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Abstract
An exact real-space renormalization method is developed to address the
electronic transport in mirror Fibonacci chains at a macroscopic scale by means
of the Kubo–Greenwood formula. The results show that the mirror symmetry
induces a large number of transparent states in the dc conductivity spectra,
contrary to the simple Fibonacci case. A length scaling analysis over ten orders
of magnitude reveals the existence of critically localized states and their ac
conduction spectra show a highly oscillating behaviour. For multidimensional
quasiperiodic systems, a novel renormalization plus convolution method is
proposed. This combined renormalization + convolution method has shown
an extremely elevated computing efficiency, being able to calculate electrical
conductance of a three-dimensional non-crystalline solid with 1030 atoms.
Finally, the dc and ac conductances of mirror Fibonacci nanowires are also
investigated, where a quantized dc-conductance variation with the Fermi energy
is found, as observed in gold nanowires.

PACS numbers: 05.10.Cc, 72.15.−v, 71.23.Ft

1. Introduction

In the condensed matter physics, macroscopic crystalline solids are traditionally studied by
taking the advantage of the Bloch theorem and the first Brillouin zone [1]. However, these
important tools become inadequate or useless when extended defects are introduced, such
as in amorphous or quasicrystalline materials, where numerical calculations are usually
carried out in clusters with a limited number of atoms [2]. Unfortunately, the long-range
aperiodic order and its effects on the transport properties cannot be investigated by using these
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numerical results. The real-space renormalization technique, especially the Kadanoff blocking
picture [3], has provided a very interesting alternative to address macroscopic quasiperiodic
systems. The massive usage of computers in the investigation nowadays has also stimulated
its further development. Nevertheless, the traditional real-space renormalization procedures
are usually approximate and sometimes give very poor results [4]. In this context, we have
recently developed a new renormalization method to calculate the electrical conductivity of
Fibonacci systems by iterating directly the Kubo–Greenwood formula [5]. This method does
not introduce any additional approximations and is very efficient to be able to address truly
macroscopic systems, where quadruple numerical precision should be used. In this paper, we
extend this renormalization method to the mirror Fibonacci lattices and analyse the dc and
ac electrical conductance of three-dimensional macroscopic systems. Section 2 introduces
the mirror Fibonacci lattices and its renormalization procedure, whose detailed formulation
is given in the appendix. In section 3, multidimensional systems are studied by using the
renormalization + convolution (R + C) method, which is illustrated by using the density of
states (DOS) or the eigenvalues of the perpendicular subsystem with respect to the applied
electric field. Finally, some conclusive remarks are provided in section 4.

2. Mirror Fibonacci lattices

A Fibonacci chain (FC) can be constructed by using a unique type of atom and alternating two
sorts of bonds, A and B, following the Fibonacci sequence. This bond Fibonacci sequence (Fn)
is defined as F1 = A, F2 = AB and Fn = Fn-1 ⊕ Fn-2, where n is the number of generation. For
example, F4 = ABAAB. A mirror Fibonacci sequence (Mn) can be obtained just by connecting
a FC to its mirror image, i.e. for instance M4 = BAABA−ABAAB. In order to isolate the
quasicrystalline effects, we consider a simple s-band tight-binding Hamiltonian with null
self-energies,

H =
∑

j

{tj,j+1|j 〉〈j + 1| + tj−1,j |j 〉〈j − 1|}, (1)

tij = tA or tB being the hopping integral between nearest-neighbour atoms i and j . For the
sake of simplicity, a uniform bond length (a) is taken. There are several manners to examine
the electronic localization and transport in solids [6]. In this study, the dc and ac electrical
conductivities (σ ) are calculated by means of the Kubo–Greenwood formula, which can be
written as [7, 8]

σxx(µ, ω, T ) = e2h̄

2πm2�

∫ ∞

−∞
dE

f (E + h̄ω) − f (E)

h̄ω
Tr[pxG̃(E + h̄ω)pxG̃(E)], (2)

where � is the system volume and f (E) = {1 + exp[(E − µ)/kBT ]}−1 is the Fermi–
Dirac distribution with the Fermi energy µ and the temperature T. The projection of the
momentum operator along the applied electrical field is given by px = (im/h̄)[H, x] and using
equation (1) we obtain

px = ima

h̄

∑
j
{tj,j+1|j 〉〈j + 1| − tj−1,j |j 〉〈j − 1|}. (3)

The discontinuity of Green’s functions is defined as G̃(E) ≡ G+(E) − G−(E), where G+(E)

and G−(E) are respectively the retarded and advanced one-particle Green’s functions [7].
A smart way to evaluate the Kubo–Greenwood formula in large aperiodic systems

is through a real-space renormalization approach [9]. In figure 1, this renormalization
procedure is schematically illustrated for the bond Fibonacci case, where the numbers on
the left side indicate the generation. The atoms are symbolized by open circles, specifying
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Figure 1. Schematic representation of the renormalization procedure for a FC with bond disorder.
The numbers on the left-hand side indicate the generation. Self-energies and hopping strengths
are, respectively, specified inside and between the atoms (open circles).

their self-energies and hopping strengths inside and between them, respectively. At end
of the renormalization procedure, one gets two effective atoms (larger circles) connected
by an effective bond. There is a middle step, in which renormalized chains of lower
generation are connected through a common effective atom whose self-energy is given by
Ec(n) = ER(n − 1) + EL(n − 2), unlike to the mixing case where lower generation chains
are connected together by a hopping tAB [5]. The detailed recursion formulae of the Kubo–
Greenwood formula in mirror Fibonacci chains (MFC) are given in the appendix. These
formulae were used in the numerical calculation of the results presented in the following
section.

For multidimensional quasiperiodic systems, the convolution theorem is used when the
Hamiltonian of the system is separable, i.e. H = H‖ ⊗ I⊥ + I‖ ⊗ H⊥, H‖ (I‖) and H⊥ (I⊥)
respectively being the Hamiltonian (the identity of the corresponding Hilbert space) of
the parallel and perpendicular subsystems with respect to the applied electric field [10].
For instance, the decagonal quasicrystals [2] can be visualized as a periodic stacking of
quasiperiodic layers and their Hamiltonian can be expressed as a sum of the periodic and
quasiperiodic parts within the nearest-neighbour tight-binding approximation. Therefore, the
electrical conductivity can be expressed as [9]

σxx(µ, ω, T ) = 1

�⊥

∫ ∞

−∞
dy σ ‖

xx(µ − y, ω, T ) DOS⊥(y), (4)

or

σxx(µ, ω, T ) = 1

�⊥

∑
β

σ ‖
xx(µ − Eβ, ω, T ), (5)

where σ ‖ is the electrical conductivity of the parallel subsystem; �⊥, DOS⊥ and Eβ are
respectively the volume, the density of states and the eigenvalues of the perpendicular
subsystem, i.e. H⊥|β〉 = Eβ |β〉. In figure 2, the computing times spent through direct
calculation of Green’s function (open squares) and by using only the convolution technique
(open triangles) are compared with those obtained by means of the (R + C) method (open
circles). In all these calculations, square lattices with a fixed width of six atoms are used
and the numerical computations were performed on a Silicon Graphics O2 workstation with
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Figure 2. The Kubo–Greenwood formula computing time versus the number of atoms in two-
dimensional (2D) square lattices with a fixed width of six atoms, by using the renormalization +
convolution method (open circles), one-dimensional (1D) inversion of the Hamiltonian plus
convolution (open triangles) and direct 2D inversion (open squares).

a MIPS R12000 microprocessor. It would be worth mentioning that the results obtained from
these three approaches are exactly the same. Hence, in the rest of this paper only R + C results
will be shown.

3. Results

In figures 3(a) and (b), dc electrical conductivities at zero temperature, σ (µ, 0, 0) =σ xx(µ, 0, 0),
are respectively plotted as a function of the Fermi energy (µ) for a FC of 433 494 438
atoms, corresponding to generation n = 42, and for a MFC of 866 988 875 atoms, which
are connected to two semi-infinite periodic linear chains (leads) with hopping integrals
t and null on-site energies. These two quasiperiodic chains have the same Hamiltonian
parameters, tA = 0.97t and tB = t. The imaginary part of the energy in Green’s function is
η = 10−17t and σP = (N − 1)e2a/(πh̄) is the dc conductivity of a periodic chain with N
atoms. The magnifications around µ = 0 of figures 3(a) and (b) are respectively illustrated in
figures 3(a′) and (b′). Observe the transparent states located at µ = 0 in both FC and
MFC, where this transparency has been analytically demonstrated for the former case in
[9]. Additionally, there are many other transparent states in the MFC, as observed in a light
propagation study [11]. This appearance of additional transparent states due to the global
mirror symmetry of the system has been predicted by an analytical study [12]; similar to those
observed in a random symmetric-dimer model [13].

In figures 4(a) and (b), the dependence of σ on the system length is analysed for the states
located at µ = 0 and µ = 0.729 373|t|, respectively, for the same FC (solid circles) and MFC
(open circles) as in figure 3. Note that the first state at µ = 0 is a transparent state for every
generation of MFC, instead of each six generations for the analysed FC case. It would be
worth mentioning that this occurs in each three generations if the FC is built by starting from
F2 = BA. Another analysed state (µ = 0.729 373|t|) is located at the edge of the largest energy
gap of the DOS for both FC and MFC. This state shows an oscillating behaviour when the
system length increases, revealing a critical localization nature [2].
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(a) (b)

(a') (b')

Figure 3. The dc electrical conductivities (σ ) of (a) a FC with 433 494 438 atoms and (b) a MFC
with 866 988 875 atoms. Magnifications of figures 3(a) and (b) around µ = 0 are, respectively,
shown in figures 3(a′) and (b′).

(a)

(b)

Figure 4. The dc electrical conductivity (σ ) versus the number of atoms contained in the same FC
(solid circles) and MFC (open circles) as in figure 3, except for the system length.

Continuing with the same systems of figure 3, the dependence of σ on the frequency
of the applied electric field is shown in figures 5(a) and (b) for the same states analysed in
figures 4(a) and (b), respectively. The solid line represents the analytical solution obtained
from a periodic chain of N atoms, which is given by [9]

σxx(µ, ω, 0) = 8e2t2a

π(N − 1)h̄3ω2

[
1 −

( µ

2t

)2
] {

1 − cos

[
(N − 1)

h̄ω/(2t)√
1 − [µ/(2t)]2

]}
, (6)

for |µ| � 2|t |. Note that the transparent states have an ac behaviour very close to the periodic
case, contrary to a critically localized state, since the ac conductivity involves states within an
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(a)

(b)

Figure 5. The ac electrical conductivity versus the frequency of the applied electric field for the
same FC (solid circles) and MFC (open circles) as in figure 4, evaluated at (a) µ = 0 and (b) µ =
0.729 373|t|. The solid line indicates the behaviour of a periodic system.

Figure 6. The dc electrical conductance of a 3D solid containing about 1.595 × 1031 atoms when
the electric field is applied along a periodic direction (grey line) or along a quasiperiodic direction
(black line). The quasiperiodic arrangement has the same system parameters as in figure 3.

interval of h̄ω around the Fermi energy (see equation (2)). In most cases, the MFC has larger
ac conductivity than that of FC.

For three-dimensional (3D) systems, the electrical conductance (g) can be defined as

g(µ, ω, T ) = σ(µ, ω, T )�⊥
�‖

, (7)

where �⊥ and �‖ are the volume in the perpendicular and parallel subspace of the system,
respectively. In figure 6, the dc electrical conductance of a 3D solid with 25 172 538 051
atoms in each direction, corresponding to a MFC of generation n = 49, is shown when the
electric field is applied along a periodic direction (grey line) or a quasiperiodic one (black
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(a)

(b)

(c)

Figure 7. The ac electrical conductance of a nanowire containing 866 988 875 × 6 × 6 atoms
for (a) h̄ω = 0, (b) h̄ω = 2|t|/(N‖−1) and (c) h̄ω = 5|t|/(N‖−1). The atoms of this nanowire
are quasiperiodic arranged on the longer side with the same system parameters as in figure 3, and
periodically arranged in the square cross section.

line). The quasiperiodic arrangement has the same system parameters as in figure 3 and the
conductance unit is given by g0 = 2e2/h. The numerical results are obtained by using the
convolution equation (4). Observe that a 3% disorder in the hopping strength could cause a 3D
electrical conductance that is one order of magnitude smaller than the periodic one. Also, we
found that these two spectra are not sensitive to the atomic arrangement in the perpendicular
subspace.

In figures 7(a), (b) and (c), the ac electrical conductance of a nanowire is shown for
h̄ω = 0, 2|t|/(N‖−1) and 5|t|/(N‖−1), respectively. This nanowire has N‖ = 866 988 875
quasiperiodically arranged atoms along the applied electric field and a square cross section
of 6 × 6 periodically arranged atoms. The mirror Fibonacci arrangement in the parallel
direction has the same system parameters as in figure 3 and the numerical results are obtained
by means of equation (5). The quantized step behaviour of g is still notable in figure 7(a) and
it becomes perfect quantum steps if the atoms are periodically arranged along the electric field
direction, as found in [9]. This quantized conductance behaviour has been experimentally
observed in gold nanowires [14]. However, it can be quickly destroyed when an oscillating
electric field is introduced, as shown in figures 7(b) and (c).

4. Conclusions

The real-space renormalization method seems to be very powerful tool to address macroscopic
aperiodic systems. Furthermore, combination of the real-space renormalization method with
the convolution technique could be an interesting approach to the multidimensional non-
crystalline solids. In this paper, we have extended the renormalization method to the MFC and
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the results show the existence of a large number of transparent states, instead of a single one
in FC. These transparent states could be very important in the behaviour of a low-dimensional
solid, since they lead to a ballistic conduction, i.e. the electrons can go from one end to the
other without being scattered, giving rise to the phenomenon that the system resistance could
be independent of its length.
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Appendix: Renormalization formulae for mirror Fibonacci chains

In this appendix, the renormalization formulae are given for a mirror Fibonacci chain (MFC)
with bond disorder. The trace in the Kubo–Greenwood formula (equation (2)) can be written
as

Tr[pxG̃(E + h̄ω)pxG̃(E)] = S
(
E+

ω,E+, n
) − S

(
E+

ω,E−, n
)

− S(E−
ω ,E+, n) + S(E−

ω ,E−, n),

where E± = E ± iη,E±
ω = E + h̄ω ± iη with η → 0+, and partial sums

S
(
Eν

ω,Eκ, n
) =

N(n)−1∑
j,k=1

tj,j+1tk,k+1
[
2Gj+1,k

(
Eν

ω

)
Gk+1,j (E

κ) − Gj+1,k+1
(
Eν

ω

)
Gk,j (E

κ)

−Gj,k

(
Eν

ω

)
Gk+1,j+1(E

κ)
]
,

ν and κ being either + or −. These partial sums can be expressed in terms of Green’s functions
evaluated at the extreme sites of the MFC as

S
(
Eν

ω,Eκ, n
) = A

(
Eν

ω,Eκ, n
)
GL,L

(
Eν

ω

)
GL,L(Eκ) − A

(
Eν

ω,Eκ, n
)
GL,R

(
Eν

ω

)
GL,R(Eκ)

+ B
(
Eν

ω,Eκ, n
)
GL,L

(
Eν

ω

)
GL,R(Eκ) + B

(
Eκ,Eν

ω, n
)
GL,R

(
Eν

ω

)
GL,L(Eκ)

+ C
(
Eν

ω,Eκ, n
)
GL,L

(
Eν

ω

)
+ C

(
Eκ,Eν

ω, n
)
GL,L(Eκ)

+ D
(
Eν

ω,Eκ, n
)
GL,R

(
Eν

ω

)
+ D

(
Eκ,Eν

ω, n
)
GL,R(Eκ) + F

(
Eν

ω,Eκ, n
)
, (A.1)

where the subindices L and R denote the left- and right-end atoms, respectively. The
coefficients A(E1,E2,n), B(E1,E2,n), . . . , F(E1,E2,n) in equation (A.1), E1 and E2 being either
Eν

ω or Eκ , can be iteratively obtained from quantities of generations n−1 and n−2, as given
in the following:

A(E1, E2, n) = −[B0(E1, E2, n) + 2θ1(E2, n)A0(E1, E2, n)]2

− [B0(E1, E2, n) − 2θ1(E1, n)A0(E2, E1, n)]2,

B(E1, E2, n) = −4θ1(E1, n)A0(E2, E1, n)[B0(E1, E2, n) − θ1(E1, n)A0(E2, E1, n)]

− 4θ1(E2, n)A0(E1, E2, n)[B0(E1, E2, n) + θ1(E2, n)A0(E1, E2, n)],

C(E1, E2, n) = 2
[−θ0(E2, n)A2

0(E1, E2, n) + θ1(E1, n)K(E1, E2, n)

+ 2θ2
1 (E1, n)L(E1, E2, n) + J (E1, E2, n)

]
,

D(E1, E2, n) = 2
[
θ0(E2, n)A2

0(E1, E2, n) + θ1(E1, n)K(E1, E2, n)

+ 2θ2
1 (E1, n)L(E1, E2, n)

]
,
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and

F(E1, E2, n) = 2[θ0(E1, n)L(E1, E2, n) + θ0(E2, n)L(E2, E1, n) + Z(E1, E2, n)],

where

J (E1, E2, n) = θ2
3 (E1, n)[L(E1, E2, n − 1) + J (E1, E2, n − 2)] + θ3(E1, n)K(E1, E2, n − 1)

+ J (E1, E2, n − 1) − θ2(E2, n)[θ3(E1, n)C0(E1, E2, n) + A0(E1, E2, n − 1)]2,

K(E1, E2, n) = 2θ3(E1, n)θ4(E1, n)[L(E1, E2, n − 1) + J (E1, E2, n − 2)]

+ θ3(E1, n)K(E1, E2, n − 2) − 2θ2(E2, n)[θ4(E1, n)C0(E1, E2, n)

−A0(E2, E1, n − 2)][θ3(E1, n)C0(E1, E2, n) + A0(E1, E2, n − 1)]

+ θ4(E1, n)K(E1, E2, n − 1),

L(E1, E2, n) = θ2
4 (E1, n)[L(E1, E2, n − 1) + J (E1, E2, n − 2)] + θ4(E1, n)K(E1, E2, n − 2)

+ L(E1, E2, n−2) − θ2(E2, n)[θ4(E1, n)C0(E1, E2, n)−A0(E2, E1, n−2)]2,

Z(E1, E2, n) = −θ2(E1, n)θ2(E2, n)C2
0(E1, E2, n) + θ2(E1, n)[L(E1, E2, n − 1)

+ J (E1, E2, n − 2)] + θ2(E2, n)[L(E2, E1, n − 1) + J (E2, E1, n − 2)]

+ Z(E1, E2, n − 1) + Z(E1, E2, n − 2),

A0(E1, E2, n) = Cc(E1, E2, n) − Dc(E2, E1, n),

B0(E1, E2, n) = Ac(E1, E2, n) − Ac(E2, E1, n),

C0(E1, E2, n) = B0(E1, E2, n − 2) + Bc(E1, E2, n − 1) − Bc(E2, E1, n − 1),

Ac(E1, E2, n) = Ac(E1, E2, n − 1) + θ3(E1, n)θ3(E2, n)[Ac(E1, E2, n − 2)

+ Bc(E1, E2, n − 1)] + θ3(E2, n)Cc(E1, E2, n − 1)

+ θ3(E1, n)Dc(E1, E2, n − 1),

Bc(E1, E2, n) = Bc(E1, E2, n − 2) + θ4(E1, n)θ4(E2, n)[Ac(E1, E2, n − 2)

+ Bc(E1, E2, n − 1)] + θ4(E1, n)Cc(E1, E2, n − 2)

+ θ4(E2, n)Dc(E1, E2, n − 2),

Cc(E1, E2, n) = θ3(E1, n)θ4(E2, n)[Ac(E1, E2, n − 2) + Bc(E1, E2, n − 1)]

+ θ3(E1, n)Cc(E1, E2, n − 2) + θ4(E2, n)Cc(E1, E2, n − 1),

Dc(E1, E2, n) = θ3(E2, n)θ4(E1, n)[Ac(E1, E2, n − 2) + Bc(E1, E2, n − 1)]

+ θ3(E2, n)Dc(E1, E2, n − 2) + θ4(E1, n)Dc(E1, E2, n − 1),

θ0(E, n) = [E − 2ER(E, n)]−1, θ1(E, n) = t (E, n)θ3(E, n),

θ2(E, n) = [E − ER(E, n − 1) − EL(E, n − 2)]−1,

θ3(E, n) = t (E, n − 1)θ2(E, n), and θ4(E, n) = t (E, n − 2)θ2(E, n),

E being either E1 or E2. The effective hopping integral [t(E, n)], the effective self-energies of
the left [EL(E, n)] and right [ER(E, n)] extreme sites are respectively given by

t (E, n) = t (E, n − 1)t (E, n − 2)θ2(E, n),

EL(E, n) = EL(E, n − 1) + t2(E, n − 1)θ2(E, n),
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and

ER(E, n) = ER(E, n − 2) + t2(E, n − 2)θ2(E, n).

When the system is connected to two semi-infinite periodic leads with hopping integrals
t and null on-site energies, Green’s functions in equation (A.1) can be written as

GL,L(E) =
{
E − EP (E) − EL(E, n) − t2(E, n)θ0(E, n)

− t4(E, n)θ2
0 (E, n)

E − EP (E) − EL(E, n) − t2(E, n)θ0(E, n)

}−1

and

GL,R(E) = GL,L(E)t2(E, n) θ0(E, n)[E − EP (E) − EL(E, n) − t2(E, n) θ0(E, n)]−1,

where EP (E) = (E − i × sign[Im(E)] × √
4t2 − E2)/2.

Finally, the initial conditions for the iterative procedure are

t (E, 1) = tA, EL(E, 1) = ER(E, 1) = 0, t (E, 2) = tAtB/E,

EL(E, 2) = t2
A

/
E, ER(E, 2) = t2

B

/
E,

J (E1, E2, 1) = K(E1, E2, 1) = L(E1, E2, 1) = Z(E1, E2, 1) = 0,

J (E1, E2, 2) = −t (E2, 2)tA/tB,

K(E1, E2, 2) = 2t (E2, 2), L(E1, E2, 2) = −t (E2, 2)tB/tA, Z(E1, E2, 2) = 0,

Ac(E1, E2, 1) = Bc(E1, E2, 1) = Cc(E1, E2, 1) = 0, Dc(E1, E2, 1) = tA,

Ac(E1, E2, 2) = t2
A

/
E1, Bc(E1, E2, 2) = t2

B

/
E2,

Cc(E1, E2, 2) = 0, and Dc(E1, E2, 2) = tAtB/E1 + tAtB/E2.

This renormalization method is recommended to use quadruple precision for the numerical
evaluations.
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