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Abstract. The rheological response of Aerosol OT (AOT)/water liquid crystalline dispersions is
reported here using shear flows. The dispersions exhibit an apparent yield stress and strong non-
Newtonian behavior. Steady state and pre-shear dynamical experiments reveal shear-induced
structural changes. Under increasing-and-decreasing shear stress experiments, the dispersions
exhibit anti-thixotropic hysteresis loops. Once a critical stress is surpassed, an additional thixotropic
loop is observed at high shear stress levels. This inverse loop at high shear stresses depends on the
previous shear history and on both the rate of change and the maximum attained value of shear
stress. The number density of the globular structures in the sheared sample is larger than in one
non-sheared sample, but their sizes are smaller than those of the non-sheared sample.

Introduction

The rheology of surfactant-based lamellar liquid crystals has been examined intensively during the
past decade [1-9]. In particular, the rheological response to steady state and oscillatory shear flows
of lamellar liquid crystals consisting of AOT was studied in detail [4-6, 9]. At concentrations
between 1.4 and 18.5 = 1 wt. %, AOT forms in water biphasic dispersions of lamellar liquid crystals
[10]. At around 8.5 wt. %, these dispersions undergo a phase inversion from being water-
continuous (microscopic liquid crystallites dispersed in a saturated surfactant aqueous solution) to
being liquid crystalline continuous [11]. Below the phase inversion composition, the formation of
shear-induced microstructures at high shear rates causes shear-thickening [4]. Upon decreasing
shear rates, the dispersion still preserves much of its structure and consequently its high viscosity
remains. This behavior is referred to as rheopexy or anti-thixotropy [12, 13]. Above the phase-
inversion concentration, the dispersions are strongly non-Newtonian and viscoelastic [4, 9].

According to some observations of thixotropy, this phenomenon always presupposes some
molecular or microscopic process by which the structure is modified [12]. In surfactants and in
colloidal dispersions, this process is determined by the interaction forces between domains
(attractive and electrostatic or steric repulsion forces) coupled with the relative orientation of the
domains induced by the flow [14]. The interplay of all the external forces that act on the liquid
crystals sometimes produces complicated responses. For instance, the reduction in size of the
associated structural units corresponds to smaller resistance against flow, which results in lower
viscosities. On the other hand, the orientation of these units by flow can promote increasing
interactions that could be attractive, inducing the formation of associating links and agglomeration,
resulting in higher viscosities [12].

In this work, the rheological response of lamellar liquid crystalline dispersions of AOT in water
under shear flows is examined in detail using controlled-stress theometry. The changes in the
microstructure of the sample are evidenced by polarized light microscopy. Particular attention is
given to the hysteresis detected when the samples are sheared under exponentially increasing-and-
decreasing shear stress cycles. The presence of an apparent yield stresses and a "critical" stress (t.)
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that signals the thixotropic-antithixotropic transition are discussed and related with phase changes in
these dispersions.

Experimental Section

Sodium bis-(2-ethylhexylsulfosuccinate) or AOT from Fluka had a purity higher than 98 %.
Samples were prepared by adding water to 8 % wt dried AOT, then it was homogenized and
allowed to equilibrate for at least 7 days at 25 + 0.1 °C.

Rheological measurements were taken at 25 °C with a Carri-Med CLS-50 controlled-stress
theometer with cone-and-plate geometry (4 cm and 0.035 rad). Steady state shear rate measurements
were taken with a Rheometrics RDS II mechanical spectrometer (controlled—strain rheometer) and a
cone-and-plate geometry (5 em and 0.1 rad). Since the domain structure of AOT-based liquid
crystalline phases is quite sensitive to shear deformation history, samples were carefully loaded on
the plate with a spatula and then the cone was slowly lowered. To prevent changes in composition
during measurements for water evaporation, a humidification chamber was placed around the cone
and plate fixture. Exponentially increasing-and-decreasing shear stress cycles were performed in the
controlled-stress theometer to determine the degree of thixotropy exhibited by the dispersions. In
these experiments, the stress is increased exponentially at time t = 0 from a present value (1o = 0.06
Pa for the rheometer employed) to a prescribed maximum stress (ty) at t = t;. Then, 17 can be kept
constant for a given period of time or the stress can be decreased immediately at the same rate to the
initial stress value. Also, two or more consecutive cycles can be performed in the sample with or
without a rest period between the cycles.

Experimental microscopy studies were performed at room temperature with a Meopta polarizing
transmission microscope.

Results

Figure 1 shows the stress growth upon inception of shear flow, as a function of the applied shear
rate upon inception of shear flow for an 8 % AOT dispersion. At low shear rates (curve a, b), stress
(7) increases to a plateau value in times ranging from 200 to 1000 seconds; however, after a few
minutes, the stress diminishes and then it grows again to the "true" steady value. Notice that this
steady value is reached for times longer than 6000 seconds. At intermediate shear rates (curve c),
stress goes through a local maximum, then it decreases and increases again up to the steady state. At
higher shear rates (curves d, e and f), stress grows to the steady state after passing through a shallow
local maximum or shoulder (inset of fig. 1). This shoulder, which indicates a non-monotonic change
in the relationship of t versus 7, has been reported for cationic surfactants/water gels [7].

Figure 2 shows the steady shear viscosity (n) as a function of 7. The induction time (ting) defined
here as the time at which stress begins to increase before the true steady state, is also shown in this
figure. Three regions can be distinguished in the plot of n versus 7. At low shear rates, a shear
thinning behavior is observed with long induction times (region I). At intermediate shear rates, a
shear thickening behavior is detected and the induction time drops several folds (region II). At high
shear rates, a shear-thinning behavior is recovered but the induction times are much smaller. We
previously reported this behavior with the same system [4]. However, the levels of viscosity are
different, even though the shape of the data is similar, because not enough time was allowed in our
previous measurements to reach the true steady state.

Figure 3 depicts stress relaxation after interruption of shear flow as a function of 7 and of the
time of application of the shear rate. The inset in each of the figures indicates the times at which the
shear flow was interrupted (tin). Shear stress relaxation curves were shifted vertically by an arbitrary
factor in order for the relaxation curves to start from the same value. At low shear rates (region I),
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the relaxation follows a solid viscoelastic behavior with similar decay times (Fig. 3A). Moreover,
the relaxation curves nearly overlap regardless of time at which the flow was interrupted. At
intermediate shear rates (region II), two behaviors are observed depending on the ratio of tiy/ting
(Fig. 3B). When this ratio is less than one, the relaxation is similar to that observed in region I
(curves a and b in Fig. 3B). However, when tj,/ting is higher than one, the sample relaxes to lower
but finite levels of stress (curves ¢ and d in Fig. 3B). However, complete relaxation is never
achieved, which means that a solid viscoelastic behavior dominates. A more complicated relaxation
behavior is seen at high shear rates (region IIT). At low values of tiy/ting the relaxation time is faster
and the level of equilibrium stress is smaller as ti/ti,g increases (curves a, b and ¢ in Fig. 3C).
However, at very large values of tiy/ting, relaxation is fast and it goes through a minimum (curves d
and e in Fig. 3C) which can be very deep (curve e) and then it rises again. This behavior has been
observed in thixotropic materials [15].

Figure 4 reports the instantaneous and the infinite-time elastic plateau moduli obtained by
oscillatory measurements at 80 s as a function of time after subjecting dispersions to a shear rate
for times larger than the induction time (see Fig. 2). Here, the instantaneous elastic modulus, Gy is
that measured immediately after the pre-shear flow has been stopped whereas the infinite-time
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Figure 5 and 6 shows the response of a lamellar dispersion to shear stress consecutive cycles
where the stress is increased exponentially from 0.06 to 20 Pa and to 50 Pa, respectively, in 120 s,
and then it is decreased to the initial value at the same rate. The type of applied cycle and the
viscosity as a function of time are depicted in the inset. After the application of the first cycle (in
Fig. 5), a large anti-thixotropic hysteresis loop is detected. Also, notice that the dispersion does not
flow until a shear stress of 0.7 Pa is exceeded, which means that there is an apparent yield stress.
When a second cycle is applied to the same sample, the enclosed area of the hysteresis loop
diminishes substantially. It is noteworthy that the returning path is the same in both cycles, which
implies that after the structure induced by the first stress cycle is preserved in the second cycle. This
induced-structure also has a larger apparent yield stress inasmuch as the flow stops at a shear stress
of 3.5 Pa (Fig. 5). Meanwhile in Figure 6, the main features after the application of the first cycle
are the existence of a yield stress and of a critical stress (t.) which signals a transition from anti-
thixotropy to thixotropy behavior. Upon application of a second consecutive cycle, the initial
apparent yield stress is three-fold larger and both the anti-thixotropic and thixotropic loops close
but the value of the critical stress remains invariant. Again, there is a final apparent yield stress,
which is much larger than the initial one.

Figure 5. Response of an
AOT dispersion to consecu-
tive increasing-and-decrea-
sing stress cycles. Full sym-
bols indicated the increasing
stress mode whereas open
symbols denote the decree-
sing stress mode. (m, O) First
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01 et ettt ettt il 1DSEL: @pplied stress program
0.001 0.01 0.1 1 10 100 (from 0.06 to 20 Pa in two
minutes) and  viscosity
'Y () versus time.

10

L

T (Pa)

L

Time (s)
100 200 300 400 500




182 Advanced Structural Materials |

The effect of maintaining the maximum applied shear stress for a certain period of time is shown
in Fig. 7 and 8 for two levels of final shear stress. In Figure 7, the maximum stress is smaller than
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Figure 6.  Time-varying
programs of shear stress
applied. Full symbols

indicated the increasing stress
mode whereas open symbols
denote the decreasing stress
mode. (m, 0) First cycle;
(®,0) second cycle. Inset:
applied stress program (from
0.06 to 50 Pa in two minutes)
and viscosity versus time.

the 1. whereas in Figure 8, the maximum applied stress is larger than t.. Inset a in these figures de
picts the type of stress program applied and the viscosity as a function of time. Inset b in these
figures shows the shear rate as a function of time during which the maximum shear stress was
maintained. When the maximum applied stress is smaller than the critical value, an anti-thixotropic
loop is observed (Fig. 7). The response of the sample when the maximum stress is maintained,
however, is characteristic of an anti-thixotropic material: during the time that the stress is
maintained constant, the shear rate decreases, that is, the sample tries to slow down at constant
stress (inset b in Fig. 7). However, in the cycle where the maximum applied stress exceeds the t, an
inversion of the hysteresis loop is observed (Fig. 8), similar to the one shown in Fig. 6. However,
when the applied shear stress is maintained at this level, the shear rate first increases and then
decreases. This behavior is typical of a thixotropic material.
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Figure 9 depicts photographs of the samples taken through cross pqlarizers in an optical
microscope after being subjected to the stress cycles. The levels of the applied shear rates in these
series of photographs correspond to regions I, Il and I1. In these photographs, Maltese crosses are
clearly seen, which are typical in lamellar liquid crystalline dispersions [16]. At !OW shear rates, the
texture, size and number density of the spherulites of the sample (Fig. 9A) are s1m11af to those of a
sample not subjected to shear flow. However, it is evident that as the shear r?te is increased, the
number density of the Maltese crosses increases whereas their sizes decrease (Figs. 9B and 9C).

Figure 9. Photographs taken by light microscopy under cross polgrizers of AQT dispersions
subjected to different levels of shear stress: (A) region I; (B) region II; (C) region IIL.

Discussion and Conclusions

Induced-structures and structural changes caused by shear and extensional flows haye been
documented in surfactant-based systems. In very labile systems, such as micellar solutlgns, the
induced microstructures are short-lived [17-20]. However, in liquid crystalline §ystems, induced
microstructures may be long-lived [21-23]. In this situation, the rheological behavior becomes even
more complicated and the reported flow properties may not correspond to the true steady values.

Liquid crystalline dispersions of AOT depict this kind of behavior. Flgure 1 glearly demonstrates
that very long times may be needed to achieve steady values. The time required to reach steaéy
state depends on the level of applied shear rate (Fig. 2) and surfactant concentration. As we.w111
show below, the structural changes induced by the shear flow are responsible for the long transients
and the complex rheological behavior.
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Depending of the level of applied shear rate (or shear stress), three different regions are detected
(Fig. 2). We first reported this type of viscosity versus shear rate curve in the same system, but
measurements were not taken for times long enough to reach the true steady state and so, viscosity
values reported earlier are several folds smaller [4]. This unusual behavior was detected within the
whole biphasic liquid crystalline dispersion region [4]. More recently, Escalante and Hoffmann [23]
reported a similar rheological behavior and attributed it to a lamellar-to-vesicle transition.

At low shear rates (region I), long transients after inception of shear flow (Fig. 1) and a shear
thinning behavior in steady shear (Fig. 2) are observed. Also, stress after cessation of shear flow is
typical of a solid viscoelastic material and does not appear to be dependent on the time of
interruption of flow (Fig. 3A). Notice that the instantaneous (G'p) and the long-time modulus (G'..,)
are similar and equal the elastic modulus measured in a non pre-sheared sample (Fig. 4). More
importantly, the texture and number density and size of the spherulites are similar to those of an
unperturbed sample (Fig. 9A). The implication is that at low levels of shear rate, the original
structure is preserved, or at least, it is not modified substantially. Nevertheless, it is significant that
long times are required to reach steady state.

At intermediate shear rates (Region II), a shear thickening behavior is detected with shorter
transients. However, when the sample is sheared for times longer than the induction time and the
relaxation is followed after cessation of slow, a different behavior is noticed (Fig. 3B). Moreover,
the elastic modulus of a non pre-sheared sample is larger compared to either Gy or G', (Fig. 4).
Polarizing light microscopy reveals a finer structure than that of the non-sheared one (cf. Figs. 9A
and 9B).

More complicated behavior is observed when the dispersions are sheared at shear rate levels of
region III. Transients are much shorter than in regions I and Il, and shear thinning behavior is
recovered (Fig. 2). Stress relaxation after cessation of shear flow depicts a complex nature. When
the flow is stopped at times shorter than tyg, a solid viscoelastic behavior is observed and the
sample maintains high levels of stress, just like in regions I and II (cf. Fig. 3C with Figs. 3B).
However, when the flow is stopped after long times, a minimum in the stress relaxation curve is
seen, which can be very pronounced (curve e in Fig. 3C). Moreover, the long time and the
instantaneous moduli differ substantially from each other, and both are much larger than that of the
non pre-sheared sample, indicating substantial changes in microstructure. Polarizing light
microscopy (Fig. 9C) corroborates these changes.

Thixotropic or anti-thixotropic behavior is evident by observing the response under consecutive
increasing-and-decreasing shear stress cycles. In this case, the increasing and the decreasing shear
stress curves do not coincide, which results in a hysteresis loop. However, it is well known that
repetition of time-varying programs of shear stress reduces the hysteresis until finally an
equilibrium curve is obtained devoid of thixotropic effects [12].

The time-varying programs of shear stress applied here yield an anti-thixotropic response as long
as a critical stress is not surpassed (Figs. 5 and 7). The extension of the hysteresis loops decreases
after consecutive cycles are applied to the sample, just as described by Mewis [12]. Nevertheless,
the downward paths in the first, second and consecutive cycles coincide, in spite that the upward
paths may be different (Figs. 5 and 6). Evidently, these results suggest structural changes induced
by exponential shear flow. Photographs taken on dispersions subjected to different levels of shear
stress in one of these exponentially increasing-and-decreasing stress programs confirms this
hypothesis (Fig. 9). It is noteworthy that steady shear experiments also demonstrate that these
dispersions exhibit anti-thixotropy, inasmuch as the stress (or viscosity) raises with time when they
are subjected to a constant shear rate (Fig. 2). Incidentally, anti-thixotropy has been found mostly in
dispersions and concentrated suspensions [24, 25] but also shear-induced structures have been
observed in micellar solutions [26].

To demonstrate that the structural changes induced by flow are long-lived, stress cycles were
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performed leaving a rest period up to one hour between cycles (not shown). Results §how that the
same path is followed in the second cycle, regardless of whether is immediately applied or after a
rest period [13]. .

On the other hand, once a critical shear stress is reached, the anti-thixotropic loop reverses into a
thixotropic loop (Figs. 6 and 8). This inverse loop depends on the previous shear history and both
the rate of change and the maximum value of shear stress [6]. Again, polarizing microscopy shows
another change in the number density and size of the liquid crystalline microdf)mams.(Flg. 9C). The
presence of an inverse hysteresis loop at high stress levels, in this case, a thixotropic loop, means
that the characteristic time associated with the recovery of the structure is larger than that
corresponding to the reciprocal of the applied shear rate. o .

In summary, we have presented the complex rheological behavior of aqueous 11qu1d. crystalline
dispersions of AOT. These complex responses are related to microstructural changes induced by
shear flow
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