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Abstract

We built up star-branched polymers, whose morphology is fully determined by diffusion, with p ¼ 1; 3; 6 and 12

branches with a total of 30,000 monomer units. We investigated their structural properties by calculating the

monomer–monomer correlation functions. A detailed finite size scaling analysis of the radius of gyration was also

performed to determine the exponent and the corrections to scaling. From these results we calculated the fractal dimension

of the branched aggregates and obtained: df ¼ 1:222ð7Þ, for the linear chain, df ¼ 1:2305ð8Þ, df ¼ 1:247ð8Þ and df ¼

1:261ð8Þ for the three, six and twelve branches polymer, respectively.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Star-branched polymers are materials with many fascinating properties. They play an important role in
different chemical and physical polymerization processes. Due to their well-defined molecular architecture
these systems can be regarded as models with soft and ultra-soft inter-particle interactions. Because they
interpolate in between hard colloids with strong repulsive core on one side, and as soft and flexible polymeric
systems, on the other, they are relevant as soft condensed matter systems. Since the prediction and
interpretation of the conformational properties of branched polymers is difficult, numerical simulations are
very useful to shed some light on the structural and conformational properties of these branched systems.

A number of algorithms based upon on-lattice diffusion [1,2] or kinetic processes [3,4] have been developed
to describe the irreversible growth of linear polymers. Some of them have the property of producing polymers
that grow indefinitely [4] without forming cages. In this paper we introduce an off-lattice algorithm based
e front matter r 2007 Elsevier B.V. All rights reserved.
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upon a pure diffusive process to construct branched polymers. This algorithm allows conformations in which
one or more branches may end up confined (trapped), in which case the process terminates. Nonetheless, due
to the directed processes used to grow the branched structures, the algorithm is less sensitive to attrition than a
self-avoiding walker. We have built up two-dimensional star-branched polymers with one, three, six and
twelve branches. An statistical analysis of the structural and conformational properties of these structures over
an ensemble with one hundred different configurations yielded fractal dimension values that appear to
increase slightly as the number of branches increases.

2. The algorithm

In this section we introduce the off-lattice algorithm to construct a diffusion-limited star-branched polymer
(DLSP) in two dimensions. To built up the structures we consider monomers that are bi-functional. To begin
with the construction process one first defines the branching topology of the desired DLSP, that is, one defines
the number of arms or branches that the star polymer will have. For instance, in Fig. 1 we show the topology
of a DLSP with three branches. In such a case the monomers are numbered in a convenient way so that a given
monomer is linked to a target monomer. In the scheme shown in Fig. 1, monomers 2; 3; and 4 are linked to
monomer number 1. Monomer number 5 is linked to monomer 2, monomer 6 is linked to monomer 3, and so
on and so forth. In this way each of the N monomers of the structure is linked to a specific target monomer.
Once the topology is defined and the monomers are numbered, the building process starts with a seed

monomer of diameter d—labeled as number 1—located at the origin. Then, a second monomer is released
from an arbitrary point on a circle of radius R0 centered at the seed monomer. This second monomer performs
a random walk until it reaches the corresponding target monomer within a distance d—distance center to
center—in which case it attaches to it at the contact point. If it becomes far away from the target monomer
then it is deleted and a new monomer is released. The process iterates until the aggregate reaches its final mass.
The described procedure is sketched in Fig. 2. The radius R0 is chosen from a uniform random distribution
such that its value is in between the monomer’s radius a ¼ d=2 and the radius of the smallest circle that
encloses completely the structure already grown. To speed up the simulation we used a step size control based
on a recursive procedure that allows a rapid approach of the incoming monomer to the aggregate without
hindering large excursions [5].

3. Results

3.1. Structural properties

In Fig. 3, panels (a)–(d), we show typical star branched polymer configurations with, p ¼ 1, 3, 6, and 12
branches, with up to N ¼ 30; 000 monomer units. They were obtained by applying the algorithm described in
Fig. 1. Schematic sketch of the topology of a three-arm star polymer.
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Fig. 2. Sketch that shows the procedure to built a DLSP. The black disc represents the target monomer.

Fig. 3. Representative DLSP configurations. (a) Single-branch polymer, (b) three-branch star polymer, (c) six-branch star polymer and (d)

twelve-branch star polymer.
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Section 2. Note that the wiggles present in the arms are mainly due to the diffusive process used to build the
structures. To understand the structural properties and estimate the compactness of the structures we
calculated the monomer–monomer correlation functions, gðrÞ. From these correlations we estimated the
fractal dimension of each branched-polymer since at intermediate distances, gðrÞ�rdf�2 with df the fractal
dimension. The monomer–monomer correlation functions were calculated by means of the usual histogram
method [6]. For the sake of clarity we describe briefly this method: A monomer is chosen at random and the
distances r to all other monomers are calculated from this reference particle. The histogram of the distance
distribution, Nðr;DÞ is obtained by counting the number of distances that fall in the interval ðr; rþ DÞ. The
monomer–monomer correlation function, gðrÞ, of the two-dimensional branched structures is then calculated
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by means of the formula, gðrÞ ¼ Nðr; rþ DÞ=ð2prDÞ. After all the monomers of the structure have been swept,
an average of the histograms is carried out.

We applied this method to calculate gðrÞ to structures with one, three and six arms. An average of
this quantity over an ensemble of 100 different configurations was carried out for each branched structure. In
Fig. 4 we show the results for the monomer–monomer correlation functions for DLSP with one, three, six and
twelve arms. One sees that at small distances, up to r=a � 10, the curves fall on top of each other. In addition,
one can see for distances up to r=a � 4, a three peak structure at integer multiples of the excluded volume
diameter. This structure is reminiscent of that observed in simple liquids and it has also been obtained in the
case of homopolymer rings in a poor solvent [7]. At larger distances, r=a410, the curves for star polymer
structures with more than one arm depart from that corresponding to a single arm. This departure from the
single arm polymer becomes more important as the number of branches increases. This increase in
monomer–monomer correlations is related to an increase in monomer density at relatively large distances due
to the branched structure. One also observes that the correlations for the branched structures fall off to zero
more rapidly—at smaller distances—as the number of arms increases. This happens because of the finiteness
of the systems, that is, for a fixed total number of monomers N in the branched structure, an increase in the
number of arms leads to shorter branches.

As mentioned above, we are mainly interested in the existence of a power law behavior of the
monomer–monomer correlations at intermediate distances, that is, gðrÞ�rdf�2, with df the fractal dimension of
the structure. Thus, we plotted gðrÞ versus r on a log–log scale to identify the power law behavior and get an
estimate of df . Representative results of this analysis are shown in Fig. 5, panels (a)–(d), where we plotted the
average of the correlation functions over an ensemble of one hundred statistically independent structures.
Each structure has a total of N ¼ 30; 000 monomers and p ¼ 1, 3, 6, and 12 branches, respectively. In this way
we obtained the following fractal dimension values: df ¼ 1:22ð1Þ, df ¼ 1:23ð3Þ; df ¼ 1:24ð2Þ; and df ¼ 1:26ð3Þ,
for p ¼ 1, 3, 6, and 12 arms, respectively. The digits in parenthesis indicate the size of the error bar, it has to be
added or subtracted to the last significant figure of the fractal dimension. These results suggest that the
polymer structure becomes more compact as the number of branches increases. Nonetheless, the error bars are
not small enough to be able to make a definite conclusion. To try to obtain a more precise estimate of df in
subsection 3.2 we will carry out a detailed finite size scaling analysis of the radius of gyration.

One should also note that not only the fractal dimension of the structures appear to increase with the
number of branches, but also, for the star with 12 arms a second linear region in gðrÞ shows up. This second
linear region is rather related to the average density profile and not to the fractal dimension of the structure [8].
For stars with a large number of branches this second linear region should appear more clearly. On the other
hand, one should also note that the values of the fractal dimensions obtained here for the DLSP branched
structures are slightly smaller than the corresponding thermodynamically equilibrated counterparts. That is, if
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Fig. 4. Monomer–monomer correlation functions as a function of distance for different star branching polymers.
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Fig. 5. Here we show the linear part of the monomer–monomer correlation functions that was considered for the evaluation of the fractal

dimension of the DLSP (a) single-arm polymer, (b) three-arm polymer, (c) six-arm polymer and (d) twelve-arm polymer.
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we were to consider polymers with the same branched structure, but those in which the monomers can move
freely but maintaining the connectivity, and avoiding overlapping, the fractal dimensions that we would
obtain should be slightly larger than the ones we obtained in the present analysis. For instance, in the case of a
two-dimensional self-avoiding walk linear polymer, the fractal dimension of the fully equilibrated structure is
1:33. This value is higher than the estimated value 1:23, obtained for the equivalent diffusively built linear
structure of the present paper. On the other hand, one should also consider the ability of the present algorithm
to simulate branched structures with up to N ¼ 30; 000 monomer units or even larger systems at the expense of
an increase in computing time.

3.2. Conformational properties

To analyze the conformational properties of the DLSP branched structures build up here we also carried
out a detailed finite size scaling analysis of the average of the radius of gyration, hRgi, of each structure. The
average h� � �i was carried out over an ensemble of one hundred different DLSP configurations. The radius of
gyration is expected to scale as [9,10],

Rg�ANnð1þ aNd þ bN�ZÞ, (1)

where N represents the number of monomers in the branched-polymer, the exponent n, is related to the fractal
dimension of the structure as, n ¼ d�1f , and the terms aNd and bN�Z represent the corrections to scaling. These
corrections are characterized by the exponents d and Z. In Fig. 6 we show on a log–log scale the average of the
radius of gyration as a function of the number of monomers for each branched structure. These results suggest
that there may be corrections to the scaling behavior, RðrÞ�Nn. To calculate these corrections to scaling we
proceeded as follows: We fitted the radius of gyration data to the nonlinear function:

Rg ¼ a0N
n þ a1N

a2 þ a3Na4 ¼ ANnð1þ aNd þ bN�ZÞ (2)

with A ¼ a0, a ¼ a1=a0, b ¼ a3=a0 and the exponents, d ¼ a2 � n and Z ¼ a4 � n. Starting with the values of n
obtained from the analysis of the monomer–monomer correlation functions we carried out a series of five
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Fig. 6. Scaling behavior of the average of the radius of gyration. The results correspond to structures with one ð�Þ, three ð’Þ, six ðmÞ and

twelve ð.Þ branches, respectively. The dashed lines are a guide to the eye.
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parameter, ak ðk ¼ 0; 1; 2; 3; 4Þ, nonlinear fits to the function defined in Eq. (2) until we obtained a minimum
value of the w2 merit function. This function is defined as

w2 ¼
XN

i¼1

Ri
g � Rgða0; a1; a2; a3; a4Þ

si

 !2

(3)

with Ri
g the data points, si their corresponding standard deviations and Rgða1; a2; a3; a4Þ is the function defined

in Eq. (2). The results of this nonlinear fit analysis to the data for the radius of gyration obtained from the
simulations are summarized in the following table.
p
 A
 n
 a
 d
 b
 Z
1
 0.25935
 0.818(5)
 6:4835� 10�3
 0.2294
 4.0163
 3.5808
3
 0.26047
 0.8127(5)
 5:4184� 10�3
 0.2249
 3.9927
 3.5757
6
 0.18029
 0.802(5)
 4:1666� 10�4
 0.4976
 5.7774
 3.5648
12
 0.12939
 0.7931(5)
 6:809� 10�4
 0.3582
 8.0500
 3.5564
The digits in the parenthesis after the value of the exponent n represent the uncertainty which is related to
the step-size chosen to obtain the minimum of the w2 merit function. We do not quote explicitly the statistical
uncertainties of the other fitted parameters because they are of the order of the last digit. With regard to the
quality of the results obtained from the nonlinear fits it is important to indicate that in all the cases listed in the
table the correlation coefficient of the fit was equal to one and the RMS percent error was of the order of 10�6.

From the above results we can calculate the fractal dimensions of each branched structure as, df ¼ 1=n.
Thus, we obtain for the linear chain, df ¼ 1:222ð7Þ, for the three-arm polymer, df ¼ 1:2305ð8Þ, for the six-arm
structure, df ¼ 1:247ð8Þ and for the twelve arm polymer, df ¼ 1:261ð8Þ. The digit in parenthesis indicates the
magnitude of the uncertainty of the fractal dimension that was calculated from the uncertainty of the exponent
n. These results for df are more precise than those obtained from the monomer–monomer correlation
functions. They suggest that as the number of arms in the structure increases, the fractal dimension of the
DLSP also increases within the error bars estimated from the nonlinear fits.

At this point it is important to stress that the present algorithm grows aggregates with defined topology,
that is, with defined number of branching points, number of arms that emanate from each branching point,
and number of monomers in each of the branches. This could include for example, star-branched polymers
with predefined poly-dispersity of the arms. However, with minor modifications in the algorithm we could
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grow aggregates with a topology not fully defined in advance. For instance, if we chose as a target monomer
any of the free ends of the arms, instead of a specific one, then the algorithm would produce a poly-disperse
structure. Nonetheless, in this case the poly-dispersity would not be defined in advance but it would be a
consequence of the random nature of the aggregation.

4. Conclusions

In conclusion, we have introduced a diffusion-based numerical algorithm to construct simple two-
dimensional branched polymers with a relatively large number of monomers. The algorithm excludes closed
loops and appears to work for a branching number that is not too large. This procedure yields quenched
structures with configurations that are more stretched as compared to their fully thermodynamically
equilibrated counterparts. This appears to be due to the directed process used to build them up. From the
evaluation of the monomer–monomer correlation functions we were able to estimate the fractal dimension of
the branched structure. To get a more precise estimate of these fractal dimensions we carried out a finite size
scaling analysis of the radius of gyration. The results obtained appear to suggest, within the estimated error
bars, that as the number of arms in the structure increases its fractal dimension also increases slightly. In
future work we expect to extend these procedure and analysis to structures with different topologies, as for
example, dendrimers, stars with polydispersed arms, and other kinds of hyperbranched structures in two and
three dimensions.
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[6] A.E. González, G. Ramirez-Santiago, Phys. Rev. Lett. 74 (1995) 1238;
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