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In this article, the Kubo-Greenwood formula is used to investigate the electronic
transport behaviour in macroscopic systems by means of an exact
renormalization method. The convolution technique is employed in the analysis
of two-dimensional Fibonacci lattices. The dc electrical conductance spectra of
multidimensional systems exhibit a quantized behaviour when the electric field
is applied along a periodically arranged atomic direction, and it becomes
a devil’s stair if the perpendicular subspace of the system is quasiperiodic. The
spectrally averaged conductance shows a power-law decay as the system length
grows, neither constant as in periodic systems nor exponential decays occurred
in randomly disordered lattices, revealing the critical localization nature of the
eigenstates in quasicrystals. Finally, the ac conductance along periodic and
quasiperiodic directions is compared with the optical conductivity measured in
decagonal quasicrystals.

1. Introduction

The synthesis of thermodynamically stable and structurally near-perfect quasi-
crystals, such as AlCuRu and AlCuFe systems [1, 2], has provided the possibility
to explore the intrinsic properties of quasiperiodic alloys. Among their peculiar
characteristics, the transport property is perhaps the most surprising one. Unlike
their metallic constituents, the quasicrystals (typically aluminium-rich alloys) are
extremely poor conductors of electricity and heat. In fact, they become more resistive
when they are more perfect. Moreover, their electrical resistivity (�) has a strong
temperature dependence, e.g., the ratio �(4.2K)/�(300K) is larger than 10, in
comparison with 1.2 for amorphous and less than 0.1 for crystalline metals [3].
The optical conductivity is also unusual, showing linear frequency dependence in
icosahedral quasicrystals [4] and a strong anisotropy in decagonal ones, in which the
optical conductivity decays with the frequency along periodic direction and increases
slightly in the low frequency region along the quasiperiodic one [5]. These amazing
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non-Drude responses to the oscillating external electric field are still not fully
understood. They are generally believed to be consequences of a peculiar localization
nature derived from the long-range quasiperiodic structural order. Nowadays, there
is a consensus that the eigenvalue spectrum produced by a quasiperiodic potential
is singular continuous and the associated eigenfunctions are critical [6], neither
extended nor exponentially localized. In this article, we report an eight orders of
magnitude scaling analysis of the dc conductance, revealing a clear power law
localization nature of the states, whose exponent shows a linear relationship with
the quasiperiodicity strength. Furthermore, we extend this analysis to the finite
frequency region and the results show an absence of the Drude peak when the
external electrical field is applied along the quasiperiodic direction, as observed in
decagonal quasicrystals.

2. The method of renormalization plus convolution

There are several ways to examine the localization and the transport capability of
an excitation in solids [7]. In this work, we choose the Kubo formalism to quantify
the dc and ac electrical conductivity (�) of multidimensional Fibonacci systems.
Within the linear response approximation, the Kubo-Greenwood formula is
given by [8]

�ð�,!,T Þ ¼
2e2�hh

�pm2

ð1
�1

dE
fðE Þ � f ðEþ �hh!Þ

�hh!
Tr p ImGþðEþ �hh!Þp ImGþðE Þ
� �

; ð1Þ

where � is the volume of the system, p is the projection of the momentum operator
along the applied electrical field, Gþ is the retarded one-particle Green’s function,
and f ðE Þ ¼ f1þ exp½ðE� �Þ=kBT �g

�1 is the Fermi-Dirac distribution with Fermi
energy � and temperature T. In order to isolate the quasicrystalline effects on the
conductivity, we consider a simple s-band tight-binding Hamiltonian given by

H ¼
X
j

"jj jih jj þ tj, jþ1j jih jþ 1j þ tj, j�1j jih j� 1j
� �

; ð2Þ

where "j is the self-energy at site j and ti, j denotes the hopping integral between
nearest-neighbour sites i and j. Using the relation p ¼ ðim=�hhÞ½H, x�, the momentum
operator can be written as p ¼ ima=�hh

P
j ftj, jþ1j jih jþ 1j � tj, j�1j jih j� 1jg.

Recently, we have developed a novel renormalization method for the
Kubo-Greenwood formula in Fibonacci chains [9]. It is very efficient, allowing the
study of truly macroscopic systems, as illustrated in figure 1, where the computing
time spent through direct calculation of the Green’s function (figure 1a) and by using
the renormalization method (figure 1b) are comparatively shown. The numerical
computations were carried out on a Silicon Graphics O2 workstation with a
MIPS R12000 microprocessor.

Observe that in the first case, figure 1a, the computing time grows as a third
power of the system size, and for the second case, figure 1b, it grows linearly with the
number of generation, i.e., grows logarithmically with the system size. For example,
for a system with 988 atoms the direct-calculation time is 3 932 891ms versus 27ms
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if the renormalization method is used. It would be worth emphasizing that the results
obtained by both methods are exactly the same and the quadruple precision should
be used when the system size reaches the macroscopic scale. Therefore, in the rest of
this paper we will use the renormalization method to evaluate the Kubo-Greenwood
formula.

This renormalization method is difficult to be extended to multidimensional
systems, since for each generation only the interior sites of the lattice can be
renormalized and all the border sites should be explicitly kept in order to calculate
the Green’s function of next generations, i.e., for a d-dimensional system, the number
of border sites increases as a system of d� 1 dimensions [10], except d¼ 1 where the
number of border sites is always two. However, there is an alternative way to address
the multidimensional quasiperiodic systems, which is through the convolution
technique, when the Hamiltonian of the system is separable, i.e., H ¼ Hk � I?þ
Ik �H?, with Hk (Ik) and H? (I?) being respectively the Hamiltonian (the identity
of the corresponding Hilbert space) of the parallel and perpendicular subsystem
with respect to the applied electric field [11]. For instance, the decagonal quasi-
crystals can be visualized as a periodic stacking of quasiperiodic layers and
their Hamiltonian can be expressed as a sum of the periodic and quasiperiodic
parts within the first-neighbour tight-binding approximation. Combining the
renormalization and convolution methods, the electrical conductivity can be
expressed as [12]

�ð�,!,T Þ ¼
1

�?

ð1
�1

dy�jjð�� y,!,T ÞDOS?ðyÞ ð3Þ

Figure 1. The Kubo-Greenwood formula computing time spent (a) through direct calcula-
tion of the Green’s function and (b) by using the renormalization method. The numerical
computations are performed on a Silicon Graphics O2 workstation with a MIPS R12000
microprocessor.
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or

�ð�,!,T Þ ¼
1

�?

X
�

�jjð�� E�,!,T Þ, ð4Þ

where �k is the electrical conductivity of the parallel subsystem; �?, DOS? and
E� are respectively the volume, the density of states and the eigenvalues of the
perpendicular subsystem, i.e., H?j�i ¼ E�j�i.

3. Results

Let us consider a cubic-type lattice, in which the atoms in each direction can
be arranged periodically or quasiperiodically [13, 14]. The latter is obtained by
alternating two sorts of bonds, tA and tB, following the Fibonacci sequence and
maintaining the same self-energy "j¼ 0. This bond Fibonacci sequence (Fn) is defined
as F1¼A, F2¼BA, and Fn¼Fn� 1�Fn� 2. For example, F5¼BAABABAA. For the
sake of simplicity, a uniform bond length (a) is taken. Along the applied electric field
all the systems considered in this paper are connected to two semi-infinite periodic
leads with null self-energies, hopping integrals t¼ tA and a lattice constant a.

In figure 2, we show the two-dimensional (2D) ac electrical conductance (g)
at zero temperature, defined as g(�,!, 0)¼ �(�,!, 0)�?/�k, for a lattice whose

Figure 2. The electrical conductance at zero temperature of a 2D lattice [g2D(�,!, 0)]
versus the position of the Fermi energy (�) and the frequency of the applied electric
field (!). This lattice contains 165 580 142� 35 atoms and they are arranged periodically
and quasiperiodically, with � ¼ tB/tA¼ 0.9, in its longer and shorter sides, respectively.
The external electric field is applied along the longer side.
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atoms are arranged periodically along the electric field and quasiperiodically in the
perpendicular directions with �¼ tB/tA¼ 0.9. The cross section of the lattice contains
35 atoms, and its size along the electric field is of 165 580 142 atoms, corresponding
to the generation n¼ 40.

Observe the quantized conductance with a uniform step height g0¼ 2e2/h
at !¼ 0, as found experimentally in 2D electron gas devices [15]. However, these
steps are not uniformly placed, whose positions are defined by the eigenvalues, E�, of
the perpendicular quasiperiodically-ordered cross section, as shown in equation (4).
For frequencies ! 6¼ 0, these quantum steps are quickly destroyed.

In order to analyze the global localization nature of the states, a spectral average
of the conductance, defined as

hgi ¼

Ð
dE gðE, 0, 0ÞDOSðE ÞÐ

dEDOSðE Þ
, ð5Þ

is shown in figure 3 as a function of the number of atoms in the parallel direction
(Nk), for 2D lattices with different values of the quasiperiodicity strength (�).

All these lattices contain 165 580 142 atoms in the perpendicular direction to the
applied electric field. Notice the well-defined power-law behaviour demonstrated in
the log-log plot, i.e. hgi� (Nk)

��. This exponent � depends on �, as shown in the
inset of figure 3, where we can see an almost linear relationship between � and �.

Finally, let us consider two 2D tapes. Each one contains 165 580 142� 90
atoms and orient their longer side on the applied electric field direction.

Figure 3. Spectral average of the conductance (hgi) versus the length (Lk¼Nka) for
systems with a fixed width of 165 580 142 atoms and different values of the quasiperiodicity
strength �¼ tB/tA. The data follow a power law as hgi / N��jj . Inset: the exponent � as a
function of �.
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The ac conductance (g) of these tapes evaluated at a pseudo gap as a function of the
frequency (!) is exposed in figure 4, where the first tape (open circles) has respec-
tively its periodic and quasiperiodic atomic orders on the long and short sides and on
the contrary, the second tape (solid circles) has the periodic and quasiperiodic atomic
orders on the short and long sides, respectively.

Observe that for the first tape the ac conductance falls following a quadratic
power law at the very low frequency region, in accordance with the Drude theory
[16], while the ac conductance of the second tape remains almost constant, as
observed in decagonal quasicrystals [5]. The densities of states (DOS) corresponding
to the first and second tapes are respectively displayed in the insets figure 4a and 4b,
where the location of the Fermi energy is indicated by a dashed line. The value of
the Fermi energy is chosen at a minimum of the DOS verified by magnifications
of the spectra.

4. Conclusions

The renormalization method combined with the convolution technique seems
to be an interesting approach to multidimensional quasiperiodic systems of
macroscopic scale. Using this method we have performed an analysis of dc and ac

Figure 4. The electrical conductance (g) at zero temperature versus the frequency of the
applied electric field (!) for two 2D tapes of 165 580 142� 90 atoms with periodic (open
circles) and quasiperiodic (solid circles) order on the longer side, at the same time quasi-
periodic and periodic order on the shorter side, respectively. The external electric field
is applied along the longer side. Inset: densities of states of these two tapes represented by
(a) open circles and (b) solid circles. The Fermi energy (�) is indicated by a dashed line.
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conductivities in an exact way within the Kubo-Greenwood formalism. The results
show a clear quantized conductance when the system is periodic along the applied
electric field. The scaling analysis of the dc-conductance spectra reveals a power-law
localization nature in the Fibonacci lattices with bond disorder, where the absolute
value of the exponent increases almost linearly with the quasiperiodicity strength.
The ac conductance evaluated at a pseudo gap shows a quadratic power-law decay
with the frequency, in accordance with the Drude theory, when the electric field is
applied along the periodic atom-arrangement direction. On the other hand, a weak
dependence on the frequency is observed when the electric field is applied along
the quasiperiodic direction. These two low-frequency behaviours correspond to
�¼ 2�� 1>0 and �� 0 cases predicted by the generalized Drude theory [17].
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