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We review Cooper pairing starting from its simplest, original 1956 version of two elec-
trons interacting above the Fermi sea of an ideal Fermi gas (IFG). The two-electron inter-
action assumed extensively (if not exclusively), is the attractive two-parameter Cooper,
and then BCS, model interactions. Hole Cooper pairs (CPs) and electron-hole CPs are
then included along with the initial electron-CPs in terms of the single-fermion Green
functions implied by the Bethe-Salpeter (BS) integral equation in the ladder approxima-
tion. A purely-imaginary CP energy “instability” is recovered that is well-documented
in the literature at least since the late 1950’s. A novel interpretation of this instability
is that an unperturbed Hamiltonian different from the IFG one first used by Cooper
suffices to obtain meaningful CPs. Instead of the IFG sea, a BCS-correlated Fermi “sea”
used in the BS equation interpreted as the associated unperturbed Hamiltonian leads to
real CP energies (with small imaginary terms implying damping). We survey how this
has been achieved in 1D, 2D and 3D, and give a more detailed treatment in 2D. A vital
distinction is that the original and generalized CPs are true bosons in contrast with BCS
pairs that are not ordinary bosons but rather “hard-core bosons” as they do not obey
strict Bose commutation rules. Another important common element of the original or
generalized CPs (particularly in 2D where ordinary Bose-Einstein condensation (BEC)
does not occur) is their linear dispersion relation in leading order in the total (or, center-
of-mass) momentum power-series expansion of the CP energy. This theory encompasses,
in principle, all empirically known superconductors including quasi-2D superconductors
such as cuprates and the ET organic compounds, as well as quasi-1D ones such as the
organometallic Bechgaard salts and nanotubes.

Keywords: Cooper electron- and hole-pairs; BCS-correlated ground state; Bose-Einstein
condensation.

1. Introduction

Now fifty years old, the 1957 Bardeen Cooper and Schrieffer (BCS) theory of su-

perconductivity1 is rightly regarded as one of the most outstanding achievements
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of theoretical many-body physics. The central concept of the theory is the idea of a

Cooper pair. In the original model of Cooper, this was simply a two-electron bound

state, relative to a full Fermi sea.2 In the full BCS theory, this original concept

was extended to a full many-body ground state, in which all electrons share in the

general “pairing correlations.” The theory not only provided a microscopic model

for superconductivity, but it also made many highly specific and quantitative pre-

dictions including explaining the isotope effect, predicting the T = 0 energy gap

∆ obeying the universal relation, 2∆ = 3.53 kBTc, and in explaining temperature

dependences of ultrasonic attenuation and NMR relaxation rates.3

For many decades, the theory, including its extensions into the strong-coupling

regime, appeared to be capable of explaining all of the then known superconduct-

ing elements and compounds. This situation continued while the highest Tc value

for any superconductor (SC) was 23 K, until the discovery4 in 1986 of the first

so-called “high-Tc” cuprate SC La2−xBaxCuO4 having a Tc ' 35 K. The discov-

ery of superconductivity at 92 K in YBa2Cu3O7−δ
5 was followed by a search for

materials with even higher Tc’s and led, within just seven years to the highest-Tc

superconductor known to date, the HgBaCaCuO cuprate6 with a Tc ' 164 K under

very high pressure (' 310, 000 atm).

Just over twenty years after the discovery of high-temperature superconduc-

tivity in cuprate materials, it is clear that many important questions still remain

to be answered. As well as the still unresolved problem of the pairing dynamical

mechanism and many-body excitations in the normal state of the high Tc cuprate

materials, there are now also many other recently discovered materials where it

is unlikely that BCS theory is applicable, at least in its original form. These in-

clude oxide materials (such as the cubic bismuthate Ba1−xKxBiO3), borides (such

as MgB2), borocarbides (e.g., YNi2B2C), carbon-based materials (including ful-

lerides, nanotubes, intercalated graphite, and organic conductors), and new high

pressure phases of elements7 (such as Fe, S and Ca) and simple binary and ternary

compounds. All of these classes of materials have shown superconductivity above

10 K, including several up to nearly 40 K. Superconductivity at up to 84 K has

even been reported in a cubic ruthenate.8–10

The ongoing debate about the pairing mechanism in cuprate high Tc materials

has broadly led to two main schools of thought. On the one hand, P. W. Anderson

argued from the very beginning11 that cuprate materials are in a completely dif-

ferent class from other superconducting materials, and as such, they must have a

completely new pairing mechanism quite different from the BCS theory. In addition

to his original “resonating valence bond” (RVB) model, a large range of theories

have focussed on superconductivity driven chiefly by repulsive interactions domi-

nated by the on-site Coulomb-repulsion Hubbard U . These include gauge theories,12

spin-fluctuation theories,13–15 and the “Gossammer superconductivity” picture of

Laughlin.16–18 The discovery of a dx2−y2 symmetry order parameter19,20 is generally

consistent with pairing mechanisms derived from a large positive U , and there is

some numerical evidence for a dx2−y2 symmetry ground state in the two-dimensional
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square lattice Hubbard model.21 However, it remains unclear whether the positive U

Hubbard model alone can describe the hugely complex normal and superconducting

state phenomenology of the cuprate materials22 including the characteristic doping

dependences, pseudogaps, marginal Fermi liquid normal state, isotope effects, and

lattice inhomogeneities such as stripes.

On the other hand, many others have taken the view that it is not a com-

pletely new theory that is needed, but rather one that should extend or generalize

BCS theory to describe these new materials. This approach has the advantage of

building upon the foundations of BCS, and furthermore, does not necessarily imply

that cuprate superconductivity is in a completely new class of materials. Rather,

they may be related to other materials but just in a new parameter regime where

the usual approximations of BCS (even including Eliashberg strong-coupling cor-

rections) may not be adequate. Some of the many theoretical models which have

been examined in this context include: boson-fermion models,23–28 bipolarons,29

the “pre-formed pair” or BCS-BEC crossover scenario,30–34 non-adiabatic super-

conductivity,35 and generalized Bose-Einstein condensation of Cooper pairs.36–38

The purpose of this review is to survey some of the underlying assumptions

of the original BCS theory, especially focussing on the role and meaning of the

concept of a Cooper pair (CP). We examine both the original Cooper problem, the

Cooper instability of the normal Fermi sea, and the meaning of a CP within the

BCS ground state. We recall some old debates, such as whether Cooper pairing

is a form of BEC, and whether it is meaningful to talk about “pre-formed” CPs

at temperatures above Tc. We examine CPs with finite center-of-mass momentum,

and demonstrate that such CPs have linear dispersion, as well as a finite resonance

lifetime. We draw a distinction between these two-body bound CPs, and the pair-

like correlations existing in the BCS ground state wave function. In particular, we

discuss the implications of pair-pair interactions, which are neglected in the BCS

theory, and we discuss the difference between two-electron (charge −2e) and two

hole (+2e) CPs, which is also ignored in the BCS theory, at least explicitly. Finally

we briefly summarize how these ideas lead to the derivation of boson-fermion models

as extensions of BCS theory, and the concept of generalized BEC (GBEC)36–38 in

which both hole- and electron-pairs are treated fully on an equal footing.

Boson-fermion (BF) models as a BEC “paradigm”39–41 of superconductivity

go back to the mid-1950’s,42–48 pre-dating even the BCS-Bogoliubov theory.1,49,51

Although BCS theory only contemplates the presence of “Cooper correlations” of

single-particle states, BF models42–48,52–54 posit the existence of actual bosonic

CPs. Such paired charge carriers have been observed in magnetic flux quantization

experiments on elemental55,56 as well as on cuprate57 superconductors (SCs). Clus-

ters larger than pairs, viz., quartets or quadruples with charge ±4e, have not been

unambiguously observed in the bulk of any superconductor (see, however Refs. 58–

62). The presence of quartets has also been suggested in 3He in aerogel.63 Moreover,

no experiment has been done yet, to our knowledge,64 that distinguishes between

electron and hole pairs, i.e., that determines the sign of 2e charge carriers.
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Indeed, CPs appear to be the single most important universally accepted in-

gredient of SCs, whether conventional or “exotic,” and whether of low- or high-

transition-temperatures Tc. And yet, in spite of their centrality, they are poorly

understood. The fundamental drawback of early42–46–48 BF models, which took 2e

pairs as analogous to diatomic molecules in a classical atom-molecule binary gas

mixture, is the cumbersome extraction of an electron energy gap ∆(T ). “Gapless”

models can be useful in locating transition temperatures if approached from above,

i.e., T > Tc. Even so, we are not aware of any calculations with the early BF mod-

els attempting to reproduce any empirical Tc values. The gap first began to appear

naturally in later BF models.27–34,36–38 With two36,37 exceptions, however, all BF

models neglect the effect of hole CPs included on an equal footing with electron

CPs to give the “complete” BF model that constitutes a generalized Bose–Einstein

condensation (GBEC) theory. It is complete only in that it consists of both bosonic

CP species coexisting with unpaired electrons.

By reviewing the CP concept, and its generalizations, we aim to clarify some

commonly held, but at best questionable accepted notions regarding CPs that are

widespread in conventional wisdom. In particular, we argue that the original Cooper

concept2 can be generalized to describe individual pairs relative, not to a normal

Fermi sea, but relative to the correlated BCS ground state. These generalized CPs

are then elementary excitations relative to the BCS ground state. They are long-

lived charge −2e (or +2e) quasiparticles of electron (or hole) pairs excited out of

the BCS condensate having a characteristic linear dispersion relation and resonance

lifetime, and which are described by boson statistics. We examine the nature of these

generalized CP excitations, and their implications for theories of superconductivity

beyond BCS.

2. Questionable Notions of Cooper Pairs (CPs)

The widely accepted notions of CPs that are at best questionable can be summa-

rized in the following assertions stating that:

1. CPs have “a very strong preference for singlet, zero-momentum pairs, so

strong that one can get an adequate description of superconductivity by treating

these correlations alone.”65 In fact, the possible number of nonzero-momentum pairs

has been shown66 to be substantial. They are essential in distinguishing, within a

BEC scenario, a “depairing” or “pseudogap”67–69 temperature T ∗ from the critical

condensation temperature Tc, which in BCS theory are otherwise the same.

2. CPs are negative-energy stable (i.e., stationary or infinite-lifetime) bound

states2 given by

E0 = −2~ωD/(e
2/λ − 1)−−−→

λ→0
−2~ωDe

−2/λ (1)

where λ ≡ N(EF )V is a dimensionless coupling constant and N(EF ) the electronic

density of states (DOS) for one spin evaluated at the Fermi surface of energy EF .

In fact, a more complete study of the two-body propagator in a (including both 2e-
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and 2h-CPs), leads to the purely imaginary result

E0 = ±i2~ωD/
√

e2/λ − 1−−−→
λ→0

±i2~ωDe
−1/λ (2)

as reported in Ref. 70, p. 33 and Ref. 3, p. 168. Thus the original Cooper problem2

describes an instability of the normal state, rather than merely the existence of

stable two-body bound states as given by Eq. (1).

3. CPs have effective mass 2m where m is the single-electron effective mass. If

correct, this would imply that a CP propagates in the Fermi sea like ~
2K2/4m,

with K ≡ k1 +k2, the total or center-of-mass momentum (CMM) of the pair. This

is the correct energy-momentum (dispersion) relation for a composite particle of

mass 2m in vacuo, but it is not correct when propagation takes place in the Fermi

sea. The effective mass 2m describes the stiffness of the condensate wave function,

as described in the Ginzburg-Landau equations, but this is a collective mode of the

whole condensate, and not the dispersion of an individual CP.

4. CPs have a dispersion relation in 3D given by

EK − E0 =
1

2
vF ~K (3)

reported, e.g., in Ref. 3, p. 33, but is claimed to be just the sound mode with

speed vF /
√

3 in an ideal Fermi gas, where vF ≡
√

2EF /m. In fact, there are two

distinct excitation modes in a many-fermion system (that in a many-boson system

are identical71,72), a “sound” as well as a composite “particle” mode. Below, we

shall refer to the latter as a “moving-CP” to distinguish it from the sound mode.

5. CPs and BCS pairs are the same thing. By BCS pairs here we mean the

K = 0 states created by the pair operators â†
K/2+k↑â

†
K/2−k↓ where â†kiσi

are the

creation operators for the ith electron, K ≡ k1 +k2 and k ≡ 1/2(k1−k2). The full

BCS ground state variational wave function is constructed as a coherent state of

these K = 0 pair operators. CPs, as we shall define precisely below, are defined as

a physical elementary excitation relative to the BCS ground state, not by the BCS

pair operators.

6. CPs are not bosons, Ref. 3, p. 38. While the BCS pair operators do not obey

strict Bose commutation relations, the CP excitations which we describe below

are two-particle resonances, and they do obey Bose statistics,73 equivalent to the

ordinary CPs.

7. “CPs have a very large size (� interparticle spacing) and cannot be ap-

proximated by bosons.” In fact, according to a 1931 theorem by Ehrenfest and

Oppenheimer,74 two identical clusters of charges obey the same statistics as in pre-

vious cases when infinitely separated, compared to when they are very close to each

other, provided that they do not mutually excite their internal structures. We argue

that this is the case for the generalized CP which we describe below, and hence they

are true bosons independent of their spatial extent.

In all of these issues, there is sometimes a confusion of terminology, the phrase

CP being used for different objects in different contexts by different authors. There
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is also some confusion about the very different physics of the original Cooper prob-

lem, the construction of the BCS ground state, and of the excitations relative to

that ground state. By the term generalized CP, or simply CP, we try here to im-

pose a uniform nomenclature in which the true physical picture is clarified. The

CPs we discuss are neither the original Cooper two-electron bound states nor the

BCS pair operator states. In contrast, our choice of the term CP refers to a true

physical excitation in SCs. In the remainder of this review, we expand and explain

this view in greater detail. We begin by first reviewing the original CP concept,

before describing its most natural generalization as a true physical CP object.

3. Original Cooper Pairing

We first review the original CP concept as a two-body bound state relative to an

ideal Fermi sea. We show that linear dispersion arises in both the “ordinary” CP

problem,2 as well as in the “generalized” CP case of the next section.

The CP equation for the energy EK of two fermions above the Fermi surface with

momentum wavevectors k1 and k2 (and arbitrary CMM wavenumberK where K ≡
k1 + k2) is given by

[~2k2/m− 2EF−EK + ~
2K2/4m]ψk = −

∑

q

′Vkqψq (4)

where k ≡ 1/2(k1−k2) is the CP relative momentum and ψk is its wave function in

momentum space. The prime on the summation implies restriction to states above

the Fermi surface with energy EF ≡ ~
2k2

F /2m, viz., |k±K/2| > kF , and Vkq is the

double Fourier transform of the interaction defined as

Vkq ≡ 1

Ld

∫

dr

∫

dr′e−iq·rV (r, r′)eik·r′

(5)

with V (r, r′) the (possibly nonlocal) interaction in real d-dimensional space.

The number NK of possible pairs with a given K is proportional to the probabil-

ity of finding one electron with wavevector k1 and a second electron with wavevector

k2, which combine to give a resultant CMM wavenumber K. At T = 0, this proba-

bility is simply the volume VK in k-space, as this consists of a simple-cubic lattice

(of lattice spacing 2π/L with L the size of the box containing the system) of points,

each of which represents an electron state with either spin. Specifically

NK ∝
∫ ′

dk(1 − nk1
)(1 − nk2

) −−−→
T→0

VK =

∫ ′

dk θ(k1 − kF )θ(k2 − kF ) (6)

where nki
is the average number of electrons with wavevector of magnitude ki,

i = 1, 2, and where the prime means integration over only the overlapping volume

allowed by the Cooper model interaction, written as

V K
k,k′ =







−V θ(2
√

k2
F + k2

D −K) if kF <

∣
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√
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0 otherwise .
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As in the original CP problem,2 we restrict ourselves to T = 0. In this way, the mag-

nitudes of the vectors k1 and k2 must be inside the interval [ kF , kF + ~ωD] which

form shells of energy thickness ~ωD about the Fermi energy. Actually, bound pairs

will be formed only if they are subject to the attractive interaction (7), i.e., only if

the tip of their relative momentum k is within the overlap volume of both shells,

the center-to-center distance of these spherical shells being equal to the magnitude

of K.

To calculate the number of possible pairs with K > 0 relative to those with

K = 0, we combine conditions (7) into the primed integral (6), which then becomes

the overlap volume in k-space

VK ≡
∫

dk θ(|K/2 + k| − kF )θ(|K/2 − k| − kF )

× θ
(
√

k2
F + k2

D − |K/2 + k|
)

θ
(
√

k2
F + k2

D − |K/2− k|
)

. (8)

Though tedious, this is a straightforward multiple integration, and yields the over-

lapping volume of the two shells of thickness ~ωD ≡ ~
2k2

D/2m.Note that the overlap

volume of two spheres is well-known (Ref. 75, p. 28) and corresponds to the partic-

ular case k2
D/k

2
F → ∞ above. As the number of pairs for any K ≥ 0 is proportional

to the overlap volume of the corresponding shells, the ratio required is just VK/V0.

There are five distinct topologies associated with the overlap volumes generated by

separating the two perfectly coincident shells, depending on the magnitude K of

vector K, which is the center-to-center separation of the shell centers, Fig. 1. These

topologies are displayed in Fig. 2, with shaded (overlap) areas designated as follows:

(i) Spherical-shell; (ii) Non-spherical-shell; (iii) Annular-ring; (iv) Dimpled-double-

convex-lens shape; and (v) Double-convex-lens shape. When the CMM wavenumber

K of the pair is zero, or κ ≡ K/(2
√

k2
F + k2

D) = 0, with k2
D/k

2
F ≡ ~ωD/EF ≡ ν,

K

k1 k2k

F DE ω+�

FE

Fk

Fig. 1. Cross-section (shading) of overlap volume in 3D (area in 2D) in k-space where the tip

of the relative CP wavevector k ≡ 1/2(k1 − k2) must point for the attractive Cooper model
interaction (7) to be nonzero for a CP of fixed CMM ~K ≡ ~(k1 + k2).
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i) Spherical shell ii) Nonspherical
       shell

iv) Dimpled Double
      -convex lens

v) Double-convex
          lens

iii) Ring

Fig. 2. Distinct topologies associated with the overlapping volume of two spherical shells in
k-space as the magnitude of K, their center-to-center distance, is increased.

the wavevectors of the individual electrons satisfy k1 = −k2 so that the electrons of

the pair lie in a spherical shell of internal radius kF and external radius
√

k2
F + k2

D,

at the same distance from the center and diametrically opposite each other. The

centers of the two spherical shells of width ~ωD are fixed at the origin, and the

overlap volume defined by integral (8) is just

V0 ≡ Vi = (4π/3)k3
F [(1 + ν)

3

2 − 1] . (9)

ν = 1

ν = 0.1
ν = 0.001

0.0 0.2 0.4 0.6 0.8 1.0
κ   K/2(kF

2 + kD
2)1/2

0.2

0.4

0.6

0.8

1.0

ν =

VK/ V0

Fig. 3. Fraction of possible bound pairs with nonzero CMM, ~K > 0, to that of possible bound
pairs with zero CMM, in 3D, for several values of ν = k2

D/k2
F . Typically, ν = 0.005148 for

conventional 3D, while 0.05 ≤ ν ≤ 0.14 for quasi-2D cuprate,149 superconductors. The limit
ν = ∞ refers to the well-known (Ref. 75 p. 28) overlap volume in k-space of two solid spheres of
radii kF and center-to-center distance equal to K, and analytically recovered correctly in Ref. 66
where further details of Figs. 2–5 can be found.
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0.8

0.9

1.0

ν = 0.001

ν = 0.01
VK / V0

κ    K/2(kF
2 + kD

2)1/2

10-310-410-510-610-7

2D
3D

Fig. 4. Enlargement of Fig. 3 over the interval 10−7 ≤ κ ≡ K/2
√

k2
F + k2

D ≤ 10−3, except that

dashed curves here refer to 2D results. Diamond symbols mark the Cooper-pair breakup total
momenta values in the linear approximation of Ref. 90.

On the other hand, when K > 0, the tip of wavevector k1 must lie, say, in the shell

centered at the left, while the tail of wavevector k2 must lie in the shell centered at

the right, both shell centers being separated by a distanceK. AsK is increased from

zero, the overlap volume of the two shells then acquires the four shapes mentioned

above. These four distinct cases are labeled (ii) through (v). Figures 3 and 4 are

not consistent with the first accepted notion associated with CPs mentioned above.

Finite-CMM Cooper pairing also emerges in the Fulde-Ferrell-Larkin-Ovchin-

nikov76,77 superconducting phase. Though not yet convincingly observed in any

conventional superconductor, there is some hope77,78 that it might be seen80 in

trapped atomic fermion gases.

3.1. Delta-potential interaction between electrons

If the interfermion interaction V (r, r′) is local, then V (r, r′) = V (r)δ(r − r′) in

Eq. (5). Moreover, if V (r) = −v0δ(r) with v0 > 0, Eq. (5) gives Vkq = −v0/Ld and

Eq. (4) becomes, for any d,

1

Ld

∑

k

′ 1

~2k2/m− 2EF − EK + ~2K2/4m
=

1

v0
. (10)

An attractive δ-interaction can model an interelectron short-ranged attraction re-

sulting from a short-range Coulomb repulsion plus a longer-ranged phonon attrac-

tion. In d = 1 where the δ-well supports a single bound state, the problem is quite



August 31, 2007 11:48 WSPC/140-IJMPB 03766

3666 M. de Llano & J. F. Annett

tractable.81,82 In either 2D or 3D, however, the δ-well supports an infinite set of

bound levels with the lowest level in each case being infinitely bound. This in turn

leads to a rigorous collapse of the many-fermion system,83 at least in 3D. To prevent

this unphysical collapse, the 3D δ-wells must be “regularized,” i.e., constructed, say,

from square wells84 such that the remaining δ-well possesses only one bound level.

This leaves an infinitesimally small strength parameter v0 which would make the rhs

of Eq. (10) diverge (so as to cancel the lhs that also diverges in 2D and 3D but not

in 1D). Combining Eq. (10) for 2D with the vacuum two-body Schrödinger equation

in momentum representation for the same δ-potential well allows eliminating85 v0
in favor of the (positive) binding energy B2 of the single bound level of the regular-

ized δ-well. It is this same interaction that allowed Miyake86 to explicitly solve in

closed form for the zero-temperature gap ∆ =
√

2B2EF and the fermion chemical

potential µ = EF − 1/2B2 in a 2D many-fermion gas; clearly both ∆ and µ depend

explicitly on both coupling through B2 and electron number density through EF .

For the same δ-potential-well interaction in the CP problem, one arrives at

∑

k

1

B2 + ~2k2/m
=

∑

k

′ 1

~2k2/m− 2EF − EK + ~2K2/4m
(11)

where B2 ≥ 0 serves as a coupling constant as in the Miyake BCS problem. A

small-K power-series expansion for EK gives the analytic expression valid for any

dimensionless coupling B2/EF ≥ 0,

εK ≡ EK − E0 =
2

π
~vFK +

[

1 − (2 − [4/π]2)
EF

B2

]

~
2K2

2(2m)
+O(K3) (12)

where a nonnegative CP excitation energy εK has been defined, and the Fermi

velocity vF comes from EF /kF = ~vF /2. The leading term in Eq. (12) is linear in

K, followed by a quadratic term. It is clear that the leading term in Eq. (12) is

quadratic, namely

εK = ~
2K2/2(2m) +O(K3) (13)

provided vF and hence EF vanish, i.e., there is no Fermi sea associated with the

pair, for any fixed coupling B2 > 0. This is just the familiar nonrelativistic kinetic

energy in vacuum of the composite (so-called “local”) pair of mass 2m and CMM

K. The same result (13) is also found to hold in 3D, but not analytically as in 2D.

An analytic result with both linear and quadratic terms such as Eq. (12) was also

found87 for the attractive δ-potential-well interaction in 1D, and the same vacuum

limit (13) ensued for both vF and EF taken to zero.

Figure 5 shows exact numerical results (full curves) of a dimensionless CP exci-

tation energy εK/(−E0) (in the figure, ∆0 means present −E0 > 0) as a function of

K/kF for different couplings B2 in units of EF . Note that ordinary CPs break up

whenever EK turns from negative to positive, i.e., when EK vanishes, or by Eq. (12)

when εK/(−E0) ≡ εK/∆0 = 1. These points are marked in the figure by dots on the

upper abscissa. In addition to the exact results (full curves), also shown are some
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0 1 2 3 4 5 6
K / k

F
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Fig. 5. Linear to quadratic changeover of dimensionless ordinary-CP excitation energy
εK/(−E0) ≡ εK/∆0 versus K/kF , determined exactly by numerical methods from Eq. (11) for
different couplings B2/EF , full curves, for the delta-potential-well interfermion interaction in 2D.
The dot-dashed line associated with B2/EF = 1 is the linear approximation (virtually coincident
with the exact curve for B2/EF . 0.1) while the dashed curve is the parabolic pure quadratic
term of Eq. (12). Dots on the upper abscissa denote values of CMM wavenumber K where the
CP breaks up, i.e., for which EK ≡ 0.

results for the linear approximation [first term on the right-hand side of Eq. (12),

dot-dashed lines (virtually coinciding with the exact curve for all B2/EF . 0.1)], as

well as for the quadratic approximation (dashed parabolas) as given by the leading

term in Eq. (13) for stronger couplings. For sufficiently weak coupling, the exact

dispersion relation is virtually linear—in spite of the divergence of the quadratic

term in Eq. (12), as B2/EF → 0. As EF decreases, the quadratic dispersion relation

(13) begins to dominate very slowly. A result unique to 2D (and associated with

the fact that in 2D, the fermionic density of states is independent of energy) is that

−E0 ≡ ∆0 = B2. Similar results have recently been found87 in 1D with the same

delta-potential interaction assumed between electrons, except that the linear term

is simply ~vFK for weak coupling, and for any coupling, the dispersion relation in

the vacuum limit vF → 0 is again the expected quadratic ~
2K2/2(2m).

In 3D, instead of Eq. (11), similar procedures88 for two-spin fermions give

∑

k

1

~2k2/m
−

∑

k,(|k±K/2|>kF )

1

~2k2/m− EK − 2EF + ~2K2/4m
=
mL3

4π~2

1

a
(14)

where a is the s-wave scattering length associated with the regularized δ-well, which

corresponds with weak to strong coupling accordingly as −∞ < 1/kFa < +∞. One
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finds that for weak coupling (kF a → 0−, e.g., prior to the well-known first-bound-

state singularity as the depth of a 3D potential well is increased) that

E0/EF → −(8/e2) exp(−π/kF |a|) (15)

a result first reported by Van Hove.89 For strong coupling (kFa → 0+, i.e., just

beyond the single-bound-state resonance) one gets

E0/EF → −2/(kFa)
2 . (16)

Numerical results88 in 3D, very similar to those in Fig. 5 for 2D are obtained.

Namely, for weak coupling, the CP dispersion curves are very nearly linear while

for smaller density, they very slowly tend to the quadratic. The limit given by

Eq. (12) in 2D was found to be too complicated in 3D to be evaluated analyti-

cally, except for weak coupling. Repeating the 2D analysis without attempting to

explicitly determine the coefficient of the quadratic term, one gets, for the δ-well

interfermion interaction in weak coupling,

εK ≡ EK − E0 =
1

2
~vFK +O(K2) . (17)

This is the same result cited without proof by Schrieffer in 1964 (Ref. 3, p. 33) for

the Cooper model interaction, to which we now turn.

3.2. Cooper model interaction between electrons

The Cooper model interaction mimics, in a simple way, the attractive electron-

phonon interaction plus the repulsive Coulomb interaction and has the form of

Eq. (7) with V > 0 and ~ωD ≡ ~
2k2

D/2m is the maximum energy of a vibrating-

ionic-lattice phonon. This means that two fermions interact with a constant attrac-

tion −V when the tip of their relative-momentum wavevector k points anywhere

inside the overlap volume in k-space of the two spherical shells in Fig. 2. Inserting

Eq. (7) into Eq. (4) and converting sums over k into energy integrals by introducing

the electronic density of states (DOS) N(ε) for each spin gives

1 = V
∑

k

′[2εk − 2EF − EK + ~
2K2/4m]−1

= V

∫ EF +~ωD

EF

N(ε)dε

2ε− 2EF − EK + ~2K2/4m
. (18)

From this, one immediately obtains the familiar result for K = 0 stated initially in

Eq. (1). The equality in Eq. (1) is exact in 2D for all coupling — as well as in 1D or

3D provided that ~ωD � EF so that N(ε) ' N(EF ), a constant that can be taken

outside the integral in Eq. (18).

For a 2D system, Eq. (18) gives90 for weak coupling

EK −−−→
K→0

E0 + (2/π)~vFK +O(K2) . (19)
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The exact dispersion relation obtained numerically from Eq. (18) for λ = 1/2

and ~ωD/EF = 10−2 shows that the linear approximation (19) is very good for

moderately small λ and ~ωD/EF , over the entire range of K values for which EK ≤
0. Note that the linear term carries the same coefficient as Eq. (12) for a different

interfermion interaction. Pair breakup, specifically EK > 0 for these values of λ and

~ωD/EF , occurs at a relatively small value of K, about four orders of magnitude

smaller than the maximum value 2
√

k2
F + k2

D allowed by the interaction (7).

In 3D, assuming ~ωD/EF � 1 so that the DOS N(ε) =
√

1/2m3ε/π2
~

3 can

be replaced by N(EF ) and then taken outside the integral sign, the result cited in

Ref. 3, p. 33, (see also Ref. 75, p. 336, Prob. 10.4, but note here a coefficient of 1

instead of 1/2, perhaps misprinted) follows, namely

EK −−−→
K→0

E0 +
1

2
~vFK +O(K2) . (20)

Exact numerical results in 3D are qualitatively similar90 to those in 2D with regards

to the goodness of the linear approximation for weak coupling.

4. Cooper Pairing via Bethe-Salpeter Equation

The “original” CP problem just summarized for two distinct interfermion interac-

tions (the δ-well and the Cooper model interaction), neglects the effect of two-hole

(2h) CPs treated on an equal footing with two-particle (2p), or two-electron, CPs —

as Green’s functions75 can naturally guarantee. The prime motivation rests on the

recently established fact36,37 that a BCS condensate is precisely a BE condensate

with equal numbers of 2p and 2h CPs, in the limit of weak coupling. Further moti-

vation comes from the unique but unexplained role that hole charge carriers seem

to be playing in the normal state of superconductors91 in general (see also Ref. 92).

Final motivation stems from the ability of the “complete (in that both 2h- and

2p-CPs are allowed in varying proportions) BF model” of Refs. 36–38 to “unify”

both BCS and BEC theories as special cases, and to predict substantially higher

Tc’s than BCS theory without abandoning electron-phonon dynamics. The latter is

important as compelling evidence has recently been reported for a significant, if not

sole, presence of phonons in high-Tc cuprate superconductors from angle-resolved

photoemission spectroscopy (ARPES) data.93

In this section, we sketch how the Bethe-Salpeter (BS)94 many-body integral

equation (in the ladder approximation) treating both 2p and 2h pairs on an equal

footing shows that, while the ordinary CP problem [based on an ideal Fermi gas

(IFG) ground state (the usual “Fermi sea”)] does not possess stable energy solu-

tions, it does so when the IFG ground state is replaced by the BCS one. This is

equivalent to starting from an unperturbed Hamiltonian that is the BCS ground

state, instead of the pure-kinetic-energy operator corresponding to the IFG. We dis-

cuss how: (i) CPs not based on the IFG-sea but on the BCS ground state survive

in a nontrivial solution as “generalized” or “moving” CPs which are positive energy

resonances with an imaginary energy term leading to finite-lifetime effects; (ii) as
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in the “ordinary” CP problem of the previous section, their dispersion relation in

leading order in the total momentum (or CMM) ~K ≡ ~(k1 + k2) is also linear,

rather than the quadratic ~
2K2/2(2m) of a composite boson (e.g., a deuteron) of

mass 2m moving not in the Fermi sea but in vacuum; and (iii) this latter “moving

CP” solution, though often confused with it, is physically distinct from another more

common trivial solution sometimes called the Anderson-Bogoliubov-Higgs (ABH),95

(Ref. 51 p. 44),96–98 collective excitation. Bogoliubov49 seems to have been the first

to derive this excitation spectrum. The ABH mode is also linear in leading order

and goes over into the IFG ordinary sound mode in zero coupling. All this occurs in

2D99 as well as in the 3D study outlined earlier in Ref. 100 and most recently also

in 1D.101 We focus here on 2D because of its interest102–104 for quasi-2D high-Tc

cuprate superconductors. In general, the results will be crucial for BEC scenar-

ios employing BF models of superconductivity, not only in exactly 2D as with the

Berezinskii-Kosterlitz-Thouless105–107 transition, but also down to (1 + ε)D which

characterize such quasi-1D superconductors such as the organometallics (Bechgaard

salts)108–110 and nanotubes.111

These results also apply, albeit with a different interaction, to neutral-fermion

superfluidity, as in liquid 3He,112 and very probably also in ultracold trapped alkali

Fermi gases such as 40K113 and 6Li114 atoms but where the role of hole-pairs is yet

to be explored.

4.1. Significance of Cooper instability

In dealing with the many-electron system, we again assume, not the Cooper but

the BCS model interaction (5) in 2D with double Fourier transform

ν(k1, k
′
1) = −(k2

F /k1k
′
1)V if kF − kD < k1, k

′
1 < kF + kD

= 0 otherwise. (21)

Here V > 0, ~kF ≡ mvF the Fermi momentum,m the effective electron mass, vF the

Fermi velocity, and kD ≡ ωD/vF with ωD the Debye frequency; note the difference

with the previous definition just below Eq. (8). The usual physical constraint ~ωD �
EF then implies that kD/kF ≡ ~ωD/2EF � 1. Assuming perfect ph symmetry

about the Fermi surface (or, alternatively, a very “flat” behavior of εk = ~
2k2/2m

around the value εkF
≡ EF = ~

2k2
F /2m) we set

εk ' EF + ~vF (k − kF ) (22)

as it simplifies all calculations when very near the Fermi surface.

The bound-state BS wavefunction equation100 in the ladder approximation with

both particles and holes for the original IFG-based CP problem is

Ψ(k,E) = −
(

i

~

)2

G0(K/2 + k, EK/2 +E)G0(K/2 − k, EK/2−E)
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× 1

2πi

∫ +∞

−∞

dE′ 1

Ld

∑

k′

v(|k − k′|)Ψ(k′, E′) . (23)

Here Ld is the “volume” of the d-dimensional system; K ≡ k1 + k2 is the CMM

wavenumber and k ≡ 1/2(k1 − k2) the relative wavevectors of the 2e bound state

whose wavefunction is Ψ(k, E); EK ≡ E1 + E2 is the energy of this bound state

while E ≡ E1 − E2, and G0(K/2 + k, E/2 + E) is the bare one-fermion Green’s

function given by (Ref. 75, p. 72)

G0(k1, E1) =
~

i

{

θ(k1 − kF )

−E1 + εk1
−EF − iε

+
θ(kF − k1)

−E1 + εk1
−EF + iε

}

(24)

where εk1
≡ ~

2k2
1/2m and θ(x) = 1 for x > 0 and = 0 for x < 0, so that the

first term refers to electrons and the second to holes. The latter are also fermions

but of positive charge 2e. Figure 6 shows all Feynman diagrams for the 2p, 2h

and ph wavefunctions Ψ+, Ψ− and Ψ0, respectively, that emerge in the general

(BCS-ground-state-based) problem to be discussed later.

Let us first consider the case where all diagrams with holes in Fig. 6 are ignored,

i.e., we neglect the second term in Eq. (24). Furthermore, we note that the energy

dependence in Eq. (23) derives from the Green’s function only, and therefore we

may define a new function ϕ(k) by first writing

Ψ(k, E) ≡ G0(K/2 + k, EK/2 +E)G0(K/2− k, EK/2−E)ϕ(k) (25)

which upon substitution in Eq. (23) yields

ϕ(k) = − 1

Ld

∑

k′

v(|k − k′|)ϕ(k′)

(

i

~

)2
1

2πi

∫ +∞

−∞

dE′

× θ(k′ − kF )

−EK/2−E′ + εK/2+k′ −EF − iε

× θ(k′ − kF )

−EK/2 +E′ + εK/2−k′ −EF − iε
. (26)

The energy integration then leaves

ϕ(k) = − 1

Ld

∑

k′

v(|k − k′|) θ(k′ − kF )

εK/2+k′ + εK/2−k′ + 2EF − EK
ϕ(k′) (27)

which may be recognized as the Bethe-Goldstone equation.115 It can be shown to

follow from taking just the first two diagrams on the rhs of the top line in Fig. 6.

For the IFG-based scenario for CPs when holes are not neglected, diagrams

enclosed in rectangles do not contribute, as they involve factors of θ(k1−kF )θ(kF −
k1) ≡ 0. Since the energy dependence of Ψ(k, E) in Eq. (23) is only through the

Green’s functions, the ensuing energy integrals (23) can be evaluated directly in the

complex E′-plane and yield, for interaction (21), an equation for the wavefunction
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Fig. 6. Wavefunction Feynman diagrams for 2e (Ψ+), 2h (Ψ
−

) and eh (Ψ0) pair states aris-
ing from the BS94 equations. The first three diagrams (enclosed in the dashed-lined rectangle)

associated with the 2e wavefunction Ψ+ correspond to the direct and exchange diagrams of the
Bethe-Goldstone equation115 that describes the original Cooper problem. Full-lined rectangles
contain diagrams that do not contribute in the IFG-based case, as explained in the text.

ψk in momentum space for CPs with zero CMM K ≡ k1 + k2 = 0 that is, if

ξk ≡ ~
2k2/2m−EF ,

(2ξk − E0)ψk = V
∑

k′

′ψk′ − V
∑

k′

′′ψk′ (28)

where E0 is the K = 0 eigenvalue energy, and 1/2(k1 − k2) = k1. The single prime

over the first (2p-CP) summation term denotes the restriction 0 < ξk′ < ~ωD, while

the double prime in the last (2h-CP) term means −~ωD < ξk′ < 0. Without this

latter term, we have Cooper’s Schrödinger-like equation2 in momentum represen-

tation for 2p-CPs whose implicit solution is clearly ψk = (2ξk − E0)
−1V

∑′
k′ ψk′ .

Since the summation term is constant, performing that summation on both sides

allows the cancellation of the ψk-dependent terms, leaving the eigenvalue equation
∑′

k(2ξk −E0)
−1 = 1/V . This is one equation in one unknown E0; transforming the

sum to an integral over energies gives the familiar solution (1), where as before

λ ≡ V N(EF ) with N(EF ) being the electronic DOS for one spin. This solution is

exact in 2D, and to a very good approximation otherwise if ~ωD � EF . It corre-

sponds to a negative-energy, stationary-state bound pair. For K > 0, the 2p-CP

eigenvalue equation becomes
∑

k

′(2ξk − EK + ~
2K2/4m)−1 = 1/V . (29)

Note that a 2p-CP state of energy EK is characterized only by a definite K but not

definite k, in contrast to a “BCS pair” defined [Ref. 1, Eqs. (2.11) to (2.13)] with

fixed K and k (or equivalently definite k1 and k2). For more details see Ref. 73.
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Without the first summation term in Eq. (28), the same expression (1) for the E0

of 2p-CPs follows for 2h-CPs, apart from an overall sign change.

In spite of its simple appearance, the complete Eq. (28) cannot be derived from

an ordinary (non-BS) Schrödinger-like equation (in the momentum representation).

To solve Eq. (28) for the unknown energy E0, let the rhs of Eq. (28) be defined as

A−B, with A relating to the 2p term and B to the 2h one. Solving for the unknown

ψk gives

ψk = (A−B)/(2ξk − E0) or equivalently ψ(ξ) = (A−B)/(2ξ − E0) (30)

whence

A ≡ λ

∫ ~ωD

0

dξψ(ξ) =
1

2
(A−B)λ

∫ 2~ωD−E0

−E0

dz/z ≡ (A−B)x (31)

B ≡ λ

∫ 0

−~ωD

dξψ(ξ) =
1

2
(A−B)λ

∫ −E0

−2~ωD−E0

dz/z ≡ (A−B)y . (32)

The integrals are readily evaluated giving x ≡ 1/2λ ln(1 − 2~ωD/E0) and y ≡
−1/2λ ln(1+2~ωD/E0). As A and B still contain the unknown ψ(ξ), let us eliminate

them. Note that Eq. (31) and Eq. (32) are equivalent to two equations in two

unknowns A and B, namely

(1 − x)A+ xB = 0

−yA+ (1 + y)B = 0 .

This immediately leads to the equation 1 − x + y = 0, which on inserting the

definitions of x and y becomes

1 =
1

2
λ ln[1 − (2~ωD/E0)

2]

which finally yields Eq. (2) on solving for E0. As the CP energy E0 under these con-

ditions is pure-imaginary, there is obviously a serious instability of the CP problem

when both particle- and hole-pairs are included and at the same time referred to

the IFG ground-state. This was reported in Ref. 51 p. 44 and Ref. 64, which did

not, however, stress the pure 2p and 2h special cases just discussed. It was also

derived heuristically (Ref. 3 p. 168) without formally referring to 2h-CPs as ob-

jects independent of 2e-CPs. Clearly then, the original CP picture is meaningless if

particle- and hole-pairs are treated on an equal footing as completeness and consis-

tency demands. The result (2) is a true instability, as it entails an energy without

a real part whatsoever, in contrast to the benign instability (1) which merely sig-

nals a negative-energy bound state. Thus, Eq. (2) means that one either scraps the

concept of a CP or replaces the unperturbed IFG zeroeth-order state by a different

one in an attempt to formulate CPs properly.
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5. Cooper Pairing in BCS-Correlated “Sea”

However, a BS treatment not about the IFG sea but about the BCS ground state

vindicates the CP concept as a nontrivial solution. This is equivalent to starting

not from the IFG unperturbed Hamiltonian but from the BCS one. Its physical

justification lies in recovering three expected results: the ABH sound mode, the

BCS T = 0 gap equation and finite-lifetime effects of the “moving CPs.” In either

2D99 or 3D100 or 1D,101 the BS equation yields a 4 × 4 determinant which can

be shown to reduce to two blocks, a 3 × 3 and a 1 × 1 determinant. The two

determinants represent two distinct solutions: a) the trivial ABH sound solution

and b) a highly nontrivial moving CP solution, respectively. In either case, the BS

formalism initially gives a set of three coupled equations, one for each (2p, 2h and

ph) channel wavefunction for any spin-independent interaction such as Eq. (21).

However, the ph channel carries no current; moreover, it decouples from the 2p

and 2h equations, leaving only two coupled wavefunction equations for the ABH

solution, which we examine first. In the study in Ref. 116, the hh channel was

explicitly ignored, leading to a 3× 3 determinant from which only the trivial ABH

“sound” solution emerges, so that the nontrivial moving CP “particle” solution

appears to have been overlooked as a separate solution entirely. In contrast with

the present case of a Fermi gas, in the pure boson gas, both “particle” and “sound”

solutions are indistinguishable.71,72 In the fermion case, it should be feasible to

search for, identify and distinguish both particle and sound modes experimentally,

e.g., see Refs. 117 and 118.

The IFG Green function (24) is now replaced by the BCS one

G0(k1, E1) =
~

i

{

v2
k1

−E1 +Ek1
− iε

+
u2

k1

−E1 +Ek1
+ iε

}

(33)

where Ek ≡
√

ξ2k + ∆2 with ∆ the T = 0 fermionic gap, v2
k ≡ 1/2(1 − ξk/Ek)

and u2
k ≡ 1 − v2

k are the BCS-Bogoliubov-Valatin119,120 function-coefficients. They

are (Ref. 121, p. 135), respectively, the probability that an electron is occupied or

unoccupied. As ∆ → 0, these three quantities become |ξk|, θ(k1 − kF ) and θ(kF −
k1), respectively, so that Eq. (33) reduces to Eq. (24), as expected. Substituting

G0(k1, E1) by G0(k1, E1) corresponds to rewriting the total Hamiltonian so that

the pure-kinetic-energy unperturbed Hamiltonian is replaced by the BCS one. The

remaining Hamiltonian terms are then assumed to be amenable to a perturbation

treatment. We focus again in this section only on 2D.

5.1. ABH sound (trivial) solution

The equations involved are too lengthy even in 2D, and will be derived in detail

elsewhere, but for the trivial ABH sound solution, the aforementioned 3× 3 deter-

minant boils down99 to the single expression

1

2π
λ~vF

∫ kF +kD

kF −kD

dk

∫ 2π

0

dϕ{uK/2+kuK/2−k + vK/2+kvK/2−k}
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×
[

vK/2+kvK/2−k

EK +EK/2+k +EK/2−k

+
uK/2+k uK/2−k

−EK + EK/2+k +EK/2−k

]

= 1 (34)

where ϕ is the angle between K and k. Here kD ≡ ωD/vF ; note the difference with

the definition just below Eq. (8). As before, λ ≡ V N(EF ) with N(EF ) ≡ m/2π~
2

being the constant 2D electronic DOS and V > 0 is the interaction strength defined

in Eq. (21). It is worth mentioning that ARPES studies of BiSrCaCuO have shown

direct evidence122 in this cuprate for the BCS-Bogoliubov-Valatin functions u2
k and

v2
k, both above and below the Fermi energy.

The ABH collective excitation mode energy EK must then be extracted from

this equation. For K = 0, it is just E0 = 0, (Ref. 51 p. 39). Then Eq. (34) rewritten

as an integral over ξ ≡ ~
2k2/2m−EF reduces to

∫ ~ωD

0

dξ/
√

ξ2 + ∆2 = 1/λ (35)

or the familiar BCS T = 0 gap equation for interaction (21). The integral is exact

and gives

∆ = ~ωD/ sinh(1/λ) . (36)

Returning to the ABH energy EK equation (34) and Taylor-expanding EK about

K = 0 and small λ leaves

EK =
~vF√

2
K +O(K2) + o(λ) (37)

where o(λ) denote interfermion interaction correction terms that vanish as λ → 0.

Note that the leading term is just the ordinary sound mode in an IFG whose sound

speed in d dimensions is simply c = vF /
√
d. In 3D, the term

√
2 in Eq. (37) was

found100 to be replaced by
√

3.

This result also follows elementarily on solving for c in the familiar thermody-

namic relation dP/dn = mc2 involving the zero-temperature IFG pressure

P = n2[d(E/N)/dn] = 2nEF /(d+ 2)

= 2Cdn
2/d+1/(d+ 2) (38)

where the d-dependent constant Cd will drop out. Here, the IFG ground-state (in-

ternal) energy per fermion E/N = dEF /(d+ 2) = Cdn
2/d was used along with the

Fermi energy EF ≡ ~
2k2

F /2m, as well as

n ≡ N/Ld = kd
F /d2

d−2πd/2Γ(d/2) (39)

for the fermion-number density n. The derivative of Eq. (38) with respect to n

finally gives c = ~kF /m
√
d ≡ vF /

√
d in any d, and which in 2D is just the leading

term in Eq. (37).
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5.2. Moving-CP (nontrivial) solution

The nontrivial moving-CP solution of the BCS-ground-state-based BS treatment,

which is relatively new (see also Refs. 97 and 98), comes from the remaining 1 ×
1 determinant. It leads to the pair energy EK , which in 2D is contained in the

equation99

1

2π
λ~vF

∫ kF +kD

kF −kD

dk

∫ 2π

0

dϕuK/2+kvK/2−k

×{uK/2−kvK/2+k − uK/2+kvK/2−k}
EK/2+k +EK/2−k

−E2
K + (EK/2+k +EK/2−k)2

= 1 . (40)

In addition to the pp and hh wavefunctions (depicted diagrammatically in Ref. 100

Fig. 2 for the 3D case), diagrams associated with the ph channel give zero con-

tribution at T = 0. A third equation for the ph wavefunction describes the ph

bound state but turns out to depend only on the pp and hh wavefunctions. As

the ph mode does not carry electric current, it will be ignored here. Taylor-

expanding EK in Eq. (40) in powers of K around K = 0, and introducing a possible

damping factor by adding an imaginary term −iΓK in the denominator, yields

to order K2

±EK ' 2∆ +
λ

2π
~vFK +

1

9

~vF

kD
e1/λK2

− i

[

λ

π
~vFK +

1

12

~vF

kD
e1/λK2

]

+ O(K3) (41)

where the upper and lower signs refer to 2p- and 2h-CPs, respectively. A linear

dispersion in leading order appears again, but is now associated with the bosonic

moving CP. Hence the positive-energy 2p-CP resonance has a width ΓK that van-

ishes as K → 0. It has a lifetime

τK ≡ ~/2ΓK = ~/2[(λ/π)~vFK + (~vF /12kD)e1/λK2] (42)

that diverges only at K = 0, falling to zero as K increases. Thus, “faster” mov-

ing CPs are shorter-lived and eventually break up, while “non-moving” ones are

infinite-lifetime stationary states. The linear term (λ/2π)~vFK in Eq. (41) in 2D,

or (λ/4)~vFK in 3D,100 contrasts sharply with the coupling-independent leading-

term (2/π)~vFK from Eq. (19) in 2D, or (1/2)~vFK from Eq. (20) in 3D, that

follow from the original CP problem (29) neglecting holes. Note that the latter

coupling-independent linear terms hold for either interaction (21)90 or for an at-

tractive delta interfermion potential well in 2D85 or 3D,88 respectively. The 2D

and 3D δ-potential-wells are imagined regularized84 to possess a single bound level

whose binding energy (in 2D) or scattering length (in 3D) serve as the coupling

parameter.

Figure 7(a) shows the exact “moving-CP” (mCP) energy (full curves) extracted

from Eq. (40), along with its leading linear-dispersion term (thin short-dashed lines)
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Fig. 7. Exact 2p-(or 2e-)moving-CP (real) energy EK (in units of EF ) in 2D from Eq. (40)
(full curves), compared with its linear leading term (thin short-dashed lines) and its linear plus
quadratic expansion (long-dashed curves) both from (41), versus CMM wavenumber K (in units of
kF ), for interaction (21) parameters λ = 1/4 (lower set of curves) and 1/2 (upper set of curves),
and ~ωD/EF = 0.05. For reference, leading linear term (37) of so-called “trivial” ABH sound
mode is also plotted (lower thick dashed line). (b) 2p-moving-CP lifetime as defined in Eq. (42).
(c) Analogy of ordinary and BCS-based-BS 2p-moving-CPs with various confined states in a 3D
potential-well problem.

and this plus the next (quadratic) term (long-dashed curves) from Eq. (41). The

interaction parameter values used with Eq. (21) were ~ωD/EF = 0.05 (a typically

lower value for cuprates) and the two values λ = 1/4 and 1/2. Using Eq. (36) in

Eq. (41) gives

E0/EF ≡ 2∆/EF = 2~ωD/EF sinh(1/λ) (43)

having the values ' 0.004 and 0.028, respectively (marked as dots on the figure

ordinate). Remarkably enough, the linear approximation (thin short-dashed lines

in figure) is better over a wider range of K/kF values for weaker coupling (lower set

of three curves) in spite of a larger and larger (because of the factor e1/λ) partial

contribution from the quadratic term in Eq. (41). This peculiarity also emerged
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from the ordinary CP treatment of Sec. 3, Refs. 85, 88 and 90. It suggests the

expansion in powers of K to be an asymptotic series that should be truncated

after the linear term. For reference, we also plot the linear leading term ~vFK/
√

2

of the sound solution (37). We note that the coupling-independent leading-term90

(2/π)~vFK from the original CP problem neglecting holes, if graphed in Fig. 7(a),

would almost coincide with the ABH term ~vFK/
√

2 but have a slope about 90%

smaller.

These results complete our understanding of CPs referred to a BCS-correlated

ground-state in 1D,101 2D99 and 3D100 and are summarized in Table 1 below for

the BCS model interaction in weak coupling, where we also include previous results

for EK in lowest order in K and weak coupling. Note that the first column (BG

equation) refers to results ignoring 2h-CPs and predict negative-energy bound pair

states, while the second column (BS equation) refers to results where both kinds of

pairs are included and correspond to positive-energy resonant pair states associated

with 2e-CPs. It is worth noting that the 3D entry in the first column was already

reported (without proof) in Ref. 3 p. 33. For 2h-moving-CPs, all entries in the sec-

ond column carry a sign change. A crucial difference between the first and second

columns is the coupling-(λ)-independent linear dispersion of the ordinary CP prob-

lem, as envisaged in the usual BG formulation, first column. A critical observation

is that a binary boson-fermion gas formulation of BEC critical Tc’s shows that Tc

vanishes smoothly123 as λ → 0 (as it should since there will be no bosons left in

the BF mixture) only for the more general formulation based on the BS equation

when both kinds of pairs are present. For the BG result (ordinary Cooper pair),

the BEC Tc approaches an unphysical finite value as λ→ 0, perhaps an artifact of

the CP problem if hole-pairs are ignored.

The interactionless ABH mode should reduce to the ideal Fermi gas (IFG) in

any dimensionality d. The results just below Eq. (39) are consistent with the results

for d = 1, 2 and 3 found from the BS approach and tabulated in the last column of

Table 1.

As in Cooper’s2 original equation (29), the BS moving CPs for either 2e or

2h pairs are characterized by a definite K and not also by definite k as the pairs

discussed by BCS.1 Hence, the objection does not apply that CPs are not bosons

because BCS pairs with definite K and k (or equivalently definite k1 and k2)

have creation/annihilation operators that do not obey the usual Bose commutation

relations [Ref. 1, Eqs. (2.11) to (2.13)]. In fact, either eigenvalue equation for EK (29)

or (40) shows that a given “ordinary” (29) or “generalized” CP (40) state labeled by

either K or EK can accommodate (in the thermodynamic limit) an indefinitely large

number of possible BCS pairs with different k’s.73 A recent electronic analog125 of

the Hanbury Brown–Twiss photon-effect experiment suggests electron pairs in a

SC to definitely be bosons.

To summarize this section, hole (2h) pairs treated on par with electron (2e) pairs

play a vital role in determining the precise nature of CPs even at zero temperature

— only when based not on the usual IFG “sea” but on the BCS ground state. Their
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d BG (2e-CPs only) BS (2e-moving-CPs) BS (ABH mode)

1D −2~ωDe−2/λ + ~vF K + · · · Ref. 87 and 124 2∆ +
1

2
λ~vF K + · · · Ref. 101 ~vF K + · · · Ref. 101

2D −2~ωDe−2/λ +
2

π
~vF K + · · · Ref. 90 2∆ +

1

2π
λ~vF K + · · · Ref. 99

1√
2

~vF K + · · · Ref. 99

3D −2~ωDe−2/λ +
1

2
~vF K + · · · Ref. 90 2∆ +

1

4
λ~vF K + · · · Ref. 100

1√
3

~vF K + · · · Ref. 100



August 31, 2007 11:48 WSPC/140-IJMPB 03766

3680 M. de Llano & J. F. Annett

treatment with the Bethe–Salpeter integral equation in the ladder approximation

gives purely-imaginary-energy CPs when referred to the IFG, and positive-energy

resonant-state CPs with a finite lifetime for nonzero CMM when referred to the BCS

ground state — instead of the more familiar negative-energy stationary states of

the original IFG-based CP problem that neglects hole pairs, as sketched in arriving

at Eq. (28) without the last term. The BS “moving-CP” dispersion relation (41),

on the other hand, resembles the plasmon dispersion curve in 3D. It is gapped by

twice the BCS energy gap, followed by a linear leading term in the CMM expansion

aboutK = 0, instead of the well-known quadratic rise for the 3D plasmon dispersion

curve. This linearity is distinct from the better-known one (37) associated with the

sound or ABH collective excitation mode whose energy vanishes at K = 0. Thus,

BF models assuming this CP linearity for the boson component, instead of the

quadratic ~
2K2/2(2m) assumed in Refs. 23–33, 36, 37, 42, 126–129 among many

others, can give BEC for all d > 1, including exactly 2D where the BKT transition

applies in principle. Such BF models can then, also in principle, address not only

quasi-2D cuprate but also quasi-1D organometallic and nanotube superconductors.

6. Evidence for Linearly-Dispersive CPs

A BEC model was applied by Rosencwaig130 using the quadratic CP dis-

persion relation to address seven cuprate superconductors (SCs) with transi-

tion temperatures Tc at optimal doping ranging from 22 K to 133 K. These

are: La2−xSrxCuO4 (LSCO), Nd2−xCexCuO4 (NCCO), YBa2Cu3O7−y (Y123),

Bi2Sr2CaCu2O8−y (Bi2212), Bi2Sr2Ca2Cu3O10−y (Bi2223), HgBa2CaCu2O7−y

(Hg1212) and HgBa2Ca2Cu3O9−y (Hg1223). On the other hand, empirical evi-

dence for the linearly-dispersive nature of CPs in cuprates has been argued by

Wilson131 to be suggested by the scanning tunneling microscope conductance scat-

tering data in BSCCO obtained by Davis and coworkers.132–134 More suggestive

direct evidence for this linearity is shown in Fig. 1 of Ref. 135 with experimental

data (mostly from penetration-depth measurements) for two 3D SCs,136,137 two

quasi-2D cuprates,138–140 and a quasi-1D nanotube SC.141 The data are seen to

agree quite well for d = 3, 2 and 1, at least for T & 0.5Tc, with the pure-phase (only

2e- or 2h-CP) BEC condensate fraction formula associated52 with the general di-

mensionality d- and dispersion-relation-exponent s-dependent BEC Tc-formula of

Ref. 52, namely

1 − (T/Tc)
d/s (44)

provided one assumes s = 1, in contrast to the s = 2 case studied in Ref. 130. For

the cuprate data, there is a peculiar “changeover” from the d/s = 3/2 behavior

predicted in Ref. 130 below T/Tc ∼ 1/2 to d/s = 2/1 behavior above T/Tc ∼ 1/2.

For lower T ’s, one might argue37 that a mixed BEC phase containing both 2e- and

2h-CPs becomes more stable (i.e., has lower Helmholtz free energy), as well as the

influence of d-wave CP symmetry besides the s-wave one assumed throughout this

paper, so that the simple pure-phase formula (44) is no longer strictly valid.
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Indeed, formulae such as (19), (20) or (41) that rely on the explicit presence

of a Fermi sea apply to the CPs in the binary boson-fermion gas mixture because

only a minuscule fraction (< 0.1%142) of the individual fermion charge carriers are

paired up into CPs. This occurs for a Cooper model interaction forming the bosonic

CPs with a maximum allowed143 (see also Ref. 42 p. 204) coupling of λ = 1/2;

see, however, reservations expressed in Ref. 144 on electron-phonon coupling upper

limits. This ensures that a substantial Fermi sea is still present in the mixture. Such

tiny fractions of paired charges are consistent with some very recent far-infrared

charge-dynamics measurements145,146 in LSCO. For more details, see Ref. 147.

7. Conclusions

Ordinary Cooper pairing of two electrons based on a Schrödinger-like equation in

momentum space, and then generalized Cooper pairing including two-hole pairs

via the Bethe-Salpeter (BS) integral equation in the ladder approximation, were

first surveyed. The former deals with electron pairs only. These are describable in

terms of the Bethe-Goldstone equation which is a special case of the BS equation.

The BS equation handles hole pairs on an equal footing with electron pairs. When

referred to the pure-kinetic-energy unperturbed Hamiltonian, i.e., the ideal Fermi

gas, pairing of just one kind gives the familiar real-valued, negative, bound-state

energy of a CP. But pairing with both kinds becomes meaningless as it leads to

purely-imaginary energies. These constitute a true Cooper instability — in contrast

to the “benign” instability that negative-energy bound states imply in the 2e-CP

problem. The true instability can be avoided entirely if the pairs are referred to

the BCS-correlated ground state as unperturbed Hamiltonian instead of to the

ideal Fermi gas sea as in the original Cooper formulation. As a result, besides a

trivial solution sound-mode, both electron- and hole-pairing give rise in 1D, 2D and

3D to physically meaningful, i.e., real-energy electron-pair resonances with a small

imaginary part implying a lifetime for CMM wavenumber K > 0 that is finite, and

infinite for K = 0.
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Tolmachev, Cond. Matter Theories 18, 111 (2003). Cond-mat/0211456.
39. R. A. Ogg, Jr., Phys. Rev. 69, 243 (1946).
40. V. L. Ginzburg, Usp. Fiz. Nauk. 48, 25 (1952).
41. V. L. Ginzburg, Fortschr. Phys. 1, 101 (1953).
42. J. M. Blatt, Theory of Superconductivity (Academic, New York, 1964).
43. M. R. Schafroth, Phys. Rev. 96, 1442 (1954).
44. M. R. Schafroth, S. T. Butler and J. M. Blatt, Helv. Phys. Acta 30, 93 (1957).
45. M. R. Schafroth, Sol. State Phys. 10, 293 (1960).
46. J. M. Blatt and T. Matsubara, Prog. Theor. Phys. 20, 553 (1958).
47. J. M. Blatt and T. Matsubara, Prog. Theor. Phys. 23, 447 and 451 (1960).
48. J. M. Blatt and T. Matsubara, Prog. Theor. Phys. 27, 1137 (1962).
49. N. N. Bogoliubov, JETP 34, 41 (1958).
50. N. N. Bogoliubov, V. V. Tolmachev and D. V. Shirkov, Fortschr. Phys. 6, 605 (1958).
51. N. N. Bogoliubov, V. V. Tolmachev and D. V. Shirkov, A New Method in the Theory

of Superconductivity (Consultants Bureau, NY, 1959).
52. M. Casas, A. Rigo, M. de Llano, O. Rojo and M. A. Soĺıs, Phys. Lett. A 245, 5
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