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Starting from the Friedberg-TD Lee Hamiltonian describing a coexisting and dynamically interacting many-
particle binary boson-fermion gas mixture with a coupling ���-dependent gap 2���� in the boson dispersion
relation for the s-wave Cooper or BCS model interaction, we deduce several observed characteristic features of
high-temperature superconductors at the simplest level. Analytic expressions for both the unpaired-fermion and
boson number densities, as well for the fermion chemical potential ��� ,T�, all of which vary with the degree
of bosonization and with temperature T, are derived in detail using two-time, finite-temperature Green function
techniques. Simple implicit formulas are then obtained for both two and three dimensions for the pseudogap T*

and Bose-Einstein condensation Tc temperatures in terms of ��� ,T� and 2����. In particular, even at the
s-wave level we find a self-consistent description of the generic phase diagram observed in cuprates, including
the appearance of a pseudogap and a dome-shaped Tc vs doping behavior both of which hinge on the gapped
boson spectrum.
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I. INTRODUCTION

Boson-fermion �BF� statistical models of superconductiv-
ity �SC� as a Bose-Einstein condensation �BEC�1,2 first began
to be studied in the mid-1950s,3–6 predating even the BCS-
Bogoliubov statistical theory.7–9 Although BCS theory only
contemplates the presence of “Cooper correlations” of
single-particle states, BF models3–6,10–21 posit the existence
of actual bosonic CPs. The remarkable relation ��T�
��n0�T�, with ��T� the BCS gap in the fermion spectrum
and n0�T� the BEC condensate number density of electron
pairs, first seems to have appeared in Ref. 19. It resurfaced a
year later in the phenomenological BEC BF model that
Friedberg and Lee20,21 �FL� applied to cuprate superconduct-
ors. With just one adjustable parameter �the ratio of perpen-
dicular to CuO2-plane boson masses� this theory fitted21

quasi-2D cuprate Tc /TF empirical data22 �see also Ref. 23�
rather well. The ratio turned out to be 66 560—just under the
105 anisotropy ratio reported24 almost contemporaneously
for B2+xSr2−yCuO2±�.

The new ingredient here introduced into the FL model is a
bosonic CP dispersion relation that is not quadratic, say, �K
=	2K2 /2�2m� with K the pair center-of-mass wave number
and m the single-fermion effective mass, as in Refs. 20 and
21, but rather linear and gapped as suggested by a more
general treatment25,26 of Cooper pairing. This additional fea-
ture renders the FL model an adjustable-parameter-free
theory and is indispensable in reproducing the dome-shaped
Tc behavior of cuprates. The FL model has more recently
been applied to ultracold fermionic atoms such as 6Li and
40K where pairing into CPs also occurs; for a review see
Ref. 27.

In Refs. 10 and 11 a system of electrons interacting pair-
wise via the familiar Cooper or BCS7,28 two-parameter
s-wave model interaction �in either two dimensions �2D� or
three dimensions �3D�� is proposed as two coexisting dy-
namically interacting many-particle subsystems of �a� pair-
able but unpaired electrons and �b� composite-boson Cooper
pairs �CPs� of two mutually confined electrons or holes. Of
course, in actual cuprates one expects mixing and interplay
between s-wave and d-wave pairing symmetries but our
present paper is meant to provide a first orientation within a
sufficiently simple BF binary gas of a BEC scenario. The
Cooper or BCS model interaction7,28 is specified by a nega-
tive strength parameter −V whenever the electron energies 
k
lie within the interval �EF−	�D ,EF+	�D� about the Fermi
energy EF of the ideal Fermi gas, with 	�D the Debye energy
parameter, and is otherwise zero. This mimicks the electron-
phonon mechanism suggested29 recently as a major, if not
sole, component in the pairing dynamics of cuprates.

The FL �Ref. 20� phenomenological Hamiltonian describ-
ing our binary BF mixture is written in the form

H = �
k,�


kak�
+ ak� + �

K
E�K�bK

+ bK + Hint, �1�

Hint �
f

Ld/2 �
q,K

�bK
+ aq+K/2↑a−q+K/2↓ + bKa−q+K/2↓

+ aq+K/2↑
+ � ,

�2�

where ak�
+ and ak� are the usual fermion creation and anni-

hilation operators for individual electrons of momenta k and
spin �= ↑ ,↓ while bK

+ and bK are postulated �as in Refs. 10
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and 11� to be bosonic operators for the CPs of total, or
center-of-mass, momentum �CMM� K. The perturbed Hamil-
tonian describes the formation and disintegration processes
of the 2e-CPs. This postulate is backed by magnetic-flux
quantization experiments �see, e.g., Refs. 30–32� that reveal
the presence of charge carriers of magnitude 2e along with
those of e, where e is the electron charge. To our knowledge,
no one has yet succeeded in constructing CP creation bK

+ and
annihilation bK operators that obey strict Bose commutation
relations, starting from fermion operators ak�

+ and ak�. How-
ever, arguments can be made33 showing that CPs obey Bose-
Einstein statistics. Also, in �1� 
k�	2k2 /2m with m the ef-
fective electron mass, E�K� is the CP energy, L is the system
size and d its dimensionality. Finally, the BF interaction ver-
tex �two-fermion, one-boson� form factor f in �2� is a phe-
nomenological parameter responsible for 2e-CP formation
and/or disintegration processes. If related with the attractive
interelectron �four-fermion� electron-phonon strength param-
eter V of the s-wave Cooper or BCS model interaction
through

f = �2	�DV , �3�

the complete BF model10,11 with K=0 can be shown as a
special case to yield the BCS gap equation for all T as well
as the BCS T=0 condensation energy for all coupling V. The
term Hint in �1� is chosen in the simplest form that transforms
pairs of single electrons into composite-boson CPs with
CMM K, and vice versa.

Although the vast majority of superconductors have hole
charge carriers in the normal state,34 as determined empiri-
cally from positive Hall coefficients, there are London
magnetic-moment measurements35 establishing—at least ac-
cording to one interpretation36—electron pairs in the conden-
sates of superconductors as diverse as Pb �p type above Tc�,
BaPb0.8Bi0.2O3 �n type� and YBa2Cu3O7−� �p type�, regard-
less of whether the single charge carriers in the normal state
above Tc are electrons or holes. Related to this there is a
wealth of experimental data37–39 on the Hall-coefficient sign
reversal in various cuprates, but we shall not attempt to ad-
dress in detail this phenomenon here.

The total number of electrons in the system is given by
N=N1+N2 where N1 is the number of unpairable �i.e., non-
interacting or inactive, “spectator”� electrons while N2 is the
number of pairable �i.e., interacting or “active”� ones. Both
N1 and N2 are each coupling �V� and temperature �T� depen-
dent. By pairing up some electrons exit the N2 portion of the
fermionic subsystem and enter the bosonic subsystem. As
pairing occurs the number of free or unpaired fermions de-
creases and the chemical potential ��V ,T� shifts down from
its position at EF�T����0,T� for interactionless �V=0� fer-
mions at T. Note, at nonzero T, there is temperature smearing
of the Fermi distribution and EF�T����0,T� itself shifts40

down from EF�0� by an amount of order �kBT /2EF�2 and thus
negligibly small for reasonable temperatures. Everywhere
here we deal with the difference EF�T�−��V ,T� and no-
where use the explicit form of EF�T� but rather take it simply
as EF. Because of this shift in ��V ,T�, a certain fraction of
the N1 spectator electrons, which is proportional to EF

−��V ,T�, become active as they begin to feel the attractive
pairing interaction −V. So, at fixed V and T, N2 is the sum of
the number N20 of unpaired �but pairable� fermions plus the
actually paired ones N2–N20�2NB, both of which lie within
the interaction shell of energy width 	�D. The decrease or
increase in the electron number in the fermionic subsystem
must be accompanied by a corresponding increase or de-
crease in the CP bosonic subsystem particle number NB. The
number conservation law must therefore be

N � N1 + N2 � N1 + N20 + 2NB

� ��
k,�

ak�
+ ak� + 2�

K
bK

+ bK	
H

, �4�

where 
X�H of an operator X are T-dependent thermal aver-
ages over the Hamiltonian H�H−�N with the electronic
chemical potential ��V ,T� is to be fixed from the constancy
of the total electron number N.

The Hamiltonian H itself is

H � H0 + Hint = �
k,�

�
k − ��ak�
+ ak� + �

K
�E�K� − 2��bK

+ bK

+ Hint. �5�

Hence, the V- and T-dependent total number of CPs is just
NB= �N2−N20� /2. Variations in the fermion number N1+N20

will thus determine changes in the boson number NB due to
CP formation and/or disintegration, but with N always con-
stant. The bosonic CPs in �5� cannot strictly be taken as free
particles propagating in vacuo with a quadratic energy-
momentum dispersion relation �K=	2K2 /2�2m�. In �5� we
assume the CPs to be composite bosons with energies E�K�
that must be V dependent and gapped at zero K with a
V-dependent gap. As we shall see below, this simple assump-
tion leads to pseudogap T* and superconducting Tc tempera-
ture behaving qualitatively as is observed in high-Tc cu-
prates. These requirements on E�K� are met in Ref. 25 in 3D
and Ref. 26 in 2D where it is found that

E�K� � 2EF + 2� + �K, �6�

where �K is the non-negative CP excitation energy which in
leading order in K is the linear expression arising from the
background Fermi sea

�K = cd	vFK . �7�

Here cd a dimensionality- and interaction-dependent dimen-
sionless coefficient � /2 in 2D �Ref. 26� and � /4 in 3D,25

while

� =
	�D

sinh�1/��
——→

�→0
2	�D exp�− 1/�� �8�

is the usual T=0 BCS energy gap, with ��g�EF�V and g�
�
is the electronic density of states �DOS� �for each spin�.
Equations �6�–�8� follow from the Bethe-Salpeter integral
equation in the ladder approximation which yielded, in
either 2D �Ref. 26� or 3D,25 two different linearly dispersive
�in leading order of the CMM wave number K� solutions.
First, the dispersion relation �7� for moving �i.e., with non-
zero CMM� 2e- and 2h-CPs was obtained as a nontrivial
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solution. Second, a trivial solution was present that is asso-
ciated with the sound mode sometimes known as the
Anderson-Bogoliubov-Higgs9,41,42 excitation. For zero cou-
pling between the fermions this latter mode reduces to the
ideal Fermi gas acoustic mode 	vFK /�d with vF the Fermi
velocity and d the system dimensionality. These two “par-
ticle” and “acoustic” solutions emerge as clearly distinct in
the many-fermion system although in the many-boson case
they are known43,44 to be identical.

Specifically, in Refs. 25 and 26 it was shown that the
nontrivial solution �a� has a dispersion relation �K for mov-
ing 2e CPs which in leading order depends linearly on the
total momentum K of the pair as in �7�; and �b� that the CP
energy spectrum is gapped as in �6� above the total energy of
two free electrons 2EF by an amount 2����. So, according to
�8�, materials with larger couplings � will allow formation of
CPs at energies somewhat higher with respect to 2EF. Be-
cause of this particular spectral structure, the second term in
the last member of �5� describing the contribution of free
bosons increases in energy. However, as will be shown
elsewhere,45 the contribution from the interaction term Hint in
�5� arising from CP formation and/or disintegration pro-
cesses, is negative and at least twice as large in magnitude as
the previous term which is the contribution of free pairs.
Furthermore, a decrease in the number of unpaired fermions
due to pair-formation processes makes the contribution of the
first term in �5� to the total energy even smaller. As a result,
within a given range of our parameters T and f , the ground
state of �5� turns out to be energetically lower than the
ground state corresponding to the Hamiltonian of interaction-
less fermions. If V=0, or neglecting interelectronic interac-
tions leading to CP formation, then �5� becomes the Hamil-
tonian of free electrons

Ho = �
k,�

�
k − EF�ak�
+ ak� �9�

since for vanishing ��g�EF�V both the bosonic �K �7� and
� vanish so that � in �5� becomes EF, ensuring as expected
that lim�→0H=Ho.

II. UNPAIRED-ELECTRON AND BOSON NUMBERS

In Eq. �A13� of Appendix A the average number of un-
paired electrons in a state k is found to be

nk =
1

2
�1 −


k − ��V,T�
Ek

tanh�Ek/2kBT� �10�

in the RPA approximation for all T�T* with T* being the
solution of NB�T*��0 and corresponding to a “pseudogap”46

or “depairing” temperature. Here

Ek � ��
k − ��V,T��2 + f2nB0�T� �11�

with nB0�T��NB0�T� /Ld being the number density of bosons
condensed in the K=0 state. If the boson spectrum is gapped
one gets that T*�Tc, as will be seen.

In Eq. �B14� of Appendix B, we show that the average
number of bosonic CPs in a state with a given CMM K is

nBK�T� =
1

e�K/kBT − 1
, �12�

where �K is a solution of the implicit equation

�K � E�K� − 2� +
f2

Ld�
q

1 − nq+K/2↑ − n−q+K/2↓

�K − ��q+K/2 + �−q+K/2�
�13�

with �k�
k−� and with the nk’s defined by �10�. Because of
the specific interaction Hint in �1� the energy spectrum 
k of
free electrons is renormalized and becomes Ek as given by
�11�. The 
k lie in the energy interval �−	�D�
k��
+	�D where � differs from EF as a result of boson forma-
tion. The quantity EF−� in turn determines the value of
nB�T� as will be shown below. Note that the difference be-
tween the single-fermion energy levels in the normal and
BF-mixture states, i.e., between 
k−EF and Ek, is both tem-
perature and coupling dependent, changing from zero below
T* and varying according to changes in EF−�.

III. NUMBER DENSITY OF COMPOSITE BOSONS

According to �10� the total number of pairable but un-
paired fermions N20�T� is given by

N20�T� = 2�
EF−	�D

EF+	�D

d
g�
�n�
� , �14�

where n�
��nk�
k�. Explicitly,

N20�T� = �
EF−	�D

EF+	�D

d
g�
��1

−

 − �

��
 − ��2 + f2nB0

tanh���
 − ��2 + f2nB0

2kBT
� .

�15�

As T decreases below T* and pairing occurs, � shifts down
from its original value of EF. As a result, a certain fraction of
the spectator electrons now become active due to the down-
ward shift of the interaction shell of energy width 2	�D
which is fixed in magnitude but centered at �. If 	�D�EF
−� the number of such electrons, say �N, is much smaller
than total number N2 of active electrons within the shell �
−	�D�
k��+	�D. In �14� we neglect the contribution
coming from such newly joined fermions and the integration
there is therefore performed over the interval �EF−	�D ,EF

+	�D�.
If we ignore the variation of g�
� within the �small, if

	�D�EF� integration region over 
 and take g�
��g�EF�
�which is exact in 2D because g�
� is constant� then the
integration in �15� is easily carried out and yields

N20�T� = 2g�EF�	�D�1 −
kBT

	�D
ln� cosh�A+/2kBT�

cosh�A−/2kBT�� ,

�16�

where
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A± � ��	�D ± �EF − ���2 + f2nB0. �17�

With N2�2g�EF�	�D, the fractional number N20�T� /N2 of
pairable �but unpaired� electrons becomes

N20�T�
N2

= 1 − �kBT/	�D�

�ln� exp�A+/2kBT� + exp�− A+/2kBT�
exp�A−/2kBT� + exp�− A−/2kBT� . �18�

When f =0 as in the noninteracting binary BF mixture, �18�
reduces to the result established in Eq. 24 of Ref. 14. From
�4� the total number of composite bosons NB�T� is just one-
half the total number of fermions that are actually paired at
temperature T, or N2−N20, so that from �18� one gets

nB�T� � NB�T�/Ld

=
N�EF�

2
kBT ln� exp�A+/2kBT� + exp�− A+/2kBT�

exp�A−/2kBT� + exp�− A−/2kBT� .

�19�

Here N�EF��g�EF� /Ld is the electronic DOS �for each spin
and per unit volume� at the Fermi surface. In the physically
important case when both 	�D� �EF−�� and 	�D� f2nB0

are satisfied, the terms exp�−A± /2kBT� in the numerator and
denominator of �19� may be ignored with respect to the
terms exp�A± /2kBT�. Thus, one can approximate �19� with
good accuracy as

nB��,T� � N�EF��EF − ���,T�� , �20�

where the explicit � and T dependence of nB and � are now
emphasized. This result is now valid for all T as opposed to
that obtained in Ref. 47 which is, strictly speaking, valid
only for T=0. Note that the calculation including the correc-
tion associated with the change in EF in �14� leads to the
same result �20�. From �11� the term f2nB0 determines the
shift in the free-electron states 
k due to the interaction �2� in
�1�. Therefore, the conditions 	�D� �EF−�� and 	�D

� f2nB0 just employed assume that the shift in the 
k, as well
the change in the position of the Fermi level EF−� due to
�2�, are much smaller than the bandwidth 2	�D within which
the interaction takes place. In the normal, i.e., interactionless,
state N�EF� is

m/2	2 �2D� , �21�

m3/2EF
1/2/21/22	3 �3D� . �22�

In analogy with the EF of an ideal Fermi gas which depends
on the total number of free electrons N, in Ref. 47 we intro-
duced ��V ,T� which refers instead of N only to the number
NF�N−2NB of unpaired electrons in the BF mixture. As-
suming that the main contribution to the change in EF that
occurs by switching on Hint and that it is associated mainly
with variations in the fermion number, it was shown in Ref.
47 that such a choice of ��V ,T� actually keeps the total
electron number N constant. As in 3D in Ref. 47, using EF
��	2 /2m��32N /L3�2/3 valid at T=0 and ���	2 /2m�
��32NF /L3�2/3 �provided the NF unpaired electrons are in-

teractionless�, and then employing �4� as well as the bino-
mial expansion for EF−� for small 2NB /N, we immediately
get

EF − � = � 	2

2m
�32�2/3�� N

L32/3

− �NF

L3 2/3�
= EF�1 − �NF

N
2/3� = EF�1 − �1 −

2NB

N
2/3�

�
4EF

3

NB

N
. �23�

It is easy to see that �23�, first deduced in Ref. 47, written in
terms of the number densities n�N /L3 and nB�NB /L3 and
DOS per spin N�EF�=m3/2EF

1/2 /21/22	3, becomes identical
to �20�. Here we get an explicit expression �19� for nB�� ,T�.
The important relation �20� emerges as a special case of �19�.
Thus �20� directly relates the number density of bosons
nB�� ,T� to the shift EF−��� ,T� in the position of the Fermi
level. If this shift EF−��� ,T� due to boson formation and/or
disintegration and N�EF� were known, then �20� would serve
in finding the total number of bosons in the mixture at any �
and T. We now present a detailed derivation of an equation
for EF−��� ,T�.

IV. BOSON FORMATION AND FERMION CHEMICAL
POTENTIAL

According to �11� when nonzero averages 
bK�H�0 and

bK

+ �H�0 appear the spectrum of unpaired electrons begins
to differ from the spectrum 
k of free electrons. This is
readily seen if we set nB,K�
bK

+ �H
bK�H in �11� for K=0 and
recall the identity


�A,H��H � Tr��AH − HA�exp�− �H�� = 0, �24�

where A is any dynamical operator and the average of the
commutator �A ,H��AH−HA is performed over the Hamil-
tonian H. The above relation is proved straightforwardly by
doing a cyclic permutation under the trace. Setting A�bQ

+ in
�24� we get, since 
�bQ

+ ,H��H=0, that


bQ
+ �H = −

1

E�Q� − 2�

f

Ld/2�
q


a−q+Q/2↓
+ aq+Q/2↑

+ �H. �25�

In Eqs. �A14�–�A16� of Appendix A we show how the aver-
ages on the right-hand side �rhs� of �25� are evaluated to
relate to the 
bQ

+ �H on the left-hand side �lhs�. This leads to a
closed expression, the solution of which determines the value
of EF−��� ,T�. Since �k��−k, from �A14�–�A16� we have
for K=0,


aq↑
+ a−q↓

+ �H =
f

2Ld/2


b0
+�

��
q − ��2 + f2nB0

�tanh
��
q − ��2 + f2nB0

2kBT
. �26�

When substituted into �25� with Q=0 this leads to
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1 =
f2

E�0� − 2�

1

2Ld�
q

1
��
q − ��2 + f2nB0

�tanh
��
q − ��2 + f2nB0

2kBT
. �27�

The sum in �27� becomes an integration over the free-
electron energy states 
. Using �3�, �6�, and �20� and integrat-
ing over the interval ��−	�D ,�+	�D� one can rewrite �27�
as

EF − ���,T� = − ���� +
�	�D

2
�

−	�D

	�D dx
�x2 + f2nB0�T�

�tanh
�x2 + f2nB0�T�

2kBT
. �28�

This equation must be satisfied for any temperature T�T*.
In particular, the solution of �28� for T with EF=� yields a
temperature T* at which a transition occurs from the normal
state with no composite bosons to one with such bosons, i.e.,
to the incoherent binary BF mixture. The condition EF=� is
equivalent to nB�T*�=0 which implies nB0�T�=0 in �28�
since 0�nB0�� ,T��nB�� ,T�. Furthermore, nB0�� ,T� van-
ishes for all T�Tc. For materials with � and �D such that
kBT*�	�D, setting EF−��� ,T�=0 in �28� immediately
gives

kBT* � 1.134	�D exp�− �/2�	�D� if kBT* � 	�D.

�29�

This should be compared with the weak-coupling BCS for-
mula kBTc�1.134	�D exp�−1/�� which in turn is less than
�29�, as of course it should be, provided only that ��	�D.
Thus, for kBT*�	�D �29� gives a temperature T* below
which some of the electrons begin to pair up. For fixed T
�T* the solution of �28� determines the value of EF
−��� ,T� which gives the shift in ��� ,T� with respect to EF

of the normal metal due to boson formation.

V. BOSE-EINSTEIN-CONDENSATION TRANSITION
TEMPERATURE

The total number NB�� ,T� of bosons in the system is now
determined from �12�, namely

NB��,T� � �
K

nBK��,T� = �
K

�e�K/kBT − 1�−1 �30�

where a singularity occurs at �K→0. Fortuitously, this sin-
gularity defines the Bose-Einstein-condensation �BEC� tran-
sition temperature Tc for the BF mixture in perfect analogy
to that of a pure boson gas.14 Setting K=0 and �0=0 in �13�
and substituting �6� into it, we find that in the thermody-
namic limit Ld→� and N→� the number density
nB0�� ,T�=NB0�� ,T� /Ld of condensed bosons in the state K
=0 just ceases to be negligible upon cooling whenever

EF − ���,Tc� � − ���� +
f2

4Ld�
q

1 − nq↑ − n−q↓


q − ��Tc�
�31�

is satisfied. The sum in �31� can be evaluated as an integral
over 
. The 2D DOS N�
� is exactly constant. In 3D N�
�
��
 but its variation is small within the integration region if
	�D�EF so that N�
��N�EF� in �31� in either 2D or 3D.
Inserting the fermion occupation numbers nk �10� and using
�3� we rewrite �31� as

EF − ���,Tc� � − ���� +
�	�D

2
�

−	�D

	�D

dx
tanh�x/2Tc�

x
.

�32�

Note that this is the same result as �28� with nB0�Tc��0.
Clearly then, EF−��� ,T� will depend on ���� which from
�6� is one-half the boson formation energy over and above
the Fermi energy; it also depends on the redistribution of
single-particle levels caused by boson formation. Equation
�32� is a necessary condition for BEC to take place. For the
linear dispersion law �7� and spherical symmetry over K,
integration over K itself in �30� is easily performed �see, e.g.,
Ref. 14, Eq. �12��. For our 2D and 3D BF mixtures one then
obtains the simple but implicit Tc formulas

kBTc = c22�3−1/2	vFnB��,Tc�1/2 �2D� , �33�

kBTc = c32/3��3�−1/3	vFnB��,Tc�1/3 �3D� , �34�

where ��3��1.202 is the Riemann zeta function of order 3.
Since N�EF� is given by �21� and �22�, substituting �20� into
�33� and �34� leaves

kBTc/EF = �2�3−1c2�1 − ���,Tc�/EF�1/2 �2D� ,

21/3��3�−1/3c3�1 − ���,Tc�/EF�1/3 �3D� .
�
�35�

These two implicit Tc formulas are the main result of this
paper. They were obtained differently in Ref. 47 where their
derivation was merely sketched.

In actual calculations we first express �1−��� ,Tc� /EF� in
�35� in terms of Tc /TF with TF�EF /kB, i.e., we write

1 − ���,Tc�/EF = �BdTc/�TF�d, �36�

where the d-dependent parameters Bd are determined by us-
ing the specific values of c2=� /2 and c3=� /4 mentioned
before.25,26 One gets B2�5.698 and B3�3.376. Thus �32�
yields the implicit equations

�BdTc/�TF�d − ��	�D/2EF��
−	�D/EF

	�D/EF

dx
tanh�xTF/2Tc�

x

+ ����/EF = 0 �d = 2 or 3� �37�

which can be solved numerically for either d. The pseudogap
phenomenon, therefore definition of finite T*, within the
present theory is only possible in the gapped structure of the
boson spectrum E�K� originally assumed in �5�. To deter-
mine T* we must set EF=�, i.e., nB�T*�=0, in �28�. In fact, if
there were no gap 2���� in E�K� then from �28� we imme-
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diately get two noninteraction dependent and thence un-
physical trivial solutions: �a� T*=0 and �b� T*=�. Solution
�a� precludes boson formation processes at any finite tem-
perature while solution �b� implies that bosons must be
formed at arbitrarily large T. A gapped boson dispersion en-
sures finite, nonzero values for T*. But it should be empha-
sized that the density of bosons nB�� ,T� as given by �20� and
�28�, can be obtained regardless of the precise form of a
E�K�.

VI. RESULTS AND DISCUSSION

In Fig. 1 the fractional density of pairable electrons that
are composite bosons nB�� ,T� /N�EF�	�D is shown for
�D /TF=0.005 as a function of �=N�EF�V in 3D for three
reduced temperatures T /TF=0.0025, 0.004, and 0.006, re-
spectively, designated by dotted, thin, and dashed curves.
Here N�EF�	�D is one-half the total number of pairable fer-
mions. The thick curve is the critical such fractional density,
say, nB

o above which a BEC occurs in the incoherent BF
mixture. Bold and open circles are points where nB�� ,T�
achieves that critical value nB

o . Note from Fig. 1 that BEC
never occurs in the region where nB�� ,T��nB

o . For example,
over the entire range of � values and for T /TF=0.006
�dashed curve� the density nB�� ,T� never reaches the value
nB

o . Therefore, this BF mixture never becomes superconduct-
ing at temperatures as high as 0.006TF. Two features are
noteworthy in the figure. First, the system of free fermions
becomes unstable when the smallest attractive interaction be-
tween charge carriers appears. Namely, for an infinitesimal
pairing interaction �=0+ the boson density nB�� ,T� begins
differing from zero. In other words, the system of interac-
tionless electrons becomes an incoherent BF mixture for any
��0. The highest temperature below which the system re-
mains an incoherent BF mixture depends on the actual value
of �. As to the magnitude of nB�� ,T�, it rapidly decreases
with increasing temperature as seen from the curves for
T /TF=0.0025, 0.004, and 0.006. Second, the boson density
nB�� ,T� decreases considerably for larger values of �. Nu-
merically at least, one sees that if there were no term 2����
in the dispersion relation �6� of composite bosons, then

nB�� ,T� would be a monotonically increasing function of �.
Because the formation of bosons energetically situated well
above the Fermi level is associated with a substantial change
in the ground-state energy, such processes occur rarely in the
system and this explains the decrease in nB�� ,T� with �. The
figure also shows that lowering T /TF increases the interval in
� �marked by vertical arrows� over which superconductivity
occurs.

This explains the nonmonotonic “dome-shaped” behavior
of Tc vs � shown in Fig. 2 where Tc /TF �full curve� and
T* /TF �dashed curve� are drawn as functions of � for the
same �D /TF=0.005 in 3D. The dashed curve separates the
normal phase at all temperatures above T* from the BF mix-
ture phase emerging from the interacting-fermion system be-
low T*. By lowering T below Tc �where Tc�T*� BEC occurs
in the interacting BF mixture. Some peculiarities in the fig-
ure should be noted: �a� the behavior of Tc vs � is nonmono-
tonic, rising at first as � increases from zero, maximizing at
��0.35, then dropping off by more than by a factor of 2
from its maximum value, and finally decreasing to zero very
slowly for larger �; �b� T* and Tc are drastically different at
small � but then merge into one another as � increases.

If we associate the dimensionless interaction parameter
�=N�EF�V with the concentration of charge carriers x �ignor-
ing the antiferromagnetic region in generic cuprates, not ad-
dressed here� then Fig. 2 becomes the typical dome-shaped
phase diagram48 of high-Tc superconductors. This x vs � cor-
relation can be justified, at least qualitatively, from McMill-
an’s expression49 for the dimensionless electron-phonon in-
teraction parameter

� =
N�EF�
J2�FS

M
�2�ph
�38�

with J and �, respectively, being an electron-ion interaction
matrix element and a phonon frequency; M is the ionic mass.
Here, 
¯�FS and 
¯�ph denote average values over the Fermi
surface and phonon spectrum, respectively. The term
M
�2�ph in the denominator is sometimes called the lattice
“stiffness.” Since in 3D N�EF���EF with EF= �	2 /2m�
��32n�2/3 and as before n the total density of single

FIG. 1. Fractional density of pairable electrons that become
composite bosons, as function of dimensionless electron-phonon
coupling � in 3D for reduced temperatures T /TF=0.0025 dotted
curve, 0.004 thin full curve, and 0.006 dashed curve, all for the
typical value of �D /TF shown. Shaded region is where no BEC has
yet appeared in the incoherent BF mixture. Unshaded region corre-
sponds to the superconducting BEC coherent phase that occurs in
the BF mixture.

FIG. 2. BEC superconducting �full curve� Tc /TF and pseudogap
�dashed curve� T* /TF phase boundaries, as functions of � for
�D /TF=0.005 in 3D. Shaded region designates the superconduct-
ing BEC phase of the BF mixture. The normal state lies above the
pseudogap phase boundary defined by the reduced depairing tem-
perature T* /TF �dashed curve� below which the pseudogap phase
exists. Dotted-dashed curve is the BCS value from Tc /TF

�1.134��D /TF�exp�−1/��.
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charged carriers, then in �38� N�EF��n1/3. Varying the dop-
ing parameter x changes the density of charged carriers and
therefore N�EF�, which in turn leads to variations in � from
�38�. As to 
J2�FS, it depends on local �atomic� properties of
the material rather than on n. However, in the presence of a
denser electron liquid, phonons become softer50 so that the
term in the denominator in �38� will decrease with n, thus
enhancing the x vs � correlation. In 2D systems where N�EF�
is independent of EF and thus of n, the x vs � correlation still
holds if one assumes that by varying x the lattice stiffness
M
�2�ph changes. In fact, formula �38� obtained for the
phonon-mediated-pairing mechanism and used here to justify
the “x vs �” correlation cannot be applied to a nonphonon
pairing mechanism. Recent experiments,29 however, suggest
that phonons play an important if not decisive role in high-Tc
superconductors. Nevertheless, a less rigorous justification of
the “x vs � ” association follows directly from the expression
�=N�EF�V and applies for any pairing mechanism if one
ignores the variation of V with x.

The rapid decrease of T* with � in Fig. 2 is important. It
shows that composite bosons formed in materials with large
� are broken up more easily at higher temperatures, or, that
the T below which a boson with a larger value of 2� appears
is lower than that at which a boson with smaller 2� is
formed. In other words, bosons energetically closer to Fermi
surface, namely those formed with smaller �, turn out to be
better “protected” against thermal disruptions and thus sur-
vive over a wider temperature range. At first glance, this
curious T* vs � behavior may be understood in terms of the
gapped dispersion relation �6�. In fact, for this breakup to
occur fermionic levels that are occupied by electrons result-
ing from bosonic breakup, must be empty. However, the ex-
pectation that the single-fermion k states needed to be occu-
pied as a result of a breakup are empty, is smaller if these k
states are situated in the sea of densely populated fermion
states or near it �see expression for occupation numbers
�10��. By contrast, bosons propagating with energies above
EF break up into unpaired fermions more easily because
there are many admissible states to be occupied above EF.
Experimentally,48 Tc in cuprates vanishes as x increases be-
yond some threshold value, say, xcrit. Ignoring for a moment
the fact that Tc vanishes for x�xcrit and instead of � set x on
the horizontal axis in Fig. 2, then �1� a rapidly decreasing T*

vs � and �2� the merging of T* with Tc at large �, qualita-
tively explain the empirical phase diagram for high-
temperature superconductors �see discussion below on why
T* vanishes at large ��.

We emphasize that the appearance in Fig. 2 of a
pseudogap phase, namely an incoherent �i.e., without BEC�
BF mixture phase, is a direct consequence of the gapped
spectrum of the composite boson dispersion relation �6�. In-
deed, the T* phenomena in the present theory arises solely
because of the term 2� in �6�. As to the magnitude of T* at
very small �, widespread opinion holds that it must vanish in
this limit, e.g., Ref. 27. This would certainly be the case for
two free electrons interacting via an attractive potential in the
absence of the Fermi sea of other particles, i.e., in vacuo, in
keeping with the gapless quadratic dispersion used for the
bosons used in Ref. 27 �as well as in Refs. 6, 10, 11, 20, and

21 among many others� so that in the limit of zero interaction
a composite state breaks up into independent states of two
electrons. This does not happen here. For gapless bosonic
excitations it was argued in Ref. 20 that the decay of com-
posite bosons is more difficult at temperatures below Tc and
that at T=0 it cannot take place at all because of the exclu-
sion principle. Applying this idea here we see that composite
bosons persist up to T* as soon as an interelectronic attractive
interaction −V is different from zero. This is similar to that of
the BCS scenario where the slightest infinitesimal attractive
interaction leads to the creation of pairs below some thresh-
old temperature �here below T*�. But the unexpected out-
come here is that the temperature T* below which bosons
first appear must be higher for smaller � �i.e., when the gap
2� in the boson spectrum is smaller� than T* for larger �. As
a result, bosons created in the �→0 limit, i.e., pairs emerg-
ing within the Fermi sea, appear to be stable up to much high
temperatures than bosons created for larger �. We believe
that this reflects the fact that as soon as � differs from zero,
pair fluctuations in the electron medium become possible. Of
course, thermal fluctuations will break these pairs up. How-
ever, independently of how large T is, this mode of pair
formation will always differ from zero. This feature has no
analogy either in conventional superconductors, as in the
BCS model where the “hardness” of pairs is associated with
large �, nor in BF models20 with a gapless boson dispersion
curve. It seems to be an inherent property of a BF mixture
with an interaction-dependent gap such as 2� in its
composite-boson spectrum.25,26 To understand this result in-
tuitively, note that in BF mixture models pair stability �or CP
lifetime� depends not only on how large the interaction pa-
rameter � is but also on the degree to which the correspond-
ing bosonic states are energetically separated from the Fermi
surface. The latter is determined by the energy gap 2� in the
dispersion relation �6� and plays a decisive role in confining
two electrons to form a CP with a finite lifetime. Indeed,
increasing � increases the separation of the bosonic states
from the Fermi sea, thus making pairs more loosely bound,
e.g., with respect to decay by thermal effects as discussed
above. There will always be pair-creation in the medium of
attractively interacting electrons. However, formation of
bosons well-separated from the Fermi sea �i.e., with large
2�� is reduced. Therefore, the conditions for such pairs to
appear �i.e., pairs formed at large �� must be more restrictive
and therefore are more easily satisfied at lower temperatures.

The many-particle contributions to pairing25 lead not only
to the gap 2� in the CP boson spectrum, which explains the
pseudogap state and its peculiarities. They also yield linearly
dispersive boson energies allowing BEC superconductivity
not only in 3D but also in 2D systems14 where it would be
forbidden with quadratically dispersive pairs that occur in
vacuo. As to the zero-temperature gap 2� in �6� it needs to
be generalized to finite temperatures, a task for future work.
The merging of T* with Tc for large � may be also easily
understood if one considers the conditions nB�� ,T*�=0 and
nB0�� ,Tc�=0 with nB�� ,T� and nB0�� ,T�, respectively, the
total number density of bosons and number density of con-
densed bosons. To ascertain that T* and Tc become nearly the
same in the large � limit, we note that the condition
nB�� ,T*�=0 that determines T* and the condition nB0�� ,Tc�
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=0 determining Tc coincide for large � as seen in Fig. 1. In
fact, T* is a temperature at which incoherent pairs first
emerge in the normal state but, as shown in Fig. 1, the criti-
cal density of bosons above which BEC occurs also vanishes
for large �. The condition nB�� ,Tc��nB�� ,T*�=0 �and
therefore nB0�� ,Tc�=0� satisfied at large � drives T* to
merge with Tc in this limit. Last, nB�� ,Tc�→0 for large � is
directly related to the gapped boson dispersion relation �6�.
This is because the number of pairs excited much above EF,
i.e., pairs associated with larger � and therefore larger values
of the boson gap 2�, are much less likely.

In Fig. 3 the BEC Tc vs � in 2D and 3D systems with the
same �D /TF=0.01 are compared. Within a wide range of �
values the 2D BEC temperature Tc �dotted curve� is bounded
from above by the 3D value of Tc �full curve�. However, the
threshold temperature for pair formation T* �dashed curve�
does not depend on dimensionality d. This suggests that T*

depends only on the local pairing interaction between fermi-
ons which for the Cooper or BCS model interaction is itself
independent of d. The two Tc curves for 2D and 3D approach
each other as � increases, eventually merging together as
well as with T*. Therefore, at least within the present simpli-
fied BF model and in the limit of large � the BEC of a BF
mixture is largely controlled by the magnitude of �D and
does not depend on dimensionality, with Tc larger for mate-
rials with larger �D. This is clear from �37� for 2D and 3D in
the large � limit if one assumes Tc��D.

It should be noted that in the present work a well-defined
domed structure in Tc vs � is maintained in 3D only for
�D /TF up to about 0.01. However, this result is very sensi-
tive to the form of 2����. It was seen in our numerical cal-
culations that the variation of 2����, apart from its mono-
tonic increase with �, leads to a considerable change in the
critical value of �D /TF below which the domed structure in
Tc vs � first occurs. If the � dependence of 2� in �6� were
stronger than that given by �8�, e.g., of the form �1+�	�D or
������ with ��1 and this substituted for 2���� in �6�, then
for the broad range of �D /TF from 0.05 to 0.14 appropriate
in cuprates51 one may easily get in 2D: �a� the well-defined
domed shape of Tc vs �; �b� the merging of T* and Tc as �
increases; and �c� Tc values almost within the experimental
range for cuprates. Therefore, it is extremely important to
ascertain an accurate expression for the CP spectrum E�K�
starting from the many-particle electron-ion interactions
which take place in the cuprates.

Experimentally, e.g., in La2−xSrxCuO4 �Refs. 52 and 53�
Tc first rises with doping x �underdoped region�. It then
maximizes �optimal doping�, and drops to zero as x is further
increased �overdoped region�. Because of our � vs x corre-
lation, the same behavior is expected for Tc as a function of
�, that is, we predict that superconductivity eventually van-
ishes at larger �. However, at least within the present sim-
plified BF model, Tc never strictly vanishes when �→�. It
continues to fall with increasing � but very slowly. The ex-
tinction of superconductivity in highly overdoped oxides es-
tablished by experiment may be accounted for as a result of
lattice instability that sets in as � increases indefinitely.54 The
instability with increasing � �or, because of our � vs x cor-
relation, with increasing x� should not be discarded as a pos-
sible explanation for the vanishing of Tc at large x. Of
course, there may be other physical reasons for this in the
overdoped cuprates, e.g., in terms of composite-boson local-
ization effects as suggested in Ref. 27.

VII. CONCLUSIONS

We started from the Friedberg-Lee Hamiltonian describ-
ing a boson-fermion model of two coexisting and dynami-
cally interacting many-particle subsystems, unpaired fermi-
ons and composite bosons but with a coupling ���-dependent
gap 2���� in the boson dispersion relation instead of the
usual quadratic one appropriate of composite bosons propa-
gating in vacuum. Using two-time �or, retarded� finite-
temperature Green functions, analytic expressions for the
coupling ���- and temperature �T�-dependent unpaired-
fermion and boson number densities were obtained, as well
as the fermion chemical potential ��� ,T�, all of which vary
with boson formation and temperature. Relating a depairing
temperature T* and the BEC Tc with ��� ,T� and 2���� pro-
vides a qualitative but self-consistent description of the ge-
neric experimental cuprate phase diagram that includes a
pseudogap as well as a dome-shaped Tc-vs-doping behavior,
in spite of the simplicity of a boson-fermion model with only
s-wave pairing.
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APPENDIX A: UNPAIRED-ELECTRON NUMBER

Here we derive �10� for the number of unpaired electrons
nk,��
ak,�

+ ak,�� in a state with momentum k and spin � in
full detail; this was only outlined before in Ref. 55. Starting
from the grand canonical Hamiltonian H we write it as a
sum of two pieces, H0 and Hint �5�. Two-time retarded Green

FIG. 3. Comparison of results in 2D �short-dashed curve� of the
Tc /TF phase boundary with those in 3D �full� curve of Fig. 2 but for
�D /TF=0.01 instead of 0.005. Long-dashed curve is again T* /TF.
Dotted-dashed curve is the �d-independent� BCS value as in Fig. 2.
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functions at times t and t� for dynamical operators A�t� and
B�t�� are defined56 with double-angular brackets as



A�t��B�t���� � ��t − t��
�A�t�,B�t�����H,

where the single-angular brackets 
X�H of an operator X are
T-dependent thermal averages over the Hamiltonian H,
while the square brackets �A ,B���AB+�BA denote the
commutator ��=−1� or anticommutator ��= +1� of opera-
tors A and B, and ��x� is the Heaviside unit step function. In
this formalism any dynamical operator X�t� is in the Heisen-
berg representation, i.e., is of the form X�t�
= exp�iHt�X exp�−iHt�. It is not difficult to see that Green
functions 

A�t� �B�t���� satisfy the equation56

i
d

dt


A�t��B�t���� = i��t − t��
�A�t�,B�t����

+ 

�A�t�,H��B�t���� . �A1�

Inserting



A�B��� �
1

2
�

−�

�



A�t��B�t����ei��t−t��d�t − t��

into �A1� immediately gives the chain of equations

�

A�B��� = 
�A,B���H + 

�A,H�−�B��� �A2�

for the Fourier transform 

A �B��� of 

A�t� �B�t���� in �. To
find values for nk,� we set �= +1 in Eq. �A2�. Choosing first
A�ak↑ and then A�ak↓

+ and setting B equal to ak�↑
+ , one

obtains

�� − 
k + ��

ak↑�ak�↑
+ ��� = �kk� −

f

Ld/2�
K


bK�

�

a−k+K,↓
+ �ak�↑

+ ���, �A3�

�� + 
k − ��

ak↓
+ �ak�↑

+ ��� = −
f

Ld/2�
K


bK
+ �

a−k+K,↑�ak�↑

+ ���.

�A4�

To calculate the commutators on the rhs of �A2� the relations
�ak� ,ak���

+ �+=�kk�����, �ak�
+ ,ak���

+ �+=0 and �ak� ,ak����+=0
are used. Furthermore, in establishing �A3� and �A4� the
higher-order Green functions 

BC �ak�↑

+ ��� which come from


�A ,H�− �B��� in �A2� are put into the form



BC�ak�↑
+ ��� = 
B�

C�ak�↑

+ ��� + 

�B − 
B��C�ak�↑
+ ���,

�A5�

where B=bK or bK
+ , i.e., it is a pure boson operator, while

C=ak� or ak�
+ is a pure fermion operator. Terms of the type



�B− 
B��C �ak�↑
+ ��� are then considered small contributions

in �A3� and �A4� and hence neglected. Now, replacing the

index K in �A4� by Q, index k by −k+K and substituting
�A4� into �A3� we have

�� − 
k + ��

ak↑�ak�↑
+ ���

= �kk� +
f2

Ld �
K,Q


bK�
bQ
+ �

� + 
−k+K − �


ak−K+Q↑�ak�↑

+ ���.

�A6�

We assume that functions such as 

ak↑ak�↑
+ ��� are diagonal in

k and k�, as in lowest-order two-time Green functions57 due
to translational symmetry. Keeping only terms with Q=K in
�A6� then gives



ak↑�ak�↑
+ ��� � �kk��� − 
k + � −

f2

Ld�
K


bK�
bK
+ �

� + 
−k+K − �
−1

.

�A7�

Separating terms with K=0 from K�0, restricting ourselves
to terms O�f2�, and writing 
k=
−k by symmetry, one obtains
after some tedious algebra that



ak��ak��
+ ��� =

� + 
k − �

�2 − Ek
2 �1 +

1

Ld

f2

� − 
k + �

� �
K�0


bK
+ �
bK�

� + 
−k+K − �
�kk�, �A8�

where

Ek � ��
k − ��2 + f2
b0
+�
b0� . �A9�

In particular, by substituting �A8� in �A4� it is not difficult to
arrive at



a−k+K/2↓
+ �ak+K/2↑

+ ��� = −
f

Ld/2

� + �k+K/2

� + �−k+K/2


bK
+ �

�2 − Ek+K/2
2

+ O�f3� . �A10�

Knowing the two-time Green functions 

ak� �ak��
+ ��� and



a−k↓
+ �ak�↑

+ ��� one can find expressions for the corresponding
average values 
ak�

+ ak��H and 
ak↑
+ a−k�↓

+ �H from the relation56


A�t�B�t���H =
1

2
�

−�

�

d�ei��t−t��JAB��� , �A11�

where the so-called spectral density JAB��� is in turn deter-
mined from

�

A�B���+i� − 

A�B���−i�� = − i�e	�/kBT − ��JBA��� .

�A12�

After some algebra one obtains


ak�
+ ak��H � nk =

1

2
�1 −


k − �

Ek
tanh�Ek/2kBT�

�A13�
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which proves �10�.
One also finds, to be used in proving �25� via �26�, that


ak+K/2↑
+ a−k+K/2↓

+ �H =
f

2Ld/2


bK
+ �

Ek+K/2
�Z1�k,K� − Z2�k,K�� ,

�A14�

where we defined

Z1�k,K� � �1 −
��k+K/2 − �−k+K/2��−k+K/2

Ek+K/2
2 − �−k+K/2

2 tanh
Ek

2kBT
,

�A15�

Z2�k,K� �
��k+K/2 − �−k+K/2�Ek+K/2

Ek+K/2
2 − �−k+K/2

2 tanh
�−k+K/2

2kBT

�A16�

with �k�
k−�.

APPENDIX B: BOSON NUMBER

Here we derive �13� that determines the boson number-
density nBK�T� given by �12� for fixed CMM K. The total
number of composite bosons at any temperature T is just
NB�T���QnBQ�T� with nBQ�T��
n̂BQ� and n̂BQ�bQ

+ bQ.
Changing T and/or � will change NB�T�. Choosing first A
�bQ and B�bQ

+ in �A2� with �=−1 we write �A2� as

�

bQ�bQ
+ ��� = 1 + 

�bQ,H�−�bQ

+ ��� �B1�

since �bQ ,bQ
+ �−=1. We determine �bQ ,H�− on the rhs of �B1�

by first splitting it as a sum of two terms I0��bQ ,H0� and
Iint��bQ ,Hint�, and then finding I0 and Iint separately. As is
customary in boson-fermion models, we assume that a and b
operators commute with each other. Since �bQ ,bK�−=0 while
�bQ ,bK

+ �−=�Q,K and �bQ ,bK
+ bK�−=bK�Q,K we get

I0 = �E�Q� − 2��bQ and Iint =
f

Ld/2�
q

aq+Q/2↑a−q+Q/2↓.

Combining I0 and Iint into �B1� yields

�� − E�Q� + 2��

bQ�bQ
+ ���

�= 1 +
f

Ld/2�
q



aq+Q/2↑a−q+Q/2↓�bQ
+ ���. �B2�

This is the first of an infinite chain of equations containing
higher-order Green functions. An expression for higher-order
Green functions like 

aq+Q/2↑a−Q+Q/2↓ �bQ

+ ��� on the rhs of
�B2� can be established if in �A2� one takes aq+Q/2↑a−q+Q/2↓
for A and B is still bQ

+ . Thus

�

aq+Q/2↑a−q+Q/2↓�bQ
+ ��� = 

�aq+Q/2↑a−q+Q/2↓,H�−�bQ

+ ���.

�B3�

We first find the commutator �aq+Q/2↑a−q+Q/2↓ ,H�−�J0+Jint

with J0��aq+Q/2↑a−q+Q/2↓ ,H0� and Jint

��aq+Q/2↑a−q+Q/2↓ ,Hint�. Straightforward manipulations
yield

J0 = �
−q+Q/2 + 
q+Q/2 − 2��aq+Q/2↑a−q+Q/2↓ �B4�

and

Jint =
f

Ld/2�
K

bK�aq+Q/2↑aq−Q/2+K↑
+ − a−q−Q/2+K↓

+ a−q+Q/2↓� .

�B5�

In the summation in �B5�, let us separate terms with K=Q
from those with K�Q, namely

Setting J0 and Jint into �B3� leads to the high-order Green

functions of the type 

bKF̂ �bQ
+ ��� with

F̂ ��aq+Q/2↑aq−Q/2+K↑
+ − a−q−Q/2+K↓

+ a−q+Q/2↓ for coherent terms,

aq+Q/2↑aq−Q/2+K↑
+ − a−q−Q/2+K↓

+ a−q+Q/2↓ for incoherent terms.
�

Then we write



bKF̂�bQ
+ �� � 

bK�F̂ − 
F̂���bQ

+ �� + 
F̂�

bK�bQ
+ �� �B6�

and assume that because of the factor F̂− 
F̂�, the contribu-
tion coming from the first term in �B6� approximately van-
ishes by averaging included into the definition of the Green

functions. This approximation lets us write 

bKF̂ �bQ
+ ��

�
F̂�

bK �bQ
+ �� with F̂ being constructed from the fermion

operators. Applied to the so-called “noncoherent” terms in
Jint this decomposition procedure allows us to neglect with
all of them. Indeed, the relation �B6� applied to the nonco-
herent terms in Jint brings to the contributions of the type
c

bK �bQ

+ �� with the prefactors c�
aq �ak
+�. Because of the

relations K�Q and q�k this kind of terms appears to be
small with respect to the so-called “coherent terms.” Using
Fermi anticommutators in the first term and ignoring all in-
coherent terms one is finally left with

T. A. MAMEDOV AND M. DE LLANO PHYSICAL REVIEW B 75, 104506 �2007�

104506-10



Jint �
f

Ld/2bQ�1 − aq+Q/2↑
+ aq+Q/2↑ − a−q+Q/2↓

+ a−q+Q/2↓�

�
f

Ld/2bQ�1 − n̂q+Q/2↑ − n̂−q+Q/2↓� , �B7�

where n̂k,� are the usual Fermi number operators. Substitut-
ing J0 �B4� and Jint �B7� into �B3� yields



aq+Q/2↑a−q+Q/2↓�bQ
+ ���

=
f

Ld/2



bQ�1 − n̂q+Q/2↑ − n̂−q+Q/2↓��bQ
+ ���

� − �
−q+Q/2 + 
q+Q/2 − 2��
. �B8�

Using in the rhs of �B8� the approximation �B6� we may
write



aq+Q/2↑a−q+Q/2↓�bQ
+ ���

=
1 − nq+Q/2↑ − n−q+Q/2↓

� − �
−q+Q/2 + 
q+Q/2 − 2��
f

Ld/2 

bQ�bQ
+ ���. �B9�

The assumption made in �B9� can be justified via the defini-
tion of the Green functions along with the commutativity of
bQ

+ and nq� in the random-phase approximation �RPA�. The
expression 
1− n̂q+Q/2↑− n̂−q+Q/2↓� is denoted as 1−nq+Q/2↑
−n−q+Q/2↓. Finally, substituting �B9� into �B2� leads to the
solution



bQ�bQ
+ ��� = �� − E�Q� + 2� −

f2

Ld�
q

F�q,Q�
� − ��q,Q�−1

�B10�

where F�q ,Q��1−nq+Q/2↑−n−q+Q/2↓ and ��q ,Q��
−q+Q/2
+
q+Q/2−2�.

Once calculated, �B10� determines nBQ�T��
bQ
+ bQ�H via

the identity


bQ
+ bQ�H =

1

2
�

−�

�

d�JbQ
+ bQ

��� , �B11�

where

JbQ
+ bQ

��� = i�e�/kBT − 1�−1�

bQ�bQ
+ ���+i0 − 

bQ�bQ

+ ���−i0�

is the so-called spectral density. In operator form, using
�B10� one first writes for small �,



bQ�bQ
+ ���±i� �

1

A ± i�B
=

1

B
�P�B/A� � i��A/B�� ,

�B12�

where the operator identity �x± i��−1= P�x−1�� i��x� was
used with P denoting the principal value of the integral,
while in �B12� we have set

A � � − E�Q� + 2� −
f2

Ld�
q

F�q,Q�
� − ��q,Q�

,

B � 1 +
f2

Ld�
q

F�q,Q�
�� − ��q,Q��2 + �2 .

Setting �B12� into �B11� yields

JbQ
+ bQ

��� = 2�e�/kBT − 1�−1 1

B
��A��,Q�/B��,Q�� .

�B13�

Finally, inserting this into �B11� gives

nBQ�T� � 
bQ
+ bQ� =

1

B
�

−�

�

d��e�/kBT − 1�−1

���A��,Q�/B��,Q�� =
1

B
�e�Q/kBT − 1�−1,

�B14�

where �Q is the root of the equation A�� ,Q� /B�� ,Q�=0,
i.e.,

�� − E�Q� + 2� −
f2

Ld�
q

F�q,Q�
� − ��q,Q�

��1 +
f2

Ld�
q

F�q,Q�
�� − ��q,Q��2−1

= 0.

Since the second factor is nonzero, the first factor must van-
ish; this gives �13� for insertion in the BE distribution �12� of
a pure boson gas.
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