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Abstract

A generalized description of the rebound of spherical drops or solid spheres over a wall is proposed using two parameters: a coefficient of
restitution that compares the velocity of restitution to the velocity before impact and the contact time with the wall. During the bouncing, the
incident kinetic energy is transferred into deformation energy (stored on the surface for the case of liquid drops or in the bulk for the case of
solid particles) and then restored into kinetic energy allowing the particle to leave or not the wall. The corresponding criteria is given by the
Stokes number that compares the inertia of the particle (added mass included) and the viscous force exerted on the particle during the drainage
of the film formed between the particle and the wall. The general behavior of the coefficient of restitution observed in many experiments can
be modelled for solid spheres as well as spherical drops by the use of a unique simple correlation depending on this Stokes number. For solid
particles, the contact time with the wall in viscous flows is found to be of the same order as that predicted by the Hertzian theory; hence,
the contact with the wall can be described as a discontinuity in the particle motion. On the other hand, for liquid drops, the contact time is
significant and of the same order as other characteristic time scales of the particle motion. Therefore, to properly describe the rebound process,
both a restitution coefficient and a contact time must be considered. Finally, a simple model is proposed and its predictions are compared with
experiments performed for millimetric toluene drops in water.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In many practical situations where multiphase flows are in-
volved, particle–wall interactions play a major role in the over-
all dynamics of the flow. As a consequence, the motion of the
dispersed phase cannot be described solely by its behavior in
unbounded flows and specific knowledge has to be developed
concerning these interactions. For example, two phase contac-
tors and reactors involved in chemical and biochemical indus-
tries are often equipped with internal walls in order to control
the residence time of the dispersed phase as well as its agita-
tion and the mass or heat transfer rate between the two phases.
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In such equipment, wall interactions have a significant effect
on the performance via their influence on the behavior of the
dispersed phase within the vessel. Among these interactions,
the aim of this work is to consider the collision and bouncing
processes.

Many studies have reported experimental results concerning
the bouncing of a solid sphere on a wall in air as well as in
various fluids. The most recent experiments for this system
(Joseph et al., 2001; Gondret et al., 2002) and the analytical
derivations using the lubrication theory (Davis et al., 1986)
have clearly demonstrated that the restitution coefficient ε (ra-
tio of the velocity after the rebound to the approach velocity)
can be scaled by a particle Stokes number St which com-
pares particle inertia to viscous effects. A no-rebound situation
(ε = 0) is observed below a critical Stokes number Stc (Stc ≈
10.15). The restitution coefficient quickly increases after
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the transition at Stc and monotonically reaches an asymptotic
value close to the value of ε obtained in air where viscous
effects are supposed to be negligible during the interaction with
the wall (St > 104). This asymptotic value is thus close to 1 for
elastic materials. The Stokes number dependence is due to the
drainage of the liquid film formed between the particle and the
wall (Davis et al., 1986).

For drops, the bouncing on a wall is characterized by sig-
nificant deformation and contact time with the wall, both in-
creasing with the particle diameter and the impact velocity
(Richard and Quéré, 2000; Klaseboer et al., 2000; Legendre
et al., 2005). The bouncing is also controlled by the drainage
of a film formed between the particle and the wall. Legendre
et al. (2005) proposed a simple dynamic model (dissipative
mass spring system) to describe the rebound of millimetric
toluene drop in water. This model is able to predict the defor-
mation of the drop during the bounce, the contact time with the
wall and the velocity of restitution.

The aim of this note is to propose a generalized global model
for the bounce of particles (solid or liquid) on a wall using two
parameters namely the coefficient of restitution and the time of
contact with the wall.

2. Coefficient of restitution

Bouncing of solid bodies is usually described using coeffi-
cients to model tangential and normal velocities at the end of
the bounce. The normal coefficient of restitution e=−Vres/Vimp
is defined as the ratio of the normal component of the veloc-
ity when leaving the wall Vres to the normal component of the
velocity at impact Vimp. As shown by Joseph et al. (2001) for
solid spheres in glycerol–water mixtures and by Legendre et
al. (2005) for drops in water, the approach velocity begins to
decrease before the contact with the wall so that the velocity
at impact Vimp has significantly decreased compared to the ap-
proach velocity at some radius from the wall (typically the ve-
locity starts to decrease at one radius for millimetric toluene
drops in water). From a global point of view, this decrease can
be attributed to the bouncing mechanism and a coefficient of
restitution can be defined as the ratio of the velocity Vres, to
the velocity V∞ before its decrease due to the interaction with
the wall:

ε = −Vres

V∞
. (1)

This restitution coefficient ε provides a global description
of the bounce including the effect of the wall without de-
scribing the detailed action of all the physical mechanisms
involved: deceleration due to hydrodynamic interaction, de-
formation, film drainage and restitution of the initial shape.
Note that for large Stokes numbers (for example, drops or
solid particles in air), the impact occurs at Vimp ∼ V∞ and
therefore e ∼ ε.

Using the analogy with a dissipative mass-spring system,
Legendre et al. (2005) have shown that for drops the coefficient
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Fig. 1. Restitution coefficient ε/εmax for spherical drops and solid spheres
versus the Stokes number St. •, toluene drops in water (Legendre et al.,
2005); �, liquid drop in air (Richard and Quéré, 2000); �, spherical balloon
filled with a mixture of water and glycerol (Richard and Quéré, 2000); +,
solid sphere (Joseph et al., 2001); ◦, solid sphere (Gondret et al., 2002); �,
solid sphere (Foerster et al., 1994); —, correlation given by relation (2) with
� = 35.

of restitution evolves as

ε = εmax exp

[
− �

St

]
, (2)

where St is defined here as the Stokes number of the particle
away from the wall:

St = (�p + CM∞�)V∞d

9�
,

where �p is the particle density, � is the fluid density, � is the
fluid viscosity and d is the particle diameter. In this case, in
order to provide a global description of the wall interactions
the Stokes number, St is based on V∞ and on CM∞ = 1

2 . In
relation (2), � is a parameter that includes the viscous effects
of the film drainage and εmax is the maximum coefficient of
restitution that can be reached by the particle i.e., for St → ∞.
In practical situation, εmax is the value measured in air. For solid
spheres, it depends on the materials constituting the particle
and the wall (Sondergaard et al., 1990). For millimetric water
and glycerol drops and for centimetric rubber balloons filled
with a mixture of water and glycerol, Richard and Quéré (2000)
obtained a nearly constant value εmax = 0.91, for collisions
in air.

Fig. 1 shows experimental results from as many available
sources in the literature for spherical drops and also solid
spheres colliding both in air and in different liquids. This
figure clearly shows that relation (2) with � = 35 is able to
fit the general trend followed by all the experiments in a
good manner.
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3. Contact time

The collision between a solid sphere and a wall is usually
described as a discontinuity in the motion of the sphere as-
suming that the time of contact is smaller than all the other
characteristic time scales describing the particle motion and the
surrounding fluid flow. Recent experiments showed that for
drops in air (Richard and Quéré, 2000) as well as in water
(Legendre et al., 2005), the bouncing with a wall is character-
ized by a significant contact time. Consequently, the interaction
with the wall cannot be described as a discontinuity in the mo-
tion. For both types of particles (solid and liquid) the contact
time is controlled by the elasticity of the particle. For a drop
the elasticity is located on the surface and for a solid particle
the elasticity is located in the bulk of the particle.

3.1. Solid spheres

The contact time for a solid sphere in a gas (where the effects
of the external fluid can be neglected) can be determined using
the classical Hertzian theory. Its applicability is expected to
be valid as long as the resulting deformation does not exceed
the elastic limit (Goldsmith, 1960; Johnson, 1985). The contact
time between a spherical particle and a wall is

tHertz = 2.54�2/5
p

[
1 − �2

p

Ep

+ 1 − �2
w

Ew

]2/5

dV
−1/5
imp , (3)

where E, � and � are the modulus of elasticity, the density
and Poisson’s ratio, and the sub-indices w and p refer to the
wall and the particle, respectively. Zenit (1997) and Falcon
et al. (1998) measured the contact time during the bouncing of
spherical particle in air and confirmed the V

−1/5
imp dependence

given by Hertz theory. For a d = 8 mm tungsten carbide bead
impacting at Vimp = 19.8 cm/s in air over a steel wall, Falcon
et al. (1998) measured a typical tc = 52.4 �s. This measure-
ment is close to the contact time tHertz = 43 �s given by (3),
considering all the appropriate elastic constants.

For the case in which the surrounding fluid cannot be ne-
glected, two main effects, not included in relation (3), can be
considered:

(i) The effect of the fluid inertia: The added mass effect in-
creases the kinetic energy that is transformed into deformation
during the bounce. This effect can be simply taken into account
by replacing �p in (3) by �p + CMwall� with CMwall ∼ 0.73,
which is the limit value of the added mass coefficient of a
spherical body moving toward a wall at contact (Kok, 1995).

(ii) The effect of the fluid viscosity: This effect has been stud-
ied by Davis et al. (1986) on the particle deformation but no
specific information is given for the contact time. The defor-
mation of the sphere is found to be dependent on the fluid vis-
cosity resulting from the drainage of the film formed between
the wall and the particle which is found to significantly mod-
ify the velocity of restitution. Surprisingly, experimental stud-
ies of the effect of the viscosity on the contact time for solid
particles are scarce. Since the contact time is very small, it is
very difficult to measure it with a satisfactory accuracy using
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Fig. 2. Typical measured pressure trace resulting from a collision of a solid
sphere against a fast pressure transducer. Several typical signals, corresponding
to a range of St, are shown. The pressure is normalized by the maximum
value achieved for a given experiment. The time is normalized by the collision
duration predicted from Hertzian theory for each case.

trajectory image processing. It can be argued that the contact
time must increase with the fluid viscosity; it can be noted that
for St < 10 there is no rebound, which would correspond to an
infinite contact time.

The data for the contact time of solid particles colliding
against a wall in a liquid can be obtained from the experiments
of Zenit (1997) and Zenit and Hunt (1999). In these investiga-
tions, a fast-time dynamic pressure transducer was used to study
the effect of the surrounding liquid in the impulse strength of
particle collisions. A wide range of Stokes numbers was studied
using a pendulum setup, to vary the impact velocity, and parti-
cles of several sizes and densities. Details of the experimental
arrangement can be found in the references. Typical measured
pressure traces resulting from collisions are shown in Fig. 2.
Clearly, the pressure quickly raises from zero to a maximum
value, presumably as an indication of solid–solid contact, and
then drops to zero again in a nearly for-aft symmetric fashion.
These authors found that the liquid immersed collisions had
a strength similar to those predicted by a purely elastic con-
tact, e.g. the Hertzian prediction. The deviation from a Hertzian
contact was found to increase as the particle Stokes number
decreased.

From the original data, a precise measure of the particle con-
tact time can be obtained. As for the case of the measurement
of the collision impulse obtained in the original investigation, a
threshold level equal to 5% of the collision maximum pressure
was considered to obtain a measure of the contact time. The
threshold level is shown schematically in Fig. 2. The collision
time is defined as the duration for which the pressure signal is
above the threshold level. For these experiments, the sampling
rate was 1 MHz; hence, the contact time could be determined
with an accuracy of ±2 �s. The measured contact time did not
show a strong dependence of the chosen value of the threshold
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Fig. 3. Ratio between the measured contact time to the Hertz relation (3)
where �p is replaced by �p + CMwall�. ◦, d = 3 mm glass sphere; �,
d = 4.5 mm steel sphere; �, d = 6 mm glass sphere; �, d = 6.5 mm nylon
sphere. —, correlation (4).

level. Typically, for our experiments, the duration of collision
varied approximately 5% for a change of the threshold level of
100%. The only requirement to choose an appropriate thresh-
old level is than its value is larger than the base-line noise, to
prevent an erroneous detection of the initiation of the pressure
pulse.

Fig. 3 shows the ratio of the measured contact time to the
Hertz relation (3), where �p is replaced by �p + CMwall� to
include the effect of the fluid inertia. This figure clearly shows
that the contact time increases as the Stokes number decreases
(i.e., when viscous effects increased compared to the inertia)
but remains of the same order of magnitude as the time given
by the modified Hertz prediction, at least for the range of
Stokes numbers covered by the experiments (17 < St < 103).
It is not possible to strictly conclude if the contact time tends
to a finite value or increases continuously to infinity as St
approaches its no-bounce critical value Stc ≈ 10.15. From
Fig. 3 it can be argued that if the contact time must reach an
infinite value (enduring contact), it would increase very fast as
St → Stc. Indeed the minimum Stokes number where bounc-
ing occurs for the data reported here is St = 17 and the ratio
with the Hertz contact time is 3.3. Note that there is a notice-
able scatter in the data presented in Fig. 3. Experiments per-
formed under identical nominal conditions resulted in measure-
ments which varied significantly. Joseph et al. (2001) argued
that the measurements depended on the microscopic details of
the contact area. Since, for every collision the contact area is
slightly different in each case, some characteristic variability
is expected.

A simple correlation can be proposed to account for the ef-
fects of the fluid inertia and viscosity on contact time measured
in the experiments. It is found that the following empirical

correction in St

tc = tHertz

(
�p + CMwall�

�p

)2/5
1

1 − 0.85 St−0.1 (4)

fits the averaged tendency given by the experimental measure-
ments. Eq. (4) is shown in Fig. 3.

3.2. Liquid drops

For drops, the contact time is controlled by the drop’s sur-
face tension during the bouncing as shown by Klaseboer et al.
(2000), Richard and Quéré (2000), Okurama et al. (2003) and
Legendre et al. (2005). It is the time necessary to deform the
surface (kinetic energy transferred into surface energy) and to
restore the spherical shape (surface energy transferred into ki-
netic energy). Typically, the order of magnitude of the contact
time for a millimetric toluene drop in water is 20 ms which
is three orders of magnitude longer than the contact time of a
solid sphere with equivalent conditions.

Legendre et al. (2005) showed that the time of contact can
be estimated by considering an equivalent mass-spring system
where the mass of the system m∗ = (�p + CMwall�)�d3/6 in-
cludes the added mass involved in the motion (with CMwall ∼
0.73) and the stiffness of the system K = 16��/5 is deduced
from the surface energy due to the deformation. The time of
contact with the wall is the half period of this oscillator:

tc = �

√
m∗
K

= �

√
5

96

√
(�p + CMwall�) d3

�

≈ 0.717

√
(�p + CMwall�) d3

�
. (5)

Fig. 4 shows the comparison between the predictions of rela-
tion (5) and the experimental results of Okurama et al. (2003)
for drops in air, Klaseboer et al. (2000) and Legendre et al.
(2005) for toluene drops in water, Klaseboer et al. (2000) for
cyclohexane drops and silicone oil drops in water. In the latter
case, the contact time is deduced from the trajectories of the
drops obtained using a high-speed camera. The experiments
of Klaseboer et al. (2000) were performed using a rate of 50
images per second which is not enough to deduce the con-
tact time with a satisfactory precision. The values reported in
Fig. 4 are deduced from the fit of their experimental points (fig-
ure 7 in their paper) obtained using a bouncing model proposed
by these authors and based on the calculation of the drops tra-
jectory coupled with the calculation of the lubrication film be-
tween the drop and the wall. The prediction (5) is found to give
a good prediction for bouncing of drops of different fluids in
water as well as in air and shows that the simple model pro-
posed for toluene drops in water can be also used to determine
the contact time for drops bouncing in a liquid or a gas. This
figure also reveals that there is a second-order dependency of
the data: the contact time decreases with the Stokes number.
Further experiments on a wider range of Stokes numbers are
obviously necessary to clarify this point.
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Fig. 4. Normalized contact time tc/
√

(�p + CMwall�) d3/� for liquid drops

evolution versus the particle Stokes number St. Toluene drops in water
(�= 860 kg/m3, �= 0, 026 N/m): ◦, experiments of Legendre et al. (2005);
�, experiments of Klaseboer et al. (2000). Cyclohexane drops in water
(�=780 kg/m3, �=0, 047 N/m): �, experiments of Klaseboer et al. (2000).
Silicone oil drops in water (�=960 kg/m3, �=0, 030 N/m): �, experiments
of Klaseboer et al. (2000). Water drops in air: �, experiments of Okurama
et al. (2003). − − −, correlation (5).

3.3. Comparison with the relaxation time

For practical applications, it is interesting to compare the con-
tact time with the viscous relaxation time of the drop or solid
particle. The relaxation time characterizes the time necessary
for the particle to adjust its velocity to any unsteady situation
(for example, it is the characteristic time required to reach the
terminal rising velocity after being released from rest). As ob-
served in many experiments, the drag of a drop usually follows
the drag of a solid sphere due to the presence of contaminants
and can be estimated using the Shiller and Nauman’s (1933)
correlation which is used here to estimate the relaxation time
of the solid or fluid particle:

tr = (�p + CM∞�)d2

18�(1 + 0.15 Re0.687)
. (6)

The ratio between the contact time (given by (5) for drops and
(3) for solid spheres) and the relaxation time is plotted in Fig. 5
versus the particle Stokes number for a particle impacting on a
wall at its terminal velocity. The terminal velocity is obtained by
the use of Shiller and Nauman’s drag correlation. Four cases are
presented, toluene drops moving in water, water drops moving
in air, glass spheres moving in water and glass spheres moving
in air. For toluene drops in water, the contact time is found
to be always of the same order of magnitude as the viscous
relaxation time. For example, for a d = 2.5 mm drop (St = 32)
the relaxation time given by (6) is tr = 76 ms while the contact
time is tc = 21 ms. This result has a significant implication for
the Lagrangian description of the drop motion. Let us consider,
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Fig. 5. Ratio between the contact time tc and the viscous relax-
ation time tr versus the Stokes number St. —, toluene drops in water
(�p = 860 kg/m3, �= 0.026 N/m); · · · · ·, water drops in air; − − −, glass

sphere (�p = 2540 kg/m3) in water; – · – · –, glass sphere in air. Note that
the plot starts at St > 10 which is the limit for bouncing.

for example, a numerical calculation of the drop motion by
solving its trajectory. In order to give an accurate description of
the trajectory, the time step must be lower than the relaxation
time of the drop and can thus be lower than the contact time.
This condition would cause a drop to appear immobilized on
the wall for several time steps. For water drops in air and for the
diameters considered here (0.01 mm�d �10 mm) the contact
time is found to be always at least two orders of magnitude
less than the viscous relaxation time. In such a situation, the
motion of the drop can be modelled as a discontinuity in the
drop’s motion.

For solid spheres, the comparison of the contact time (4)
and the relaxation time clearly shows that for all the situations
(in air or water) the contact time is several order smaller than
the relaxation time of the particle. Considering, for example,
a d = 2.5 mm glass sphere impacting the wall at its terminal
velocity V∞ =33 cm/s in water (St =296), the relaxation time
given by (6) is tr = 0.7 s, several orders of magnitude larger
than the contact time tc = 52.4 �s which can be described as a
discontinuity (tc ∼ 0) for the particle motion.

4. Model for bouncing

The results presented above clearly show that for a solid
particle the bouncing can be described as a discontinuity for the
particle trajectory. The velocity after the impact can be simply
deduced from the coefficient of restitution and the velocity
before the impact. On the other hand, a liquid drop can remain
in contact with the wall a significant amount of time. This
particular interaction can be modelled considering the contact
time results presented here.
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Fig. 6. (a) Trajectory and (b) velocity evolution of a d = 2.75 mm toluene
drop (Legendre et al., 2005). ◦, experimental results; —-, model.

The simple bouncing model which is proposed here is based
on the two parameters presented above: the coefficient of resti-
tution ε or e (see Section 2) and the contact time with the wall
tc (see Section 3). When the collision between the wall and the
drop is detected, the particle is immobilized at the wall during
tc. The particle is then released to the surrounding fluid with a
normal velocity Vrest = −εV∞ or Vrest = −e Vimp where V∞ is
the velocity of the drop before “feeling the wall” and Vimp is the
velocity of the particle when it touches the wall. The choice be-
tween e and ε depends on how the particle motion is described.
If the force balance includes all the effects of the wall, then
the use of e is required. If no wall effects are included in the
force balance, the use of ε is more appropriate. In this section,
we test the last situation by comparing with the experiments
reported by Legendre et al. (2005), the motion of a millimetric
spherical toluene drop (position and velocity) moving in water
before and after the impact with a wall. A typical result from
this investigation is shown in Fig. 6. These results were ob-
tained using a high-speed camera operating at 250 images per
second.

To model the trajectory of the drop, a force balance equation
is proposed. The force balance for a drop rising involves only
buoyancy, steady drag and added mass:(

�p + 1

2
�

)
�d3

6

d v
d t

= − 3�� d(1 + 0.15 Re0.687)v

+ �d3

6
(�p − �)g, (7)

where the added mass coefficient without wall interaction is
1
2 for a spherical drop. In the experiments the drag force is
found to follow the Shiller and Nauman’s correlation where
Re=�d|v|/� is the instantaneous Reynolds number of the drop
based on its instantaneous velocity v. The trajectory equation
of the drop (7) is integrated using a second-order Runge–Kutta
method, considering initial conditions amenable for direct com-
parison with the experimental results. The initial position of
the droplet is greater than 10 drop diameters from the wall; its
initial velocity is zero. Figs. 6a and b present, respectively, the
trajectory and the velocity evolution of a d =2.75 mm diameter
drop, which corresponds to a Stokes number, based on the ter-
minal velocity, equal to St = (�p + 0.5�) Re/9� = 38. Clearly,
the drop position and velocity are in good agreement with the
experiments up to the second collision with the wall, even the
second impact being well reproduced by this basic modelling.
It must be noted that no history force expressions are avail-
able for drops. Since the drop’s interface is contaminated, it
may be possible to add the long time history force for solid
sphere (Lawrence and Mei, 1995) as done by Gondret et al.
(2002) who showed that the history force cannot be neglected
for bouncing trajectories of solid spheres in liquid. Gondret et
al. (2002) obtained a satisfactory fit with their experiments by
adjusting the history force with a fitting coefficient which had
to be adjusted for each case.

Finally, one can observe that this simple model gives a good
description of the bouncing between a drop and a wall: the
contact time is modelled and the conditions of rebound from
the wall are reproduced. Having in mind that approximately
80–90% of the kinetic energy is dissipated during the first im-
pact, in this example, the simple model presented here accounts
for the major part of momentum and energy exchanges during
drop–wall interactions.

5. Conclusion

It was found that to properly characterize the process of
collision and rebound of a spherical particle, solid or liquid, on a
wall immersed in a fluid two parameters must be considered: the
coefficient of restitution and the contact time with the wall. The
coefficient of restitution follows the same evolution for solid or
fluid particles as shown by many experiments. This behavior
can be modelled by the simple expression ε=εmax exp[−35/St]
where St is the Stokes number that includes the added mass of
the particle and is based on the velocity before its change by
the hydrodynamic effects due to the wall. εmax is the maximum
coefficient of restitution that can be reached for the particle
under consideration and is the value measured in air. By further
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analysis of available data, it was found that the contact time
for solid particles in viscous fluids is of the same order of
magnitude as that predicted by Hertz’s theory. Also, it was
found that the contact time is always much smaller than the
viscous relaxation time; hence, for the case of solid spheres,
the bouncing can be described in a simplified manner as a
discontinuity in the particle motion. A correlation depending
on the Stokes number is proposed to consider the effect of the
viscosity while the effect of the fluid inertia is considered by
the introduction of the added mass in the inertia involved in
the contact time expression. For millimetric drops in water the
contact time, modelled using an analogy with a mass-spring
system, can be of the same order than the viscous relaxation
time and the drops appear to stick on the surface during the time
of the rebound. These two parameters combined with a simple
trajectory equation including no wall effects are able to give a
satisfactory description of the bouncing of drops on a wall.

References

Davis, R.H., Serayssol, J.M., Hinch, E.J., 1986. The elastohydrodynamic
collision of two spheres. Journal of Fluid Mechanics 163, 479.

Falcon, E., Laroche, C., Fauve, S., Coste, C., 1998. Behavior of one inelastic
ball bouncing repeatedly off the ground. European Physical Journal B 3,
45–57.

Foerster, S.F., Lounge, M.Y., Chang, H., Allia, K., 1994. Measurements of
the collision properties of small spheres. Physics of Fluids 3, 1108.

Goldsmith, W., 1960. Impact: The Theory and Physical Behavior of Colliding
Solids. Edward Arnold, London.

Gondret, P., Lance, M., Petit, L., 2002. Bouncing motion of spherical particles
in fluids. Physics of Fluids 14 (2), 643–652.

Johnson, K.L., 1985. Contact Mechanics. Cambridge University Press,
Cambridge.

Joseph, G.G., Zenit, R., Hunt, M.L., Rosenwinkel, A.M., 2001. Particle-wall
collision in a viscous fluid. Journal of Fluid Mechanics 433, 329–346.

Klaseboer, E., Maté, A., Chevaillier, J.P., Masbernat, O., Gourdon, C., 2000.
Model and experiments of a drop impinging on an immersed wall. Physics
of Fluids 13, 45.

Kok, J.B., 1995. Dynamics of a pair of gas bubble moving through liquid.
Part I: theory. European Journal of Mechanics B-Fluids 12, 515–540.

Lawrence, C.J., Mei, R., 1995. Long-time behaviour of the drag on a body
in impulsive motion. Journal of Fluid Mechanics 283, 323.

Legendre, D., Daniel, C., Guiraud, P., 2005. Experimental study of a drop
bouncing on a wall in a liquid. Physics of Fluids 17 (1), 1–13.

Okurama, K., Chevy, F., Richard, D., Quéré, D., Clanet, C., 2003. Water
spring: a model for bouncing drops. Europhysics Letters 62 (2), 237–243.

Richard, D., Quéré, D., 2000. Bouncing water drops. Europhysics Letters 50
(6), 769–775.

Shiller, L., Nauman, A.Z., 1933. A drag coefficient correlation. Verein
Deutschen Ingenieure Zeitung 77, 318–320.

Sondergaard, R., Chaney, K., Brennen, C.E., 1990. Measurements of solids
spheres bouncing off flat plates. Transactions of the ASME 57, 694–699.

Zenit, J.R., 1997. Collisional mechanics in solid liquid flows. Ph.D. Thesis,
California Institute of Technology, Pasadenas, California.

Zenit, R., Hunt, M.L., 1999. Mechanics of immersed collision of particles.
Journal of Fluids Engineering 121, 179–184.


	A note on the modelling of the bouncing of spherical drops or solidspheres on a wall in viscous fluid
	Introduction
	Coefficient of restitution
	Contact time
	Solid spheres
	Liquid drops
	Comparison with the relaxation time

	Model for bouncing
	Conclusion
	References


