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Abstract

In this paper, the contribution of polarization diffusion on the dispersion of the electric susceptibility in polymeric

materials, that exhibits normal (N-) relaxation at low frequencies and segmental or alpha (a-) relaxation at high

frequencies, is studied. Polarization diffusion is locally established when the viscoelastic relaxation couples to the

relaxation of a dipolar system. In order to formulate this diffusion process, it was proposed a physical description based on

a system of two coupled equations to express the viscoelastic and dielectric relaxations, and the coupling between them is

introduced by considering spatial inhomogeneities. The complex polarization-diffusion coefficient and the wave number as

frequency function are obtained considering two parameters, which were evaluated using a diffusive model for the N- and

a-dielectric modes, respectively, for several polymeric systems.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Polarization diffusion; Normal relaxation; Alpha relaxation; Polymers

0. Introduction

In order to explain and figure out the results obtained using dielectric spectroscopy, the Debye theory of
dielectric relaxation has been successful [1–4]. However, it is limited in the attempt to describe the total
frequency spectrum, as it has been pointed out by many authors [5–8]. Therefore, the problem has been how to
modify this theory to involve molecular-dipolar liberation from microscopic formalism [9,10], as well as
macroscopic one. In this paper it is considered the latter point of view, and particularly the coupling between
the polarization evolution and the local stress relaxation as it was treated by Onsager et al. and Hubbard et al.
[11–14]. The main assumption to this approach consists on the validity of superposition of the Maxwell tensor
and the viscous-stress tensor in a locality of a material, and therefore, the momentum balance equation of the
hydrodynamics was modified in order to include this sum [15,16]. This gives us a generalized Debye’s
relaxation equation where the polarization relaxation is a result of two channels in series. One of them is the
rotational diffusion as presented by Debye, and the other is the polarization diffusion, which describes a
polarization transport produced when dipole particles move from one point to another.
e front matter r 2006 Elsevier B.V. All rights reserved.
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In this paper, the polarization diffusion effect is formulated as a coupling between stress relaxation and the
excess polarization decaying. This kind of coupling effect was reported before as the flexoelectric contribution
by de Gennes [17], and now this flexoelectric effect can be described in terms of the inclusion of the
polarization inhomogeneities, which are induced by the action of the total stress tensor given by the
superposition of local stresses of the material and the Maxwell stress tensor. With this aim in mind, a set of
two partial differential equations are proposed, one being the Debye equation, and the other one the
Oldroyd’s type-mechanical-relaxation equation. Both equations have been modified in order to couple each
other by introducing spatial inhomogeneities [18] in the polarization. These sort of couplings have been
previously identified elsewhere [19–21]. In order to improve the formulation of the coupling terms, a hierarchy
of coupling equations of internal variables, which represent different contribution produced by the spatial
inhomogeneities, was proposed. This way, it was obtained a model with two parameters, which are the
polarization-diffusion coefficient and the characteristic length. We report those values for several polymeric
samples with the N- and a-dielectric bands, reported previously by other authors (see Refs. [22,23]). Applying
this model, the characteristic time of the polarization diffusion, the complex polarization-diffusion coefficient
and the dispersion relation k ¼ kðoÞ for those substances, were obtained.

Finally, a discussion about the difference of the characteristics of the wave number between N- and a-
dielectric bands was also included.

1. The polarization-diffusion coupling and the generalized Debye equation

Debye’s relaxation equation describes the relaxation of orientational polarization per unit of volume ð~PÞ,
produced when an external electric field ð~EÞ is applied to the material sample. In this theory, it is considered
that the mechanical equilibrium prevails, without the presence of any acceleration effect, in such a way that the
electric torque produced by the electric field on the dipole particle is equilibrated by the friction produced by
the rotational movement of the dipole particle on surrounding particles. The evolution of the polarization is
not instantaneous, and a delay response is accounted into the characteristic relaxation time ðtDÞ. Debye’s
result is given by the equation

d~P

dt

 !
rot

¼ �
1

tD

ð~P� w0~EÞ, (1)

where w0 is the static electric susceptibility.
To generalize this result, the translational contribution is considered as a long-range effect. The first contribution

along this line was done by Onsager and Hubbard [12], who extended the momentum balance equation to include
the superposition of the electromagnetic Maxwell tensor and the local stress tensor. In that sense, the net force
acting on a fluid particle is due to this superposition, and a coupling effect is produced in the resulting velocity.

In terms of Stiles and Hubbard [24,25] the translational diffusion is independent of the rotational one, and it
can be written in separated form

d~P

dt
¼

d~P

dt

 !
rot

þ
d~P

dt

 !
tran

, (2)

where

d~P

dt

 !
tran

¼ �, � J, (3)

and J is the polarization flux tensor, which can be established by three different parts: the symmetric traceless,
the antisymmetric, and the diagonal tensorial contributions, namely

Jab ¼ Dl �
2

3
Ds

� �
dPa

dxb
dab þDs dPb

dxa
þ

dPa

dxb

� �
þDa dPb

dxa
�

dPa

dxb

� �
, (4)

where Ds, Da and Dl are diffusion coefficients.
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In Hubbard and Stiles and van der Zwan [26,27], these tensors represent the hydrodynamic coupling,
produced by the hydrodynamic flow evolution affecting the dipolar movement.

In dielectric relaxation, each of these terms make independent contribution to the total diffusion process
and they are different kinds of polarization diffusion according to the symmetric character. The first one ðDsÞ,
corresponds to the translational diffusion and it is due to the coupling to the symmetric stress tensor, which is
related to the N-relaxation mode present in type-A polymers, following Stockmayer’s classification [28]. The
second one ðDaÞ, corresponds to the axial coupling with the antisymmetric stress tensor and it produces
polarization propagation involved in the a-dielectric relaxation mode, present in type-B polymer, following
Stockmayer’s classification. The third one is the charge polarization diffusion related to longitudinal
relaxation mode, which contributes far away from the dielectric relaxation frequency domain, and for this
reason it will not be considered here.

Here, it is presented a description in which Eq. (2) keeps valid, according to Hubbard and Stiles
formulation, as discussed elsewhere [29]. Furthermore, concerning to the polarization flux in dielectric
relaxation for solid or static liquids, the coupling between local polarization and local stress–strain occurs
similarly to the flexoelectric effect, named by de Gennes [17].

2. Formulation of the polarization-diffusion coupling in the generalized-fluctuating Debye equation

As well as to show an expression for dielectric susceptibility, the aim of this section is to obtain a complete
set of constitutive equations corresponding to the evolution of the fluctuation of the polarization vector, given
by the generalized-fluctuating Debye equation, and the evolution of the fluctuation of the stress tensor
(whereas symmetric and antisymmetric) in viscoelastic Oldroyd’s form, with a coupling term which expresses
the polarization gradient as traceless tensor. The evolution equation for the fluctuation of the polarization is
given by

tD

dd~P
dt
¼ �d~P� w0rdfþ a0r � dQ, (5)

where dfð~r; tÞ is the fluctuation of the local electric potential, d~P is the fluctuation of the polarization vector
and a0 is a coupling parameter. dQ is the fluctuation of the total stress tensor and represents the superposition
of the viscous ðdsnÞ and electromagnetic ðdTÞ stress tensors, namely

dQ ¼ dsn � dT. (6)

The dQ value is a fluctuating quantity during the relaxation process, since the dsn tensor also is time
dependent. The evolution equation for dQ is assumed to be of Oldroyd’s form, given by

1þ t1
d

dt

� �
dQ ¼ a1r � dQð2Þ þ g1rd~P, (7)

here a1 and g1 are coupling parameters, dQð2Þ is a third-order tensor, and t1 is a relaxation time.
In those equations, the response of the material to the external and internal stresses is represented. On the

other hand, the evolution of this tensor is governed by the gradient of the fluctuation of the polarization and
the contributions of tensors of high order, to consider all the effects induced by the spatial inhomogeneities.
The proposed evolution equation for dQðnÞ defines a hierarchy of equations according to

1þ tn
d

dt

� �
dQðnÞ ¼ anr � dQðnþ1Þ þ gnrdQ

ðn�1Þ; n ¼ 2; 3; . . . (8)

Here dQðnÞ is a traceless tensor of nþ 1 order. Diagonal or longitudinal components are not included, since
they represent the polarization diffusion produced by the polarization charges, which contributes to the high
frequency spectrum far from the frequency interval of the a- and N-dielectric relaxation modes. Therefore, the
longitudinal relaxation mode will not be considered in the present work, and we will only treat the diffusion in
the transversal N- and a-relaxation modes.

All the dQðnÞ ðn ¼ 2; 3; . . .Þ define a set of variables considered as internal in the irreversible
thermodynamical formalism (including the extended and the mesoscopic theories [30,31]), which are
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convenient to introduce to take into account local electrical effects that cannot be formulated directly within
the external variable or measurement ones [32]. One of the thermodynamical schemes back of this formalism
has been discussed in terms of a hierarchy of variables in Jou et al. work [30], and with a coupled hierarchy of
hydrodynamic equations [33]. They found that the inclusion of higher order time derivatives was necessary to
describe high frequency processes, and spatial derivatives are necessary to describe processes at short length.

Now, taking the Fourier–Laplace transformation of Eqs. (5)–(8) and using the relation for the transformed
fluctuating-polarization vector

dePðo; kÞ ¼ �ik � vðo; kÞdefðo; kÞ, (9)

where vðo; kÞ is the susceptibility tensor, it is found that

vðo; kÞ ¼
v0

1þ iotD þ a0g1k
2=ð1þ iot1 þHnðo; kÞÞ

. (10)

Here Hnðo; kÞ is defined in the following form:

Hnðo; kÞ ¼
l21k

2

1þ iot2 þ l22k
2=ð1þ iot3 þ � � �Þ

, (11)

where the relationship ln ¼ angnþ1 was used for n ¼ 2; 3; . . . .
It is noted that electric susceptibility expressed by Eq. (10) fulfills the limit for each tensorial component

wðo; kÞ ¼ w0 when o and k! 0.
Now, it is considered the following scheme. It is defined Hnðo; kÞ ¼ wnðo; kÞ=w0, where wnðo; kÞ is the nth

order function, which approximate to wðo; kÞ in the asymptotic limit. Then it is found that

) H1ðo; kÞ ¼
l2ck2

1þ iot1 þH1ðo; kÞ
,

where lc is interpreted as the characteristic length.
The solution of H1ðo; kÞ is given by

H1ð1;2Þ ¼
�ð1þ iot1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ iot1Þ

2
þ 4l2ck2

q
2

, (12)

here, it is taken the positive sign before the square root, since H1ðo; kÞX0 and H1ðo; kÞ ¼ 0 is obtained if
lc ¼ 0.

3. The complex polarization-diffusion coefficient

Identification of the diffusion coefficient can be done in the following way. Consider a1 ¼ 0 into Eq. (7), and
then replace this result into Eq. (5). This gives the Debye’s equation with a Laplace operator and their
coefficient is identified as D0 ¼ a0g1t

�1
D . When a1a0, other terms appear, making the diffusion coefficient a

frequency and wave number dependent function.
On the other hand, the electric susceptibility is a diagonal tensor with two independent components, namely

the longitudinal and the transversal. For the normal mode (symmetric one), the polarization diffusion
contribution appears in the two components, and for the a-relaxation mode (antisymmetric one) appears only
the transversal component. However, due to the way in which dielectric-relaxation experiment is usually done,
only the transversal component is necessary to take into account. Therefore,

wT ðo; kÞ
w0

¼
1

1þ iotD þ tDD�ðo; kÞk2
, (13)

where the complex polarization-diffusion coefficient is defined by

D�ðo; kÞ ¼ D0 � iD00 ¼
2D0

1þ iot1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ iot1Þ

2
þ 4l2ck2

q . (14)
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In this result, the selection of the positive sign before the square root is corroborated, because the negative sign
leads diffusion coefficient to a divergence for the low wave-number limit.

The physical meaning of the complex polarization-diffusion coefficient is as follows. The real part is the
frequency-dependent-diffusion coefficient involved in the local polarization transport in the material. It was
assumed that the origin of this process is due to density fluctuations, which produce local spatial
inhomogeneities in the dipole distribution that induces polarization diffusion. The regression of the
fluctuations occurs via the translational diffusion of the dipolar molecules to relax the spatial inhomogeneities,
including those of the local polarization field. On the other hand, the imaginary part represents the dissipative
property involved in the polarization-diffusion process.
4. Evaluation of the polarization-diffusion coefficient and the characteristic length

Up to this point, it is necessary to stress that the dielectric relaxation description given before is a two free
parameter model, namely D0 and lc. Next, we carry on with their identification and their evaluation.

As Hubbard and Stiles pointed out, the polarization-diffusion coefficient at o ¼ 0, might be considered
equal to the self-diffusion coefficient [34].

For the N-relaxation mode, in the case of linear polymers, the diffusion coefficient is proportional to the
square of the end to end distance ðl0Þ, and inversely proportional to the Rouse or reptational time [35],

D0 ¼
l20
t1

. (15)

It should be noted that for the normal mode the characteristic time t1 for mechanical response is
equal to tD.

The diffusion coefficient D0 is a molecular weight ðMW Þ dependent quantity, and it scales like

D0 ¼ CðMW Þ
�ðm�1Þ, (16)

where m is the scaling power of the molecular weight in the relationship for the characteristic time and C is a
proportionality constant.

For the a-relaxation mode, in the case of any glass forming system, this coefficient is proportional to the
square of the mean value of the spatial inhomogeneities, lc, and inversely proportional to the Debye relaxation
time [36],

D0 ¼
l2c
tD

. (17)

The characteristic length is estimated considering the minimum separation between molecular planes in the
amorphous state. The characteristic length data for the molecule’s polymer by X-ray is given by lc � 5 Å [37].
For concentrated polymeric solutions, it was assumed lc � 15 Å, according to the cooperative rearranging
region of the mechanical relaxation mechanism.

The values of t1 were calculated using the t1 ¼ 1:8tD relation, which gives a representative number in order
to obtain consistent results, as it is stated in the next section. It was assumed that the ratio between mechanical
and dielectric times keeps constant for amorphous polymers, because alpha loss peak is shifted to higher
frequencies less than a decade, in the shear mechanical spectrum compared to the dielectric spectrum at the
log–log plot [38,39].

The D0 and lc obtained values for the N- as well as for a-dielectric modes, for cis-polyisoprene (PI) [22],
and for poly(2, 6-dichloro-1, 4-phenylene oxide) (PDCPO) in chlorobenzene [23], are given in Tables 1 and 2.
5. Calculation of the dispersion relation

From the complex dielectric constant experimental data, and using Eq. (13), it was calculated the complex
polarization diffusion coefficient times squared wave vector, by using the following algorithm, which
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Table 1

Parameters of the model for N-relaxation mode for cis-polyisoprene (PI) [22], and for poly(2,6-dichloro-1,4-phenylene oxide) (PDCPO) in

chlorobenzene [23]

Polymer code 10�3 Mw tD (s) D0 ðcm
2=sÞ lc (cm)

PI-02 1.56 3:10� 10�6 3:63� 10�8 3:36� 10�7

PI-03 2.64 1:91� 10�5 9:98� 10�9 4:37� 10�7

PI-05 4.84 1:83� 10�4 1:92� 10�9 5:92� 10�7

PI-14 13.50 1:05� 10�3 9:30� 10�10 9:90� 10�7

PI-32 31.6 2:15� 10�2 1:07� 10�10 1:51� 10�6

PI-53 52.9 2:70� 10�1 1:42� 10�11 1:96� 10�6

PDCPO 21.5% 380 4:00� 10�4 6:89� 10�8 5:25� 10�6

PDCPO 31.2% 380 1:95� 10�4 1:41� 10�7 5:25� 10�6

Table 2

Parameters of the model for a-relaxation mode in cis-polyisoprene (PI) [22], and poly(2,6-dichloro-1,4-phenylene oxide) (PDCPO) in

chlorobenzene [23]

Polymer code 10�3 Mw tD (s) D0 ðcm
2=sÞ

PI-02 1.56 1:18� 10�8 2:12� 10�7

PI-03 2.64 1:87� 10�8 1:34� 10�7

PI-05 4.84 2:35� 10�8 1:06� 10�7

PI-14 13.50 3:03� 10�8 8:24� 10�8

PI-32 31.6 3:33� 10�8 7:52� 10�8

PI-53 52.9 2:64� 10�8 9:46� 10�8

PDCPO 21.5% 380 1:54� 10�7 1:46� 10�7

PDCPO 31.2% 380 1:51� 10�6 1:49� 10�8

Here lc ¼ 5:00� 10�8 cm for PI, and lc ¼ 15:00� 10�8 cm for PDCPO.
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constitutes a novel way to show dielectric-relaxation data:

½D�ðoÞk2
�exp ¼

R0

tD½ðR
0Þ
2
þ ðR00Þ2�

�
1

tD

þ i
R00

tDðR
0Þ
2
þ tDðR

00Þ
2
� o

� �
, (18)

where

R�ðoÞ ¼ R0ðoÞ � iR00ðoÞ ¼
��ðoÞ � �1
�0 � �1

¼
w�T ðoÞ
w0

. (19)

The ½D�ðoÞk2
�exp behavior for cis-polyisoprene is shown in Figs. 1 and 2, for N- and a-relaxation modes,

respectively. On the other hand, the inverse of this quantity is the polarization-diffusion time. It can be
selected, as a characteristic value of this time, the value on the plot in which the slop changes. It should be
noted that this time is bigger than tD. It might reflect the required time for the long-range evolution in the
polarization-diffusion process (see tdiffusive in Tables 3 and 4). Particularly, for the N-relaxation mode,
diffusion time is one order of magnitude larger than the rotational one.

The dispersion relation k ¼ kðoÞ as a complex number is obtained considering Eq. (14). To this end, the
values of the experimental data given by ½D�ðoÞk2

�exp and the corresponding theoretical expression are made
the same, i.e.,

½D�ðoÞk2
�exp ¼

2D0k
2
ðoÞ

1þ iot1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ iot1Þ

2
þ 4l2ck2

ðoÞ
q , (20)
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Fig. 1. The logarithm of the absolute value of ½D�ðoÞk2
�exp from experimental data, is plotted against logarithm of the product frequency

times tD; for the N-relaxation mode in cis-polyisoprene. The code number indicates the weight average molecular weight in kgmol�1.

lo
g
 (

ID
* k

2
I)

log (ωτD)

Fig. 2. The logarithm of the absolute value of ½D�ðoÞk2
�exp from experimental data, is plotted against logarithm of the product frequency

times tD, for a-mode in cis-polyisoprene. The code number indicates the weight average molecular weight in kgmol�1.
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where all the quantities involved are known, except for k ¼ kðoÞ, which represents a complex and implicit
expression, as it can be seen by the fact that k2 is in the numerator, and also in the square root term of
Eq. (20). So, it is necessary to proceed using numerical evaluation for each frequency in order to obtain a
numerical representation of the complex function k2

ðoÞ ¼ Refk2
g þ i Imfk2

g.
Now, considering the real part of the dispersion relation, it can be expressed according to the following

form:

Refk2
ðoÞg ¼ Ao2r, (21)

where A and r are quantities obtained by fitting the result of Refkg ¼ kðoÞ from Eq. (20). Usually r ¼ 1 is
related to the propagation of mechanical waves in a medium. On the other hand, from the theoretical point of
view, the solutions k ¼ kðoÞ, of a closed differential-equations system, given in the generalized hydrodynamic
formalism, have r ¼ 1 as a particular case.
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Table 4

Characteristic times for a- relaxation mode in cis-polyisoprene

Polymer code 108tD (s) 108tdiffusive (s) 108tdissipative (s)

PI-02 1.18 1.50 1.63

PI-03 1.87 2.48 2.34

PI-05 2.35 2.82 2.91

PI-14 3.03 3.51 3.85

PI-32 3.33 3.75 4.08

PI-53 2.64 3.94 2.98

Table 3

Characteristic times for N-relaxation mode in cis-polyisoprene

Polymer code tD (s) tdiffusive (s) tdissipative (s)

PI-02 3:10� 10�6 4:60� 10�6 2:91� 10�6

PI-03 1:91� 10�5 2:43� 10�4 1:40� 10�5

PI-05 1:83� 10�4 1:42� 10�3 1:43� 10�4

PI-14 1:05� 10�3 1:19� 10�2 8:69� 10�3

PI-32 2:15� 10�2 5:54� 10�1 1:59� 10�2

PI-53 2:70� 10�1 2.77 2:18� 10�1
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It was found that, for N-relaxation mode in PI, r ¼ 0:93, and in PDCPO r ¼ 0:64. Instead, for a-relaxation
mode, r ¼ 1 in both PI and PDCPO samples.

The results for the dispersion relation according to Eq. (21) are shown in Figs. 3 and 4. In these plots, it is
represented the logarithm of the real part of the product l2ck2 versus the logarithm of the product otD. It
should be noted that, in each figure there is only one curve, and it represents a superposition of several data in
a master curve. This means that the product l2ck2 is a constant for any frequency, independently of the
properties of the sample and it is a characteristic of Eq. (20).

Also, in Figs. 3 and 4 a transition frequency is defined as oD ¼ t�1D which separates two regions. The high-
frequency wing ðo4oDÞ and the low-frequency wing ðoooDÞ.

For the a-mode (Fig. 4), in the high-frequency region it has r ¼ 1; which could implied the propagation of
the mechanical perturbation in the material with the v velocity. The nature of this wave phenomenon can be
analyzed considering the evolution equation for the stress–stress correlation. This equation defines the
propagation of the stress self-correlations, according to the velocity expression given in Eq. (25) in the
Appendix. Since this relation comes from stress-evolution equation, the nature of this propagation effect does
not have an electromagnetic origin, but a mechanical one. This fact is consistent with the two following points
of the present development, i.e.:
(a)
 From the electromagnetic point of view there is no wave in the material, since there is no retardation effect
in the propagation of electromagnetic perturbation, due to that the wave velocity inside of the material can
be considered infinite (electrostatic limit).
(b)
 The diffusion-polarization coefficient as defined in Eq. (14) considers a characteristic length associated to an
arrangement of the medium, induced by the behavior of the local stress. The propagation of these fluctuations
is a result of the elastic properties of the medium, and it does not come from the diffusive mechanism.
Therefore, considering the propagation of the fluctuations as a mechanical effect and the dispersion relation
of k, proportional to the angular frequency, then v might be identified as the sound velocity, and this
phenomenon might be properly identified as a Fisher-like mode [40,41]. This effect might be considered as an
electroacoustic one.
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Fig. 4. A master curve is shown when the logarithm of the real part of the product l2c k2 is plotted against logarithm of the product

frequency times tD, for the a-relaxation mode in cis-polyisoprene. It was obtained from the numerical evaluation indicated in Eq. (20).
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Fig. 3. A master curve is shown when the logarithm of the real part of the product l2c k2 is plotted against logarithm of the product

frequency times tD, for the N-relaxation mode in cis-polyisoprene. It was obtained from the numerical evaluation indicated in Eq. (20).
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On the other hand, in the low-frequency wing for the a-mode ðoooDÞ in Fig. 4 this effect is not present
since r starts form zero and, near the transition frequency, oD, changes rapidly to one. This region seems as a
transition to the Fisher-like mode.

The N-relaxation mode (Fig. 3) in the low-frequency wing, shows identical behavior, and it could imply that
no propagation of the mechanical perturbations is present in this region.

For the high-frequency wing ðo4oDÞ in Fig. 3 for N-relaxation mode, the resulting dispersion relation is a
fractional-power exponent and the interpretation is not so direct as in the a-case. Consequently, the velocity of
propagation of the fluctuations is not defined. This case could be interpreted as one of non-propagative
fluctuations, perhaps related to the sublinear character of the diffusion on the normal mode, as it can be seen
in Eq. (16) with nX3.
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Regarding to the value of the sound velocity in the a-relaxation mode, that is defined by the value of A on
Eq. (21) when r ¼ 1. Comparing this result with that obtained using Eq. (25) of the Appendix, there is a
difference of at most 20%. This difference is not so bad when considering internal consistence in the prediction
of the two-parameter model. Also, this point is consistent with the resulting values of the wave number given
by Sills et al. [42], who states that long-range processes—the Fischer modes—may couple with a-relaxation,
producing energy dissipation in domains of tens of nanometers.

Finally, from the mathematical point of view, k2 cannot be a complex number, consequently the imaginary
part of this number is a meaningless quantity. However, making a restriction for the t1 values between the
range 1:4pt1=tDp2:2 and admitting 6% deviation error in solving Eq. (21), we can obtain a solution for k2

real.
6. Calculation of the complex polarization-diffusion coefficient

Up to this point, it is known the dispersion relation k2
ðoÞ, the diffusion coefficient D0 and the characteristic

length lc. Therefore, it can be used Eq. (14) to obtain the real and the imaginary parts of the complex
polarization-diffusion coefficient. The real and the imaginary parts are plotted in Figs. 5 and 7 for
N-relaxation mode. Similarly, the real and the imaginary parts are plotted in Figs. 6 and 8 for a-relaxation
mode. These figures show the general characteristic of the real and the imaginary parts of an electric or
viscoelastic modulus. The real part starts with a plateau and the change of the slop or transition, coincides
with the maximum of the imaginary part. This property is verified for the N- as well as the a-relaxation mode.

Particularly, in Figs. 5–8 the experimental and theoretical data are given by means of the symbol points and
the continuous lines, respectively. The values of ½D0ðoÞ�exp and ½D00ðoÞ�exp are given considering them as
experimental data. Their definition was estimated using the following relations:

½D�ðoÞk2
�exp ¼ ½D

�ðoÞ�expk2,

½D�ðoÞ�exp ¼ ½D
0ðoÞ�exp � i½D00ðoÞ�exp.

The theoretical results were obtained using Eq. (14), which expresses the two parameter model. The
correspondence between them is apparent.

On the other hand, in Figs. 5–8 dashed lines are included to represent the theoretical cases for lc ¼ 0. The
difference between the dashed and continuous lines shows that the dispersion effect observed in the
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Fig. 5. Real part of the complex polarization-diffusion coefficient for N-relaxation mode in cis-polyisoprene. The separation of the curves

denotes the variation of the molecular weight of different samples. Experimental data (symbols) are compared with theoretical model,

Eq. (14) (continuous line), and with theoretical model considering lc ¼ 0 (dashed line).
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Fig. 6. Real part of the complex polarization-diffusion coefficient for a-relaxation mode in cis-polyisoprene. Experimental data (symbols)

are compared with theoretical model, Eq. (14) (continuous line), and with theoretical model considering lc ¼ 0 (dashed line).
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Fig. 7. Imaginary part of the complex polarization-diffusion coefficient for N- relaxation mode in cis-polyisoprene. The separation of the

curves denotes the variation of the molecular weight of different samples. Experimental data (symbols) are compared with theoretical

model, Eq. (14) (continuous line), and with theoretical model considering lc ¼ 0 (dashed line).
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experimental electric susceptibility is originated from the viscoelastic coupling, which determines the
polarization diffusion.

The dependence on the molecular weight of the real and imaginary parts of the polarization diffusion
appears in the N-mode, which acts as a parameter separating the curves.

In the a-relaxation mode the separation of the curves is due to the chemical structure which influences the
polarization diffusion.

Also in Tables 3 and 4, the characteristic time for the polarization-diffusion modulus ðtdissipativeÞ is given. It
represents the position of the maximum of the imaginary part of polarization-diffusion coefficient, such as for
N- as well as for a-relaxation modes.
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Fig. 8. Imaginary part of the complex polarization-diffusion coefficient for a-relaxation mode in cis-polyisoprene. Experimental data

(symbols) are compared with theoretical model, Eq. (14) (continuous line), and with theoretical model considering lc ¼ 0 (dashed line).

S.I. Hernández, L.F. del Castillo / Physica A 377 (2007) 531–544542
7. Discussion

Polarization-diffusion contribution into the N- and a-dielectric relaxation modes, arose by considering the
coupling between the polarization relaxation and the stress relaxation of the material. The diffusion contribution in
the polarization dynamics has been proposed as a long-range interaction mechanism, which is an additional
contribution to the Debye relaxation, accounted for the short-range mechanism. This effect was formulated
considering a hierarchy of high order tensorial differential equations, coupled to the polarization differential
equation. The hierarchy takes into account all the contributions of the spatial inhomogeneities, which modify the
effect of the stress tensor on the polarization dynamics. The resulting theory from the two-coupled equations leads
to an explicit wT ðo; kÞ form, in terms of two unknown parameters which are given by D0 and lc. A diffusional
model was considered in order to obtain the values of these parameters. Therefore, a diffusion-polarization-two-
parameter model was proposed, which is consistent with the measurement of the complex-dielectric constant.

It should be noted the role played by the parameter lc. It represents the effect of the hierarchy introduced to
account the spatial inhomogeneities, which ultimately determined the dispersion effect in the electric susceptibility.

The other result presented here is the wave number as frequency function, which was obtained by
comparison between the model and the experimental data. Considering this two-parameter model for the case
of a-relaxation mode, we find that the Fischer-type relation might be associated to the propagation of
fluctuations. However, for the N-mode relaxation, such conclusion was not reach.

So far within the approximation we settled, the two-parameter model for polarization diffusion gives us a
proper physical description basis for the understanding of the electric susceptibility.
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Appendix

It was consider that the polarization-diffusion phenomenon is a result of a coupling between the
polarization equation and the viscoelastic ones, which represents a mechanical evolution of the stress tensor in
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the material. When the polarization vector is replaced into the equation for the stress tensor then propagation
of the fluctuation is produced, and from it we could know the propagation velocity of the perturbation, which
is a product of the coupling between the mechanical and the electric character (electroacoustic effect). The
most simple model of this effect can be established considering Eqs. (5) and (7) when a1 ¼ 0.

Defining the autocorrelation function for fluctuations of stress tensor as,

FQ ¼ hdQijðt; kÞdQijð0; kÞi, (22)

and polarization-stress correlation function for fluctuations as,

Fi ¼ hdPjðt; kÞdQijð0; kÞi, (23)

the resulting equation for the FQ is given by

t1
q2FQ

qt2
þ

t1
tD

þ 1

� �
qFQ

qt
þ

1

tD

FQ ¼ D0r
2FQ. (24)

The propagation of the perturbation was assured by the appearance of the second time derivative of the auto-
stress correlation function and by the Laplacian of the same quantity. Therefore, the squared velocity of the
perturbation is given by the coefficient of the Laplacian operator divided by t1,

v2 ¼
D0

t1
. (25)
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