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Abstract

We investigate the effect of an electric field applied transverse to the axis of cylindrical symmetry of a hollow cylindrical quantum wire

on the energy ground state of the electrons in this wire. We investigate how the shift in the energy with field depends upon the ratio of the

outer and inner radii of the hollow wire.

r 2006 Published by Elsevier B.V.
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1. Introduction

There has been much work on the transverse Stark effect
in quantum wells where an electric field is applied along the
direction of confinement in the well [1–7].

The effect of the electric field on the energy levels of
electron, excitons and hydrogenic impurities have been
investigated both theoretically and experimentally. Also,
the Stark effect has also been investigated in quantum dots
[8]. We have previously theoretically investigated the Stark
effect when the electric field is applied transverse to the axis
of cylindrical symmetry (transverse Stark effect) in a solid
cylindrical quantum wire [9]. Dupertuis et al. [10]
investigated the effect of an electric field on the energies
of electrons in V shaped quantum wires but did not show
what they used for the confining potential. The electric field
in their case had components parallel and perpendicular to
the V shaped wire. They found excited states with many
nodes which get split with the electric field. Huynh Thanh
e front matter r 2006 Published by Elsevier B.V.
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et al. [11] investigated the confined Stark effect in quantum
wires with parabolic confinement and found a quadratic
Stark effect at all electric fields. Benner and Haug [12]
considered the Stark effect in quantum wires also assuming
parabolic confinement. There has also been experimental
work on the photoluminescence in quantum wires in an
electric field [13,14]. Arakawa et al. [13] found a blue shift
in the photoluminescence due to excitons in quantum wires
in the presence of an electric field. In their case, the
quantum wires were V shaped. Rinaldi et al. [14] also
observed a small blue shift which they believed was due to
the piezoelectric field caused by strain in the quantum
wires. Here, we wish to investigate the Stark effect when
the electric field is applied transverse to the axis of
cylindrical symmetry, but in hollow cylindrical quantum
wires as a function of the ratio of the inner and outer radius
of the hollow cylinder. In Section 2, a variational
calculation is performed to obtain the energy shift due to
the transverse electric field using an infinite confining
potential for the carriers, and in Section 3 we discuss our
results.
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Fig. 1. The Stark shift of the carrier’s energy �DE is shown as a function

of the inner wire radius r for various electric fields and for an outer wire

radius R ¼ 0:5a. In this figure and the following figures, the quantities are

given in atomic units appropriate for the electron in the semiconductor.
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2. Calculation

The Hamiltonian of a carrier in a cylindrical quantum
wire in the presence of an electric field applied transverse to
the axis of cylindrical symmetry, and parallel to the x-
direction, is

H ¼
p2

2m�
� qFr cos yþ V cðrÞ, (1)

where F is electric field, m� and q are the carrier effective
mass and charge, r is the distance of the carrier from the
axis of cylindrical symmetry, y is the angle between the
position vector of the carrier and the electric field direction
and V cðrÞ is the confining potential using the infinite well
model which vanishes for roroR and becomes infinite
r4R and ror. Here, r is the inner radius of the hollow
cylindrical wire and R is its outer radius. Our assumption
of a constant electric field transverse to the wire axis is
based on a negligible difference between the dielectric
constants in the wire and its surroundings. This would be
the case for a GaAs wire embedded in Ga1�xAlxAs
surroundings.

Following an approach similar to that used by Brown
and Spector [15,16] in calculating the energies of excitons
and hydrogenic impurities in a cylindrical quantum wire,
we chose as our variational wave function

Cðr; y; zÞ ¼ NFðrÞ expðb cos yÞ expðikzÞ, (2)

where k is the wave vector of the carrier along the axis of
cylindrical symmetry, b is a real variational parameter
which depends upon the electric field, N is the normal-
ization constant of the wave function and

FðrÞ ¼ J0ðk1rÞ �
J0ðk1rÞ

Y 0ðk1rÞ

� �
Y 0ðk1rÞ. (3)

Here J0ðk1rÞ is the ordinary cylindrical Bessel function and
Y 0ðk1rÞ is the cylindrical Neumann function. The quantity
k1 is determined by the boundary conditions at r ¼ r and
r ¼ R which yields the transcendental equation

J0ðk1RÞY 0ðk1rÞ � J0ðk1rÞY 0ðk1RÞ ¼ 0. (4)

The first exponential factor in Eq. (2) is chosen in analogy
to the trial wave functions used for carriers in an electric
filed in bulk semiconductors and semiconducting quantum
well which seem to give good results for the ground state
when compared to the exact wave functions involving Airy
functions [2,17]. A simple calculation shows that the
normalization is given by

N�2 ¼ 2pM0ðbÞ, (5)

where

M0ðbÞ ¼
Z R

0

drrFðrÞ2ðk1rÞI0ð2brÞ. (6)

Here I0ðxÞ is a modified Bessel function of the first kind.
A straight forward calculation yields the following

expression for the expectation value of the Hamiltonian
using the variational wave function given by Eq. (2)

EðbÞ ¼
_2

2m�
ðk2
þ k2

1 þ b2Þ �
qF

2

d

db
lnM0ðbÞ. (7)

The change in the carriers energy due to the transverse
electric field is

DE ¼ EðbÞ � Eð0Þ ¼
qF

2

d

db
lnM0ðbÞ �

_2

2m�
b2.

3. Results

The expression for DE as a function of b is minimized to
obtain a lower limit of DE as a function of the inner and
outer radii of the wire and the electric field. In Figs. 1–3,
�DE is shown as a function of the inner wire radius r for
various electric fields F and for various outer wire radii. In
these figures the shift in the energy is given in electron
Rydberg units where Ry ¼ ðe2=2kaÞ, the wire radii is given
in electron Bohr radii where a ¼ ð_2k=m�e2Þ, the electric
field is given in atomic units F0 ¼ ðe=2ka2Þ and k is the
dielectric constant of the semiconductor. The figures show
that except for the inner wire radius close to the outer wire
radius, the results are similar to those for a solid cylindrical
wire [9]. For fixed inner and outer radii, �DE increases
with electric field. Interestingly, even though the Stark field
rises the potential at one side of the origin the same amount
it lowers the potential at the other side of the origin, the
total effect in a given charged particle is not canceled. The
reason is that the particles tend to move to the region of
lower energy. All these facts yield the result that the
quantum system lowers its energy as the Stark field
increases. For fixed electric field and outer radius, �DE

increases when the inner wire radius increases. This effect is
due to the facts that carriers are more confined and that the
electric potential is large at r near R (which is far from the
center of the cylinders) when the inner wire radius increases
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Fig. 2. �DE as a function of the inner wire radius r for various electric

fields and for an outer wire radius R ¼ 2a.

Fig. 3. �DE as a function of the inner wire radius r for various electric

fields and for an outer wire radius R ¼ 5a.

Fig. 4. The variational parameter b is shown as a function of the inner

wire radius r for various electric fields and for an outer wire radius

R ¼ 0:5a.
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for fixed electric field and outer radius. In Figs. 4–6, we
show the dependence of the variational parameter b on r

for various values of R and F. In these figures b is given in
units of inverse Bohr radii. This variational parameter
increases with electric field for fixed inner and outer wire
radii and increases with the outer wire radius for fixed inner
wire radii and electric field. For small outer radii, the
variational parameter increases slightly with increasing
inner wire radius while for larger outer radii, it remains
almost constant until it drops when the difference between
the inner and outer radii becomes small.
In Fig. 7, �DE is shown as a function of the electric field

for various outer radii of the wire and for an inner radius of
r ¼ 0:5a. �DE increases with the electric field for all values
of the outer radius with the increase being greater, the
larger the outer radius. Also, the greater the difference
between the outer and inner radii, the larger �DE is. In
Fig. 5. b as a function of the inner wire radius r for various electric fields

and for an outer wire radius R ¼ 2a.

Fig. 6. b as a function of the inner wire radius r for various electric fields

and for an outer wire radius R ¼ 5a.
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Fig. 7. �DE as a function of the electric field F for r ¼ 0:5a and for

various outer radii R.

Fig. 8. b as a function of the electric field F for various outer wire radii R

and r ¼ 0:5a.
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Fig. 8, we see that b also increases with the electric field,
with the increase being greater, the larger the outer radius
of the wire. Again, the greater the difference between the
outer and inner radii, the larger b is.
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