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Generalized BEC in superconductivity
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b Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
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Abstract

A generalized Bose–Einstein condensation (GBEC) statistical theory of superconductors accounts not for BB interactions but rather
for boson–fermion (BF) interactions. It extends the 1989 Friedberg–Lee BEC theory by including as bosons two-hole (2h) singlet Cooper
pairs (CPs) in addition to the usual two-electron (2e) ones. It contains BCS theory when both kinds of pairs are equal in the BE con-
densate and in excited states—at least as far as identically reproducing the BCS gap equation for all temperatures T as well as the T = 0
BCS condensation energy for all couplings. As a ternary BF model with BF interactions, it yields Tcs one-to-three orders-of-magnitude
higher than BCS theory with the same Cooper/BCS model electron–phonon interaction. These Tcs appear to be surprisingly insensitive
to the BF interaction.
� 2007 Elsevier B.V. All rights reserved.
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The GBEC theory is described in detail in Ref. [1]; it is
defined by a Hamiltonian of the form H = H0 + Hint where

H 0 ¼
X

�k1
aþk1s1

ak1s1
þ
X

EþðKÞbþKbK �
X

E�ðKÞcþKcK
k1;s1 K K
and K � k1 + k2 is the total momentum wavevector of the
pair, while �k1

� �h2k2
1=2m are the single-electron, and

E±(K) � E±(0) ± eK the 2e- and 2h-CP phenomenological,
energies. Here aþk1s1

(ak1s1
) are creation (annihilation) oper-

ators for fermions and similarly bþK(bK) and cþK(cK) for
two-electron (2e-) and 2h-CPs, respectively. The postulated
b and c operators depend only on K and not also on the rel-
ative k � 1

2
ðk1 � k2Þ wavevector as in the pairs of Ref. [2]

Eqs. (2.9)–(2.13), included only for the particular case of
K = 0, which are not bosons. The CPs in H0 can be shown
(Ref. [1, App. A]) to obey Bose–Einstein statistics. The
unperturbed Hamiltonian H0 thus describes a non-Fermi-
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liquid. The interaction Hamiltonian Hint in the expression
H = H0 + Hint is, neglecting K > 0 CPs,

H int ¼ L�3=2
X

k

ffþðkÞ½aþk"aþ�k#b0 þ a�k#ak"b
þ
0 �

þ f�ðkÞ½aþk"aþ�k#c
þ
0 a�k#ak"c0�g;

where L is the 3D system size. The BF interaction vertex
form factors f±(k) are taken as in Ref. [1]; this gives a single
BF coupling parameter f. A convenient energy scale
Ef � 1

4
½Eþð0Þ þ E�ð0Þ� is then introduced which in general

differs from the Fermi energy EF ¼ 1
2
mv2

F � kBT F where
TF is the Fermi temperature. The total number-density of
charge-carrier mobile electrons n � N/L3 is related via
EF = (�h2/2m) (3p2n)2/3, while Ef is of the same form but
with n replaced by, say, nf, which in turn serves as conve-
nient electron-density scale. The grand thermodynamic
potential X = �PL3 = F � lN = E � TS � lN is then
constructed exactly where F is the Helmholtz free energy,
P the pressure, l the electron chemical potential, E the
internal energy and S the entropy. The conditions
oF/oN0 = 0, oF/oM0 = 0 and oX/ol = �N where N0(T)
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Fig. 1. Phase diagram in 3D for temperature (in units of TF) vs electron
density n (in units of nf) for f = 0 and �hxD/EF = 0.005. Thin curves refer to
quadratic boson dispersion eK, full to 2h-CP BEC and dashed to 2e-CP
BEC. Thick curves refer to linear boson dispersion eK [6,7] for k � N(0)V
values indicated, again full to 2h-CP and dashed to 2e-CP BECs. Symbols
n etc. refer to n/nf =1 limits.
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and M0(T) are the number of BE-condensed 2e- and 2h-
CPs, respectively, then yield three BE-condensed equilib-
rium phases [3] besides the normal phase. Only the two
pure BEC phases defined by N0(Tc) � 0 and M0(Tc) � 0
are found to display Tc values higher than the correspond-
ing BCS value, while a mixed phase gives lower Tcs includ-
ing the BCS value.

The very existence of these BEC phases is not inconsis-
tent with a proof [4] that ‘‘Bose condensation of fermion
pairs . . . is impossible.’’ A clear-cut distinction between
these pairs which depend on both K and k and which there-
fore do not obey Bose commutation relations, and CPs
such as those in H0 which at least obey BE statistics, clar-
ifies this point. The GBEC theory leads to (a) the BCS gap
equation for equal numbers of both kinds of pairs, both in
the K = 0 state and in all K 5 0 states taken collectively,
and in weak coupling, regardless of CP overlaps; and
also to (b) the precise familiar BEC Tc formula in the
strong-coupling limit. Also obtained as a special case when
2h-CPs are ignored are the equations of the Friedberg–Lee
model [5]. Fig. 1 displays BEC phase boundaries for zero
BF interaction (f = 0) for the 2h-CP (full curves) and
2e-CP (dashed curves) pure phases. Thick curves are for
linearly-dispersive eK = k�hvFK/4 [6] bosons moving in
the Fermi sea, while thin curves are for quadratic eK =
�h2K2/4m bosons as in Refs. [3,5]; the latter is appropriate
in vacuo (see Ref. [7, Eq. (8)]) and obviously independent
of coupling k. Black dots are the BCS values Tc/TF =
1.134(�hxD/EF)exp(�1/k). RTSC stands for room-tempera-
ture superconductivity in a material with TF = 103 K.
Curves twisting to the left are unphysical ‘‘catastrophes’’
in that Tc diverges as n/nf! 0.

The results of Fig. 1 differ little if f is nonzero and iden-
tified with the BCS interaction parameters V and �hxD via
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V �hxD

p
, the shift in Tc/TF being less than 2 · 10�4

for n/nf P 2. The GBEC theory reproduces [8] the precise
BCS gap equation for all T, as well as the T = 0 BCS con-
densation energy per unit volume (Ref. [2, Eq. (2.42)]), for

any coupling.
In summary, the GBEC theory consists of an unper-

turbed Hamiltonian H0 describing a non-Fermi-liquid that
is a ternary gas of 2e- and 2h-Cooper pairs along with
unpaired electrons, plus a perturbed Hamiltonian Hint

accounting for boson-fermion interactions that cause for-
mation and disintegration of both kinds of pairs. The
unperturbed H0 seems to contain most of the physics con-
trolling the magnitude of Tc. Finally, RTSC is predicted to
be possible in principle with phonons.
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