Materials and experimental setup

To analyze the motion of air bubbles in a liquid, the
experimental device, presented in Fig. 1, was used. A certain
volume was placed in a cap with a syringe, and by turning
the cap, the bubble was released to move upwards in the
inner tube. The width of the inner tube (D=9 cm) was
enough to minimize wall effects. In all cases, the ratio be-
tween the diameter of the bubble and the diameter of the
inner tube was smaller than 0.1. The inner tube length
(L=60 cm) was long enough for the bubbles to reach a stable
terminal velocity. In the outer square tube, a liquid with the
same refraction index as the solution present in the inner
tube was placed to reduce the refraction effects. Several
HASE concentrations were tested and their rheological char-
acterization is presented in the next part. Since, it has been
shown that the velocity of the bubbles can be dependent on
the injection frequency,9 a 5-min interval was left between
two consecutive bubbles to avoid this effect.
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TABLE 1. Properties of the bubbles (diameter d and equivalent shear rate
¥=U/r) in different solutions.

Fluid n° % HASE d (mm) (s
1 1.2% 0.3-9.4 1-42

1.5% 3.3-7.6 2-16
3 1.7% 2.5-8.7 1-10

HASE (Primal TT-935) is supplied by Rohm and Haas.
Aqueous solutions were prepared at 1.2, 1.5, and 1.7% by
weight in distilled water and left to rest for 48 h. A 0.5-M
solution of 2-amino,2-methyl propanol (AMP), supplied by
Aldrich, was used to adjust the pH to 9.0, at which the vis-
cosity is a function of pH peaks. Once the solutions were free
of bubbles, the rheological and surface tension properties
were determined.

B. Measurement methods
1. Bubble shape and velocity

The bubble terminal velocity and shape were determined
using two cameras. The first one was a high-speed camera
(RedLake MotionScope Model 1000), which measures the
velocity of the bubble using spatiotemporal diagrams. The
error in the bubble velocity determination was smaller than
1.5 mm/s. The second one was a high-resolution camera
(6 megapixels, Fuji FinePix Slpro), which determines the
bubble’s geometric characteristics (shape and volume) by
image analysis. The bubble volume was determined assum-
ing axial symmetry. Comparing the value of a known in-
jected volume with that obtained by image analysis, the error
is smaller than 2%. An average shear rate y was defined to
characterize the rheological properties of the fluid as the ratio
of the terminal velocity U of the bubble to its spherical
equivalent radius r: y=U/r. As shown elsewhere, the mean
value of the shear rate y can be given by U/r for the flow
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FIG. 2. Shear viscosity u (empty symbols) and first normal stress difference
N, (solid symbols) as a function of the shear rate for different percentages of
HASE (°) 1.2%; (O) 1.5%; (<) 1.7%. The bold lines show predictions of
the Bautista-Manero model for 1.7% of HASE (Ref. 18).
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TABLE II. Properties of the solutions: viscosity u, surface tension o, and
coefficients a and b in the expression of the first normal stress difference,

N,=ay.

Fluid % o o Range of
n° HASE (Pas) (mN m) a b v

1 12% 0.22+0.009 38.41+0.34 0.2078 1.3097 0.1-100
2 1.5% 1.14+0.005 36.93+0.23 1.1449 13192 0.1-100
3 1.7%  3.34+0.04  55.55+0.38 23728 1.3289 0.1-50

around a spherical bubble at low Reynolds number.>*** The
experimental range of the bubbles diameter and mean shear
rates are presented in Table 1.

The flow field around the bubble on the symmetry plane
was determined using PIV, with a commercial device pro-
vided by Dantec Dynamics. The light source was a 532-nm
laser; fluorescent seeding and filters were used to avoid re-
flections within the air-liquid interface. More details about
this technique can be found in Ref. 10.

2. Rheological properties

The rheological properties of the HASE solutions under
simple shear were determined in a stress-controlled rtheom-
eter (TA Instruments), using a 40-mm 1°59’ cone and plate
fixture with a Peltier temperature-control system.

The HASE solutions tested behave as Newtonian fluids
(at small shear rates, viscosity remains constant and normal
stresses are negligible; Fig. 2). From 0.1 to 50 s~!, the nor-
mal stresses are measurable while the viscosity remains
almost constant. For all concentrations, a slight shear-
thickening behavior can be observed for small ranges of
shear rate (for 1.2% HASE, 6 <y<36; for 1.5% HASE,
2<y<12; for 1.7% HASE, 1<y<23.7). For large shear
rates and depending on the concentration, the fluids exhibit a
shear-thinning behavior: the viscosity decreases with the
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FIG. 3. Bubble velocity as a function of bubble volume for different per-
centages of HASE: () 1.2%; (0J) 1.5%; (<) 1.7%. There is a discontinuity
of the bubble velocity for volumes equal to V, (1.2%: V,=65 mm®; 1.5%:
V,=60 mm? 1.7%: V,=50 mm?). The critical volume decreases with an
increase in HASE concentration.
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shear rate and the first normal stress difference increases
with the shear rate. In general, for a given shear rate, the
viscosity and the first normal stress difference increase with
HASE concentration, and the critical value of the shear rate
at which normal stresses appear decreases with increasing
HASE concentration.

For the first normal stress difference, it is possible to fit
the data to a power law, N;=a7”. The coefficients a and b,
and the range of shear rate for which this assumption is
valid, are reported in Table II. The predictions of the model
by Bautista et al. '8 are shown with experimental data for the
1.7% HASE solution (Fig. 2). As analyzed elsewhere,” this
model accounts for the breakage-reformation process of the
structure of associative polymers under flow. The model pre-
dicts a maximum in the extensional viscosity at a strain rate
corresponding to that of the onset of normal stresses and the
shear-thinning region of the shear viscosity.

The surface tension of these liquids was measured with
a Wilhelmy balance (Sigma 700) using a DuNouy ring
(Table 1II).

Stokes drag
Cd =

16/Re,

24/Re, rigid interface,
free interface,

Hence, the terminal velocity for each case is

P8
Usiokes = 18,U«d27 (1)
P8
Uttadamard = 12,ud2’ (2)

where d is the equivalent diameter of the bubbles (m), p is
the density of the liquid (kg m™3), g is the gravitational con-
stant (g=9.81 ms™2), and u is the viscosity of the liquid
(Pas).

In the case of very small bubbles rising in the HASE
solution, the shear rate is very small, and then the liquid can
be considered as Newtonian: there are no normal stresses and
the viscosity is constant. However, it is very difficult to de-
termine the surface boundary condition (rigid or free). As an
example, a “dirty” bubble will not have a free or a rigid
interface; hence, one would expect to observe a behavior
between the two regimes.

IV. EXPERIMENTAL RESULTS
A. Bubble terminal velocity and velocity field

Measurements of the terminal velocity for the three
HASE solutions are presented in Fig. 3. There is a critical
volume V. for which a velocity discontinuity appears. The
value of this critical volume decreases with an increase in
HASE concentration. These results are in agreement with
those obtained by Herrera-Velarde et al'® In all cases, the
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lll. THEORY FOR SPHERICAL BUBBLES

A brief summary of the theory for Newtonian flow
around spherical bubbles is presented. In general, the motion
of a gas bubble is mainly determined by the hydrodynamic
conditions (properties of the liquid, diameter of the bubble)
and by the boundary condition on the bubble surface.

At very low Reynolds numbers (creeping flow), the flow
is dominated by viscous effects. The equations of motion
can, in principle, be solved rigorously and hence the drag can
be calculated. By equating the drag and the buoyancy, the
velocity-volume relationship can be obtained. The interface
of a gas bubble may be considered between the two extreme
cases of a free and a rigid interface.®*’ If the gas is assumed
to be inviscid, the tangential stress 7 is zero at the free inter-
face. For a rigid interface, the velocity of the interface is
equal to the velocity of the center of gravity of the bubble. In
other words, the no-slip boundary condition holds at the
bubble surface. For either case, the drag force on a spherical
bubble in creeping flow can be calculated™™" according to

Hadamard-Rybczynski drag

slope of the velocity-volume relation is larger for large
bubbles (for V>V,) than for small bubbles (for V<V,).
Moreover, for a given volume, the terminal velocity de-
creases with an increase of HASE concentration (due to the
increase of viscosity). It is important to observe that the in-
crease in velocity after the discontinuity is significantly
lower than that reported previously for aqueous shear-
thinning viscoelastic liquids.lo’13 A distinctive feature of the
discontinuity of the velocity-volume relation, for the HASE
solutions, is that the slope of the curve, defined by dU/dV
(where U is the velocity and V is the volume), increases
significantly past the critical volume. Clearly, the value of
dU/dV at the discontinuity is larger than the values corre-
sponding for the nonjump condition (Table III). Moreover,
the amplitude of the discontinuity decreases as the percent-
age of HASE increases.

Flow visualization around bubbles before and after the
discontinuity using the PIV technique are presented in Figs.
4 and 5. For air bubbles with volumes smaller than the criti-

TABLE III. Velocity increase, dU/dV, at the volume for which the discon-
tinuity occurs. dU/dVigamara and dU/dVg.s are calculated from Egs. (1)
and (2).

% HASE du/dv AU/ dVggamand AU/ AV,
1.2% 2.52 043 0.28
1.5% 0.55 0.14 0.09
1.7% 0.188 0.06 0.04
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FIG. 4. Flow around a rising bubble with volume below the critical one
(V=42 mm?; U=1.1 mms~'; HASE 1.5%).

cal one, V,, the fluid at the front and at the rear of the bubble
is moving in the same direction of the bubble (Fig. 4). For
bubbles with a volume larger than the critical one, V., the
flow around the bubble is drastically different (Fig. 5). The
flow at the front of the bubble is in the same direction of the
bubble motion. At the rear of the bubble, the fluid is moving
in the opposite direction of the bubble motion. This phenom-
enon is called negative wake and was previously reported
elsewhere™' "% and more recently in Ref. 10. The negative
wake is a manifestation of importance of the elastic effects in
the bubble motion. Presumably, the elasticity of the liquid is
an important factor for the discontinuity to appear. This ar-
gument will be further discussed later.

/
4
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B. Bubble shape

The velocity discontinuity can be related to the bubble
shape. Figures 6—8 show bubbles for the three solutions with
volumes smaller and larger than the critical one V.. Clearly,
there is a very significant change of the shape related to the
appearance of the velocity jump.

For bubbles with a volume much smaller than the critical
volume V., the shape is nearly spherical. With a small in-
crease in volume, a slight deformation on the rear part of the
bubble is observed. In all cases, for volumes smaller than V.,
the shape of the bubbles is convex all around, whereas for
bubbles with a volume larger than the critical volume V,, the
shape is concave in the trailing end: the shape presents an
inflection point. Figure 9 shows a comparison of the shape of
a bubble before and after the jump. The shape in the front
region is nearly the same, whereas it changes significantly in
the back region. Moreover, the formation of a sharp cusp can
be clearly observed. At the tip of the cusp, a long (few cen-
timeters) and very thin (tens of micrometers) tail forms in all
cases. Using two cameras acting simultaneously, it was pos-
sible to obtain a view of the tail from two sides. The cusps
and tails immediately after V. are axisymmetric. However,
for volumes larger than V,, this is no longer the case. Non-
axisymmetric tails are shown and discussed in Sec. VII.

V. COMPARISON OF EXPERIMENTS AND THEORY
FOR SMALL BUBBLES: TERMINAL VELOCITY

The viscosity of the HASE solutions displays a Newton-
ian region at small shear rates . For small Reynolds num-
bers, one can attempt to compare the measured terminal ve-
locities with those predicted for the Stokes-Hadamard drag
[Egs. (1) and (2)].

Figure 10 shows a comparison of experimental results
obtained for fluid 1 (1.2% HASE). The predictions [Egs. (1)
and (2)] consider the measured zero shear-rate viscosity.

0.005

FIG. 5. Flow around a rising bubble with volume above the critical one. (a) Flow around the bubble. The flow is very similar to the flow observed for a bubble
with a volume smaller than V.. (b) At the rear part of the bubble, the negative wake can be seen (V=239 mm?’; U=54.6 mms~'; HASE 1.5%).
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V#=0.19 V#=0.46 V#=0.76

V#=1.04

V#=1.67 V#=2.94

FIG. 6. Bubble shapes for different values of the dimensionless volume
V'=V/V, for %®HASE=1.2, with V,=65 mm>. The small bubbles are almost
spherical. For larger volumes (for V"> 1), the shape of the bubbles is con-
cave with a very thin and long tail at the rear part of the bubble. The scale
represents 2 mm.

Clearly, the disagreement among the two sets of data is ap-
parent. The rheometric flow (simple shear), in which the vis-
cosity was measured, contrasts that of the flow around the
bubble. To improve the predictions, the viscosity of the lig-
uid was obtained from a simple falling-bead setup. The ef-
fective viscosity in this case inferred from

_2r7Apg
=9 1

)

where r is the bead radius (m), Ap=pyeaq—pPriquia 1S the den-
sity difference between bead and liquid (kg m™3), g is the
gravitational constant (g=9.81 m s™), and U is the terminal
settling velocity of the sphere m s~

The experiments are conducted by varying the diameter
of the glass beads from 3 to 6 mm. In all the cases, the
Reynolds number is smaller than 1. The shear rate is also

small, corresponding to shear rates within the Newtonian re-
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V#=0.32 V*#=0.55 V*=0.82

V#=1.02 V*=1.56 V#=2.66

FIG. 7. Bubble shapes for different values of the dimensionless volume
V*=V/V, for %HASE=1.5, with V.=60 mm?’. The scale represents 2 mm.

gion of the rheometric flow curve. In addition, the ratio d,/D
is smaller than 0.07 (d, is the diameter of the bead and D is
the diameter of the test section). The viscosity obtained from
these experiments is constant for shear rates between 0.2 and
10 s~!. The results are presented in Table IV. The viscosity
obtained from falling-bead experiments is in all cases larger
than that obtained under simple shear. The ratio of these
viscosities («) as a function of HASE percentage is shown in
Table IV. This ratio decreases with HASE concentration.
This behavior can be explained by two reasons.

First, in these experiments, wall effects are present. For
Newtonian fluids, the drag correction factor reduces to the
well-known Faxén correction,35 which is commonly ex-
pressed in the form

1 _ UStokes ( 3)

KR =1 m = v

with
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FIG. 8. Bubble shapes for different values of the dimensionless volume
V'=V/V, for %#HASE=1.7, with V,=50 mm?. The scale represents 2 mm.

&=
V#=0.81

f(r/R) =2.104 44(r/R) — 2.088 77(r/R)?
+0.948 13(r/R)’ + 1.372(r/R)® - 3.87(r/R)®
+4.19(/R)O + -+, (4)

where r is the radius of the falling bead and R is the con-
tainer radius. This relation is only valid in the case of a
Newtonian fluid for Reynolds number smaller than 1. It has
been shown’® that “for moderate Deborah Numbers De, wall
effects appear to be less important than in the motion of the
corresponding Newtonian fluid.” In our experiments, the
Deborah number lies between 0.5 and 1.6, implying that the
drag correction factor is smaller than the one calculated in
the case of a Newtonian fluid.*” In these HASE solutions, a
r/ R value of 0.07 corresponds to Ky(r/R)=1.16. It implies a
viscosity increase of 1.16. Moreover, the wall correction fac-
tor for elastic, constant-viscosity fluids™ is given by f(r/R)
=1-0.177/R for Deborah numbers larger than 0.2, which
corresponds in our case to Ky(r/R)=1.006. The wall effect
contributes to a small increase in viscosity obtained from
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FIG. 9. Bubble shapes before (continuous line) and after (dashed line) the
jump. The shape does not change in the front part of the bubble, whereas it
changes in its back part (Vieg,e=49.2 mm*; V,,=61.2 mm*; 1.5% HASE).

falling-bead experiments over that obtained in simple shear.
However, the difference between the two viscosities is within
a factor of 2.

The second reason is that, conceptually, the flow around
a bubble can be divided into three regions: a simple shear
region at the equator, a simple extensional region at the rear,
and a biaxial extensional region at the front. The extensional
components lead to extra stresses that slow the sphere mo-
tion down. But this extensional flow depends on the Rey-
nolds number. For large values of the Reynolds number
the extensional components will be more important; as a
consequence, the difference between the two viscosities will
increase.

The ratio of the viscosity estimated from falling-bead
data to the viscometric viscosity decreases with HASE con-
centration (Table IV). In addition to the wall effects, which
decrease the terminal velocity and hence increase the viscos-
ity, it is necessary to include the extensional flow contribu-
tions. Under extensional flow, models'”'%*’ predict a region
of extensional thickening at extension rates of the order of
the inverse of the main relaxation time. This region coincides
with the onset for measurable normal stresses in shear flow,
closely related to the appearance of the velocity discontinu-
ity. The extensional flow contribution further retards the mo-
tion of the falling bead, increasing the mentioned viscosity
ratio.

The experimental and theoretical results obtained with
the two viscosity measurements are compared. The results
are presented in Fig. 10. For small bubbles that are almost
spherical, the experimental measurements lie between the
two limiting cases of Hadamard and Stokes laws with a vis-
cosity calculated from the falling-bead experiments. There-
fore, the bubble interface can neither be considered fully
contaminated nor clean. We note that the comparison is good
for bubbles with volumes smaller than the critical volume V..
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FIG. 10. Bubble velocity as a function of bubble volume, 1.2% HASE. The
lines are the theoretical predictions obtained from the Stokes (continuous
lines) and Hadamard (dashed lines) laws: (thin lines) w=meometer; (thick
lines) p4=ppy-

Above V,, the bubbles are no longer spheroidal and develop
a long tail. The results for the other fluids and their compari-
son with the theory are not presented here, but the agreement
between theory and experiments is equally good. Contrary to
the measurement of the viscosity by falling-bead experi-
ments, the simple shear rheological measurements do not
take into account the uniaxial and biaxial deformations. This
explains why the behavior of small bubbles rising in a vis-
coelastic fluid is better described using a falling-sphere mea-
surement of the viscosity.

VI. INTERPRETATION

In the case of bubbles rising in an associative polymer, it
has been shown that there is a critical value of the volume at
which a discontinuity in the velocity-volume curve occurs.
The analysis of the bubble shape shows that for small
bubbles (with a volume smaller than the critical value), the
shapes of the bubbles are convex: the bubbles are spherical
or spheroidal. For volumes larger than the critical value, the
shape of the bubbles is completely different: the bubbles are
concave, there is an inflection point, and a very thin, long tail
appears at the rear part of the bubble. Moreover, the velocity
field around the bubbles also changes significantly for ex-
periments below and above the critical volume. In particular,

TABLE IV. Viscosity measurements for different solutions with two meth-
0ds: Mpeometer 1S the viscosity measured in a cone-plane rheometer under
simple shear, uq, is the viscosity calculated from falling-bead experiments.
The ratio of the viscosity a decreases with increasing HASE concentration.

Fluid % Mheometer Ml Viscosity ratio
n° HASE (Pas) (Pas) a

1 1.2 0.22 0.49+0.01 2.23

2 1.5 1.14 1.58+0.04 1.39

3 1.7 3.34 4.08+0.23 1.22

4 (Ref. 34) 2.1 12.5 13.23+0.4 1.06
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FIG. 11. Mean shear rates ;/ as a function of the volume for different
percentages of HASE: o 1.2%; [ 1.5%; ¢ 1.7%. The dashed lines repre-
sent, for each percentage of HASE, the shear rate for which the normal
stresses are measurable.

for bubbles with volumes above the critical value, the pres-
ence of the so-called negative wake can be observed.

It is possible to link this behavior with the rheological
properties of the fluid. For this, the mean shear rate (defined

as )T/: U/r) at which the normal stresses are measurable and
at which the discontinuity of the velocity occurs, is deter-

mined. Figure 11 shows the calculated ;/for the three tested
liquids. From this plot, the value of the shear rate corre-
sponding to the critical volume can be determined and is
approximately the same as the shear rate at which the elastic
nature of the fluid begins to manifest itself (N, becomes mea-
surable). Therefore, it can be said that the bubble velocity
discontinuity is a direct result of the appearance of elastic
stresses.

For negligible normal stresses, the bubbles are almost
spherical and their velocities are governed by the Stokes and
Hadamard laws. For significant normal stresses, the velocity
is larger than the velocity predicted by Stokes and Hadamard
law, and the bubbles are concave, presenting a tail at their
rear part.

The immediate consequence of the presence of normal
stresses in the liquid is a change in the bubble shape, which
evidently leads to a drag reduction and, hence, a rapid in-
crease of velocity. A particular bubble shape is then related to
its rising velocity.

We have shown before that the elasticity of the liquid
plays an important role, because the discontinuity of the ve-
locity occurs when the normal stress appears in the liquid.
Consequently, we can consider that the Deborah number, de-
fined by the ratio of the first normal stress difference N; and
two times the tangential stress 7=u7y, can be considered to
determine when the discontinuity occurs;

Ny Nid

De = = .
27 4uU
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FIG. 12. (a) C,/C4y as a function of the Capillary number, (b) C,/C,q as a function of the Deborah number, for different percentages of HASE: (o) 1.2%
HASE; () 1.5% HASE; (<) 1.7% HASE. The critical value of these dimensionless numbers for which the discontinuity of the velocity occurs depends on

the percentage of HASE.

Since there is a strong change of the shape of the bubble
before and after the discontinuity, this implies that the sur-
face tension will also play an important role. Since the dis-
continuity of the velocity occurs for Reynolds number
smaller than 1, the capillary number, defined by the ratio of
the viscous forces and the surface forces, Ca=uU/ o can also
be considered to be an important parameter to the problem.
We can define a normalized drag coefficient, which is equal
to Cy/Cyp, where C,, is the Hadamard drag coefficient
(Cy0=16/Re). For small bubbles (with a volume smaller
than the critical one), the normalized drag coefficient will be
close to 1. For large bubbles, there is an increase of the
velocity. And so, for a decrease of the drag coefficient, the
normalized drag coefficient will be smaller than 1. The nor-
malized drag coefficient is shown in Fig. 12 as a function of
the two dimensionless numbers previously defined. Clearly,
for small De, the bubbles are spherical and C,/C, is around
1. After a certain critical De, the normalized drag coefficient
decays abruptly, corresponding to the point for which the
discontinuity occurs. This behavior can be observed in the

1.5 T T

—_
T

Caq/Cap

0.5r

FIG. 13. Normalized drag coefficient as a function of I1=Ca X De for: (°)
1.2% HASE; (J) 1.5% HASE; (<) 1.7% HASE. For all the percentages of
HASE, the discontinuity occurs for the same value of IT (IT=0.25).

three solutions. However, the value of the critical De for
which the discontinuity occurs is not unique, as it depends on
the percentage of HASE. A similar trend can be observed for
the capillary number: at a critical value of Ca, the normalized
drag drops abruptly, but this critical value is different for
each liquid. Hence, neither De nor Ca can be used to capture
a generally valid condition for the jump to occur. There are
two main conclusions from the results of this analysis: (1)
the discontinuity appears when the elastic properties mani-
fest themselves and (2) there is a significant change in the
shape associated with the bubble velocity increase. It is then
appropriate to form a dimensionless group that compares
elastic forces to capillary forces,

n="4

g
This number would be large if elastic effects dominate over
surface tension effects and vice versa. In fact, this number
could be interpreted as [T=4Ca X De.

Figure 13 shows the normalized drag coefficient as a
function of the dimensionless group II. For this case, the
transition from high to low drag appears to be the same for
all the liquids: there is a critical value of IT (I, =0.25) that
determines the conditions for the bubble velocity discontinu-
ity to appear for all the liquids tested.

The tail at the rear part of the bubble leads to a decrease
of the drag coefficient and consequently to a rapid increase
of the velocity. Since the tail shape can also influence the
flow behavior of the bubble, the tail shape can be related to
the bubble velocity. This aspect is further discussed in the
next section.

VIl. SHAPES OF THE TAILS

Lastly, we present a photographic study of the peculiar
shapes of the bubble tails that appear after the bubble veloc-
ity discontinuity. Previously, it was observed that a long, thin
axisymmetric tail appears on the rear part of bubbles imme-
diately after the critical volume [this case is shown in Fig.
14(a)]. The thickness of the tail can be of the order of a few
microns, while its length amounts to a few centimeters. The
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FIG. 14. Two perpendicular views (a) and (b) of the tail; the tail breaks into two different threads (V=824 mm?, 1.5% HASE).

tail eventually breaks into micron-sized bubbles. This behav-
ior resembles the so-called tip-streaming phenomena, when
daughter drops are ejected from a thin thread at the tip of a
highly stretched drop. The tip-streaming behavior was first
reported by Tay10r4o and since then has been studied by
many authors. To our knowledge, tip streaming has not been
reported to date for the case of air bubbles moving in com-
plex non-Newtonian liquids.

For larger bubble sizes, the cusped tip transforms into a
“blade-edge” tip [two—dimensional (2D) cusp] [Figs. 14(b)
and 14(c)]. The 2D cusped end was observed from simulta-
neous tail images taken at perpendicular views. Several ex-
periments are necessary to obtain images in which the edge
of the tail is parallel to the photo plane [images shown in
Figs. 14(b) and 14(c)]. The appearance of such shapes has
also been previously observed.'* The 2D cusp does not have
a preferential orientation. Note that these experiments are
performed in a cylindrical tank.

Moreover, the streaming behavior can also be observed
in 2D cusps; the so-called “edge streaming.” We have ob-
served that the 2D cusped tail can break into different man-
ners for the same nominal experimental conditions. In some
cases, the tail breaks into two different threads [Figs. 14(b)
and 15]. The two threads extend for some distance, but even-
tually each one breaks into microbubbles. In some other
cases, the 2D tails collapse into a single thread with perpen-
dicular filaments that resemble a “fish backbone” [Figs. 14(c)
and 16]. All these fine threads eventually break into small
bubbles. Edge streaming has also not been previously re-
ported for these fluids.

Clearly, the viscoelastic nature of the HASE solutions is
responsible for the formation of the cusped and edged tips at
the back of the air bubbles. However, the basic mechanism
for the cusp-to-edge transition is not known. Tip streaming
phenomenon is an indication that, near the cusp, high levels
of fluid stretching are present. There is also a possibility that

the surface active ingredients are being convected along the
bubble surface, inducing surface tension gradients, hence,
enhancing the tip streaming.

To further investigate the conditions for which the 2D
cusps appear, additional series of experiments were per-
formed for such large bubbles. The terminal velocities were
measured for increasing bubble volumes, and the shape of
the tails was also identified. Figure 17 shows the terminal
velocity of bubbles as a function of volume. The symbols
denote different tail shapes observed experimentally. With
the present experimental setup, it is difficult to determine
precisely the critical volume from which the tail changes

(b)

FIG. 15. Various tail shapes for bubbles moving in a 1.5% solution of
HASE: (a) tip streaming: bubble with filament tail and zoom of the tail
instability; (b) edge streaming: bubble with knife-edge tail and breakdown
process of the tail edge; (c) edge streaming: bubble with knife-edge tail [the
volume is larger than that shown in (b)] and breakdown process of the tail
edge.
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(2) (b) (©)

FIG. 16. Two perpendicular views (a) and (b) of the tail. (c) The tail col-
lapses into a single thread with perpendicular filaments that resemble a “fish
backbone” (V=391 mm?, 1.5% HASE).

from axisymmetric to two dimensional (either two threaded
or fish backbone).

For volumes smaller than 280 mm? (corresponding to
shear rates smaller than 15 s7!), the tail is axisymmetric,
very thin, and long. For larger volumes, the 2D cusp appears.
For volumes between 280 and 350 mm? (corresponding to
shear rates between 15 and 18 s™! ), only fish-bone streaming
is observed. For volumes larger than 350 mm?® (correspond-
ing to shear rates larger than 18 s™') both two-thread and
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FIG. 17. Velocity as a function of the bubble volume for 1.5% HASE.
Different critical values of the volume for the different bubble shapes: (o)
spheroidal bubbles; (+) axisymmetric tail (tip streaming); ((J) 2D edged tail
(fish-bone streaming); (<) 2D edged tail (two-thread streaming).
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fish-bone formations can be observed. Although the influ-
ence of the type of 2D tail on the terminal velocity of the
bubble (drag coefficient) is not significant, we observed that
when the two types of edge-streaming appear, a larger scatter
of data of bubble velocity is observed.

The different shapes of tails reported in this section have
never been observed for rising bubbles in either polymeric or
worm-like micellar fluids. The formation of these different
shapes may be, in fact, a result of the specific properties of
the associative polymer fluid. Clearly, further experiments
are needed to understand the formation process of a particu-
lar tail shape.

VIil. SUMMARY AND CONCLUSIONS

We have shown that for bubbles rising in an associative
polymer solution, as the bubble volume increases, a discon-
tinuity of the velocity occurs. This discontinuity in the ve-
locity is smaller than that observed for aqueous shear-
thinning viscoelastic liquids. A more distinctive feature for
this case is that the slope of the relation velocity-volume
increases significantly past the discontinuity. This particular
behavior was studied for various HASE concentrations. It
was possible to relate this discontinuity with the rheological
properties of the fluid. In fact, the shear rates for which the
discontinuity occurs correspond to those for which the nor-
mal stresses appear. It is important to note that the critical
shear rates also correspond to the point at which the shear
thickening appears in some solutions, which may contribute
to reducing the strength of the velocity jump.

The discontinuity can also be related to the bubble shape
and to the flow around the bubble. For volumes smaller than
the critical volume, the bubbles are spherical or spheroidal
and the flow around the bubble is similar to that of a New-
tonian liquid. For volumes larger than the critical one, the
rear of the bubble is concave and presents a tail at their rear
part. The flow around the bubble is more complex, and the
presence of a negative wake can be observed.

This study provides a criterion for the determination of a
critical volume. Due to the importance of the elasticity and
the surface tension, a dimensionless number defined as
IT=N,d/ o is proposed to determine the jump conditions. The
discontinuity occurs for IT_;,=0.25.

For the case of small bubbles, we found good agreement
between experiments and predictions for the velocities ac-
cording Stokes-Hadamard laws. For small bubbles, the shear
rate is small, and consequently, the liquid can be considered
as Newtonian. For this agreement, the viscosity had to be
obtained with a falling-bead technique. In agreement with
previous investigations, we found that the viscosity deter-
mined in this manner was larger than that obtained under
simple-shear viscometric flow.

For large bubble volumes, we presented a photographic
study of the bubble shapes and particularly the tail shapes.
Different kinds of tails can be observed.

From the present results, we have determined that the
appearance of the discontinuity results from a balance be-
tween elastic and surface tension forces. We are currently
conducting additional experiments with other non-
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Newtonian liquids (Boger, inelastic, etc.) to further corrobo-
rate the appropriateness of the I group to describe the con-
ditions of the bubble velocity discontinuity. These results
will be reported in a future communication.
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