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A recent Bose–Einstein condensation (BEC) model of several cuprate superconduc-
tors is based on bosonic Cooper pairs (CPs) moving in 3D with a quadratic energy-
momentum (dispersion) relation. The 3D BEC condensate-fraction versus temperature
formula poorly fits penetration-depth data for two cuprates in the range 1/2 < T/Tc ≤ 1
where Tc is the BEC transition temperature. We show how these fits are dramatically
improved, assuming cuprates to be quasi-2D, and how equally good fits are obtained for
conventional 3D and quasi-1D nanotube superconducting data, provided the correct lin-

ear CP dispersion is assumed in BEC at their assumed corresponding dimensionalities.
This is offered as additional concrete empirical evidence for linearly-dispersive pairs in

another recent BEC scenario of superconductors within which a BCS condensate turns
out to be a very special case.
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1. Introduction

A Bose–Einstein condensation (BEC) model was applied by Rosencwaig in

Ref. 1 to address seven cuprate superconductors (SCs) with transition tem-

peratures Tc at optimal doping ranging from 22 K to 133 K. These

are: La2−xSrxCuO4 (LSCO), Nd2−xCexCuO4 (NCCO), YBa2Cu3O7−y Y123,

Bi2Sr2CaCu2O8−y Bi2212, Bi2Sr2Ca2Cu3O10−y (Bi2223), HgBa2CaCu2O7−y

(Hg1212) and HgBa2Ca2Cu3O9−y (Hg1223). His starting point is the well-known

fact that BEC in an ideal Bose gas occurs below temperatures T such that the

thermal wavelength λ ≡ h/
√

2πmBkBT becomes larger than the average inter-

bosonic separation, with mB the boson mass, and h, kB the Planck and Boltzmann

constants, respectively. More exactly, BEC sets in whenever

nBλ3 > 2.612 , (1)
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where nB is the boson number density, and λ is taken as the bosonic quasiparticle

diameter. This leads to a critical temperature Tc given by the familiar formula

Tc =
2π~

2n
2/3

B

(2.612)2/3mBkB
'

3.31~
2n

2/3

B

mBkB
∝ n

2/3

B , (2)

of conventional BEC theory. He identifies an interaction distance with λ, which

thus becomes T -independent, while the number-density nB of weakly-interacting

“preformed” electron or hole pairs acquires a T -dependence. Associated with (2) is

the BE condensate fraction

N0(T )/N0(0) =

{

1 − (T/Tc)
3/2 for T ≤ Tc ,

0 otherwise ,
(3)

where N0(T ) is the number of bosonic pairs at temperature T in the lowest-energy

state with (total, or) center-of-mass momentum wavenumber K = 0, and N0(0) is

that same number at T = 0.

2. Cooper Pair Dispersion

All of this assumes three dimensions (3D) and that boson excitation energies are

given by

εK = ~
2K2/2mB . (4)

This would hold if the composite bosons moved in vacuo such as, say, a deuteron of

mass mB = mp+mn in empty space, with mp and mn being the proton and neutron

masses. However, in the presence of the Fermi sea of the other single charge carriers,

the bosonic “dispersion relation” becomes linear 2, 4 in leading order rather than

quadratic as in (4). Reference 2 first mentioned, and Refs. 3 and 7 later discussed

this linearity in detail. It is associated with the original Cooper pair (CP) problem8

of two electrons (or holes) above (or below) the Fermi surface of the remaining

system electrons. It was also found in a more general view of CPs in Refs. 9 and

10 within a many-body Green’s function formalism treating both electron- and

hole-pairs on an equal footing. For either ordinary or generalized CPs, the leading

term in the K-expansion is linear. This linearly-dispersive “moving CP” object

is often confused in the literature with the more common Anderson–Bogoliubov–

Higgs (ABH)11 (Ref. 12, p. 44)13 collective excitation which is also linear in leading

order, but which is just the sound mode of the many-fermion system. By contrast,

in a many-boson system, these two modes, the “particle” and “sound” modes, are

apparently identical.14, 15

A particularly clear example comparing linear and quadratic dispersion is per-

haps the analytical result of Ref. 6 in 2D for an attractive delta potential assumed

between electrons. This interfermion interaction mimics the net effect of Coulomb

repulsion plus attractive, say, electron-phonon interactions. The 2D delta poten-

tial well, which otherwise supports an infinite number of bound levels, is imagined

“regularized”16 to support a single bound level of energy B2 as occurs,17 e.g., with
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the two-parameter Cooper/BCS8, 19 model interelectronic interaction. Miyake used

this interaction to obtain18 both the zero-temperature BCS gap ∆ and the chemical

potential µ analytically in terms of B2. Since the regularized delta well turns out

to be infinitesimally weak, its 0+ strength can be eliminated6 in favor of B2 which

then plays the role of the coupling constant, with 0 ≤ B2 < ∞ spanning weak to

strong coupling. Instead of (4), a more general analytical expression found in Ref. 6

that includes the Fermi sea is

εK =
2

π
~vF K +

[

1 −
{

2 −
(

4

π

)2 }

EF

B2

]

~
2K2

2(2me)
+ O(K3) , (5)

where vF is the Fermi velocity defined through the Fermi surface energy EF ≡
mev

2
F /2 and me is the effective electron mass. The leading term is linear, and

only in the vacuum limit (vF → 0, implying EF → 0) does it precisely become

the quadratic (4) with mB = 2me expected physically for any fixed coupling B2.

Figure 1 of Ref. 6 exhibits the smooth crossover in 2D from a purely linear to a

purely quadratic form, as one increases coupling and/or as one “switches off” the

Fermi sea medium (non-zero EF ) in which the pair propagates down to the pure

vacuum (zero EF ) medium. A very similar behavior was also observed in 3D,7 but

only numerically.

3. Bose Einstein Condensation

Expressions more general than (2) and (3), but reducing to them, are known20 in

any dimensionality d > 0 (integer or not) and for any dispersion relation

εK = CsK
s, with s > 0. (6)

They are

Tc =
Cs

kB

[

sΓ(d/2)(2π)dnB

2πd/2Γ(d/s)gd/s(1)

]s/d

∝ n
s/d
B , (7)

and

N0(T )/N0(0) =

{

1 − (T/Tc)
d/s for T ≤ Tc

0 otherwise.
(8)

Here gσ(1) are the Bose integrals which for σ > 1 coincides with the Riemann Zeta-

function ζ(σ) and diverges for σ ≤ 1. Γ(σ) is the gamma function, and nB ≡ N/Ld

is the d-dimensional boson number density. The divergence of gσ(1) for σ ≤ 1 en-

sures from (7) that Tc ≡ 0 for all d ≤ s, but that otherwise Tc is non-vanishing. In

d = 3 and quadratic dispersion s = 2 and, if C2 = ~
2/2mB, (7) and (8) respectively

become (2) and (3), as g3/2(1) ≡ ζ(3/2) ' 2.612. However, for s = 1 BEC can

occur for all d > 1. This coincides, fortuitously, with all dimensions where actual

superconductors have been found to exist, down to the quasi-one-dimensional or-

ganics21, 23 consisting of parallel chains of molecules. As regards to dimensionality,
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therefore, the BEC picture contrasts sharply with the BCS scheme where Tc is non-

vanishing for all d > 0 even though no exactly 1D superconductors have been found

to date. In fact, beautiful experiments24, 25 with nanowires of different thicknesses

sputter-coated with an amorphous superconductor (Tc ' 5.5K) have shown how

superconductivity is extinguished for the smallest nanowire diameters interpreted

as approaching precisely 1D.

Although the creation/annihilation operators of BCS pairs do not obey the

usual Bose commutation rules [see Eqs. (2.11) to (2.13) of Ref. 19; see also p. 38 of

Ref. 2], CPs in fact satisfy BE statistics. Indeed, BCS pairs and CPs are distinct.

A BCS pair is defined with fixed total (or center-of-mass) momentum wavevector

K ≡ k1 + k2 and fixed relative-momentum wavevector k ≡ (k1 − k2)/2, whereas

a CP is defined with fixed K only, since a sum over k is implied in any conceivable

formulation of CPs. This is because in the thermodynamic limit an indefinitely

large number of BCS pairs, each with fixed momenta ~k1 and ~k2, correspond to

different relative momenta ~k but whose k1 and k2 add vectorially to the same total

K. These remarks apply even when only K = 0 pairs were considered in Ref. 19.

4. Results

Empirical evidence for the linearly-dispersive nature of CPs in BSCCO has been

argued by Wilson26 as being suggested by the scanning tunneling microscope con-

ductance scattering data obtained by Davis and coworkers27, 28 in this cuprate. In

Fig. 1 we present additional evidence, based on experimental data from penetration-
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Fig. 1. BE condensate-fraction curves for bosons in d = 3, 2, or 1.
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depth measurements in two 3D SCs29, 30 and two quasi-2D cuprates,31, 33 as well

as from gap measurements in a quasi-1D nanotube SC.34 When plotted as a pre-

sumably universal “normalized order parameter” the data depart substantially (at

least in 3D and 2D) from the BCS normalized gap order parameter, but are seen

to agree quite well, at least for T > 0.5Tc, with the pure-phase (only 2e- or 2h-CP)

BEC condensate-fraction formula (8) for d = 3, 2 and 1, provided one assumes

s = 1. For lower T ’s, one can argue35 that a mixed BEC phase containing both

2e- and 2h-CPs becomes more stable (i.e., has lower Helmholtz free energy) so that

the simple pure-phase formula (8) is no longer strictly valid. Indeed, (8) applies to

the CPs because in the binary boson-fermion gas mixture — say, a Cooper/BCS

model interaction forming the bosonic CPs with a maximum allowed39, 40 coupling

of λ = 1/2 — only a minuscule fraction (< 0.1%)41 of the individual fermion

charge carriers are paired up into CPs, ensuring that a substantial Fermi sea is

still present. Such tiny fractions are consistent with some very recent far-infrared

charge-dynamics measurements42, 43 in LSCO.

In Fig. 1 we show BE condensate-fraction curves (in thick) 1 − (T/Tc)
d/s for

bosons in d = 3, 2, or 1, assuming dispersion relation (6) for s = 2 and 1, for

a pure phase of either 2e- or 2h-CPs, compared to empirical data for 3D SCs

(Nb/Cu and Sn); for two quasi-2D SCs (Y123 and Bi2212 with Tc ' 93 K and

91 K, respectively); and a quasi-1D SC (4 Å-wide nanotubes with Tc ' 15 K). The

dashed curve labeled d/s = 3/2 appears in Fig. 6 of Ref. 1 and seems to provide

the only adjustable-parameter-free comparison with experimental data in that pa-

per. The ordinate axis refers to a universal “normalized order parameter.” Data

for the 3D and 2D SCs refer to penetration depth measurements. Nanotube data

are gap ∆(T ) measurements giving ∆(T )/∆(0) but are plotted as [∆(T )/∆(0)]2

so as to coincide with the 2h-CP condensate fraction m0(T )/m0(0) according to

the relation ∆(T ) = f
√

m0(T ), with f a boson-fermion coupling constant (which

drops out from the normalized order parameter), that follows for 2h-CP conden-

sates from the generalized BEC theory of Ref. 36. The dotted straight line marked

d/s = 1/1 strictly corresponds from (7) to Tc ≡ 0. However, it serves as a lower

bound to all curves with d/s = (1 + ε)/1 > 1 for small but non-zero ε, implying

quasi-1D geometries for which Tc > 0. Also shown for reference are the two-fluid

model37 curve 1−(T/Tc)
4 and the BCS normalized gap ∆(T )/∆(0) order-parameter

curve.38

5. Conclusions

To conclude, we have presented normalized order-parameter data based on

penetration-depth and gap measurements that strongly suggest a linear energy

versus center-of-mass-momentum (dispersion) relation for Cooper pairs in various

materials that can be viewed as 3D, quasi-2D and quasi-1D superconductors (SCs).

The linearity is a manifestation of the Fermi sea background in which the pairs

propagate, as opposed to the quadratic relation of composite bosons moving in
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vacuo. It ensures that a BEC picture of SCs is applicable over all dimensionalities

in which SCs occur.
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