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Abstract

The problems in the density functional theory arising when it is applied to the spin- and orbitally-degenerate states are discussed. It is
rigorously proved that the electron density of an arbitrary N-electron system cannot, in principle, depend upon the total spin S and for all
values of S has the same form as it has for a single-determinantal wave function. It is also proved that the diagonal element of the density
matrix is invariant with respect to the symmetry of the state and in the frame of density matrix description there is no difference between
degenerate and nondegenerate states. Thus, the problems in DFT connected with the total spin and degenerate states cannot be rigor-
ously solved within the framework of the density matrix formalism.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the last two decades, the density functional theory
(DFT) [1–3] has been widely used for solution of different
problems in atomic, molecular, and solid-state physics.
The numerous results of the DFT calculations performed
in this period [4–8] demonstrated that its gradient corrected
versions yield quite reliable results in the prediction of the
global minima on the potential energy surfaces and give
reasonable binding energies for different classes of atomic
and molecular complexes in the ground states comparable
with the ab initio calculations by the Møller–Plesset pertur-
bation theory in the second order (MP2). The great advan-
tage of the DFT methods is in its applicability to
calculation of large systems for which ab initio methods
are very expensive or limited by currently available com-
puting power.

In spite of great success in the application of the DFT
method to the ground-state properties, it was long ago rec-
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ognized [9,4] that DFT cannot be directly applied to calcu-
lation of the spin and space multiplet structure. The special
procedures developed for overcoming these difficulties
[4,9–14], strictly speaking, are all beyond the DFT scope
[14], see also the discussion in Ref. [15]. For instance, the
so-called multiplet-sum method (MSM) [9,12,13], in which
the linear combinations of single-determinantal DFT ener-
gies are constructed in correspondence with the appropri-
ate linear combinations of the Slater determinants for the
state with the definite value of the total spin, does not fol-
low from the pure DFT formalism; the same concerns to
the restricted open-shell Kohn–Sham method (ROKS)
[11]. It is important to mention that both methods do not
treat correctly the correlation functionals, see discussion
in Section 2.

The Kohn–Sham (KS) equations [16], on which the
DFT methods are based, depend upon the ground-state
electron density q(r) that is the diagonal element of the
spinless one-electron reduced density matrix [17]
qðr1Þ ¼ N
X

r1 ;...; rN

Z
jWðr1r1 ; . . . ; rNrN Þj2dV ð1Þ; ð1Þ
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where sum is taken over the whole spin space and integra-
tion is performed over the configuration space of all elec-
trons except the first. The Kohn–Sham equations (as the
Hartree–Fock equations) correspond to the independent
particle approximation. The Hohenberg–Kohn theorem
[18] and based on it the KS equations were formulated
for nondegenerate ground-state described by a single-deter-
minantal wave function. This limitation, as was accepted
by most of the DFT users, was removed by the Levi–Lieb
constraint search procedure [19,20]. In this procedure one
searches a set of antisymmetric wave functions that leads
to the same electronic density and then constructs a combi-
nation of these functions that minimizes the expectation
value of the energy. As was demonstrated by Bersuker
[21] and follows from our results (Section 3), in reality
the constraint search cannot solve the problems arising in
DFT in the case of degenerate states.

The spin-dependent DFT was developed first by von
Barth and Hedin [22] who formulated the KS equations
in so-called local spin density approximation (LSDA).
The latter operates with different electron densities for dif-
ferent spin projections (qa and qb). The LSDA method, as
the unrestricted Hartree–Fock method [23], corresponds to
a state with a definite value of the spin projection Sz, but
does not correspond to the state with a definite value of
the total spin S. Its solution includes all possible values
of S P Sz that may exist in the studied N-electron system,
in other words, it is spin-contaminated. The proper S is
extracted from unrestricted KS calculations by some pro-
jection procedure that does not always lead to correct
result; the new approaches for analysis of the spin contam-
ination see in Refs. [24,25]. Note, the generalization of
DFT by the pair density formulation [26,27] did not reveal
new possibilities of treating states with definite S.

As was mentioned by McWeeny [28]: ‘‘electron spin is in
a certain sense extraneous to the DFT’’. On the example of
the two-electron system in the singlet and triplet spin states,
McWeeny [28] showed that knowing only the electron den-
sity, one cannot identify the spin sate.

In this paper, we consider the general case on N-electron
system in a state with an arbitrary total spin S and prove
the independence of the electron density in respect to S.
As we discuss below, the problems in DFT with description
of spin- and space-degenerate states are connected with an
inherent property of the electron density. Namely, the elec-
tron density of a quantum state does not depend upon the
permutation and space symmetry of the state. We begin
with consideration of states with a definite value of the
total spin.

2. Total spin and DFT

As is well-known, the value of the total spin S of an
arbitrary N-electron system is uniquely connected with
the permutation symmetry of the spin wave function char-
acterized by the Young diagram ½~k� with N boxes [29,30].
The total wave function, corresponding to the spin S and
satisfying the Pauli principle, can be constructed as a bilin-
ear combination of the coordinate,U½k�rt , and spin, X½

~k�
~r , wave

functions symmetrized according to the conjugate repre-
sentations C[k] and C½

~k� of the permutation group with the
dual Young diagrams [30,31],

W½k�t ¼
1ffiffiffiffi
fk
p

X
r

U½k�rt X½
~k�

~r ; ð2Þ

where index t enumerates the different bases that can be
constructed for C[k] and fk is the dimension of irreducible
representations C[k] and C½

~k�.
In nonrelativistic quantum mechanics, all properties of

the studied system are completely determined by the coor-
dinate wave function U½k�rt . The latter can be built on some
nonsymmetric product of orthonormal orbitals (for sim-
plicity we consider the single-occupied orbital
configuration)

U0 ¼ u1ðr1Þu2ðr2Þ . . . uN ðrNÞ; ð3ÞZ
u�nðrÞumðrÞd3r ¼ dnm; ð4Þ

in the form [30,31]

U½k�rt ¼
ffiffiffiffiffi
fk

N !

r X
P

C½k�rt ðP ÞPU0; ð5Þ

where C½k�rt ðP Þ are the matrix elements of representation C[k]

and P runs over all N! permutations of the permutation
group pN. The Young diagram [k] is uniquely connected
with the value of spin S. Thus, each value of S corresponds
to a definite expectation value of energy due to the permu-
tation symmetry of the corresponding coordinate wave
function.

As we prove in Theorem 1, it is not true for the energy
functional expressed via the electron density because of
some specific properties of the latter. Note that for the
two-electron system, it was long ago known that the elec-
tron density is the same for the singlet and triplet states.
Below we present the proof for the general case.

Theorem 1. The electron density of an arbitrary N-electron
system, characterized by the N-electron wave function

corresponding to the total spin S and constructed on some

orthonormal orbital set, does not depend upon the total spin S

of the state and always preserves the same form as it is for a

single-determinantal wave function.
Proof. Let us substitute the total wave function in the form
Eq. (2) and the coordinate wave function, expressed by Eq.
(5), in the definition of electron density Eq. (1). Since the
spin wave functions X½

~k�
~r are orthonormal, Eq. (1) reduces

to

q½k�t ðrÞ¼
N
fk

X
r

Z
jU½k�rt j

2dV ð1Þ

¼ 1

ðN �1Þ!
X

r

X
P ;Q

C½k�rt ðP Þ
�C½k�rt ðQÞ

Z
PU�0QU0dV ð1Þ: ð6Þ
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Due to the orthonormality condition Eq. (4), the integral in
Eq. (6) is equal to

dPQ

Z
jPU0j2dV ð1Þ

and Eq. (6) becomes

q½k�t ðrÞ ¼
1

ðN � 1Þ!
X

P

X
r

C½k�rt ðPÞ
�C½k�rt ðP Þ

�
Z
jPU0j2dV ð1Þ: ð7Þ

Taking into account that the sum over r is equal to 1 and
each P � pN can be presented as P1iP

0 where (N-1)! permu-
tation P 0 belong to the permutation group pN-1 not includ-
ing the first electron, we arrive at the final result
q½k�t ðrÞ ¼
XN

n¼1

junj
2
: ð8Þ

We obtained the well-known expression of the electron
density for the state described by the single-occupied
determinantal function. In the same manner it is easy
to show that in the case of orbital configuration with
arbitrary occupation numbers, the final expression Eq.
(8) will also correspond to the electron density for the
one-determinantal function but with arbitrary occupation
numbers.

Thus, regardless of the permutation symmetry of the
coordinate wave function, which is uniquely connected
with the value of the total spin S, the electron density for
all S, describing by different multi-determinantal wave
functions, has the same form as for a single Slater determi-
nant. This result is rather surprising: different linear combi-
nations of determinants correspond to the same expression
as it is obtained with one determinant. From this follows
that multi-determinantal versions of DFT cannot resolve
the problem with the total spin. Due to the independence
of the electron density on the total spin S, the density func-
tionals, and, consequently, the conventional KS equations
will be the same for all multi-determinantal wave functions
corresponding to different S.

The mentioned above MSM and ROKS procedures,
elaborated for the study of states with definite S, are based
on the wave function formalism, hence they are both
beyond the DFT approach. In MSM [9,12,13], the DFT
energies are summed in the same way as the Slater determi-
nants describing the state with given S. The functionals
arising in this procedure may not be considered as a density
functionals corresponding to a given value of the total spin,
because, according to Theorem 1, such functionals do not
exist. The MSM procedure is, in fact, a some practical rec-
ipe ad hoc that allows to calculate approximately the mul-
tiplet structure, see recent applications to iron coordination
compounds [32,33]. It is worth-while to stress an approxi-
mate nature of MSM, it includes only the first order elec-
trostatic interactions [13], ignoring the second order
(correlation) effects.

In the ROKS procedure [11], the Hamiltonian for the
spin-restricted open-shell calculations is constructed similar
to the Hamiltonian of the restricted open-shell Hartree–
Fock (ROHF) method with an exception of the exchange
part which is replaced by the exchange-correlation func-
tional that is multiplied by some factor depending on the
total spin S. Evidently, it leads to errors, since the exchange
and correlation functionals must have a different depen-
dence on S. Thus, in both procedures MSM and ROKS,
the correlation functional does not correspond to the prop-
er S. The same conclusion has to be made with respect to
the orbital-dependent functional method by Görling et al.
[34–36].

The paradox with an independence of the electron den-
sity on the total spin stems from the general invariance of
the density matrix with respect to the symmetry of the
state. This inherent property of the density matrix will be
discussed in the next section.

3. Symmetry properties of the density matrix

Let us consider some degenerate quantum state with
symmetry of a point group G. The wave functions pertain-
ing to this state must transform according to one of irre-
ducible representations C(a) of G. As shown in Refs.
[29,30], they can be constructed as

WðaÞik ¼
fa

g

X
R

CðaÞik ðRÞ
�RW0; ð9Þ

where CðaÞik (R) are the matrix elements of the representation
C(a), fa is its dimension, R runs over all g element of the
group G, and W0 is some arbitrary function. The set of fa
functions Eq. (9) with fixed second index k forms a basis
for C(a), index k enumerates different bases.

In a degenerate state, the system can be described with
equal probability by any one of the basis vectors of this
state. As a result, we can no longer select one of the basis
vectors and should use the linear combinations, in which
every basis vector enter with the same probability. It can
be easily obtained (it was first shown by von Neumann
[37]) that the diagonal element of the full density matrix
for a degenerate state has the following form

DðaÞk ¼
1

fa

Xfa

i¼1

jWðaÞik j
2
: ð10Þ

Theorem 2. The diagonal element of the full density matrix

is invariant with respect to all operations of the group

symmetry of the state, that is, it is a group invariant.
Proof. We apply an arbitrary operation R � G to the den-
sity matrix expression Eq. (10)
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RDðaÞk ¼
1

fa

X
i

X
l

CðaÞli ðRÞ
�WðaÞ�lk

X
l0
0

CðaÞl0i ðRÞW
ðaÞ
l0k

¼ 1

fa

X
l;l0

X
i

CðaÞli ðRÞ
�CðaÞl0i ðRÞ

 !
WðaÞ�lk WðaÞl0k :

Due to the orthogonality relations for the matrix elements
of irreducible representations, the sum over i is equal to dl0l,
and we arrive at the final result:

RDðaÞk ¼
1

fa

Xfa

l¼1

jWðaÞlk j
2 ¼ DðaÞk : ð11Þ

This means that for all irreducible representations, char-
acterizing the quantum state, the diagonal element of the
density matrix transforms according to the totally symmet-
ric one-dimensional representation A1 of G and in this
respect one cannot distinguish between degenerate and
nondegenerate states. Thus, the diagonal element of the
density matrix is a group invariant.

The invariance of the diagonal elements of the density
matrix following from the Theorem 2 could be expected.
For the permutation group, this result was already used
in Refs. [38,39]. Nevertheless, to the best of our knowledge,
it was not discussed in literature. Even in the specialized
monograph by Davidson [17], the total symmetry of the
reduced density matrix is attributed only to nondegenerate
states, but the latter is evident.

The pure electronic degenerate states may not be sta-
tionary. In the ordinary stationary case, e.g., for degenerate
ground states, the Born–Oppenheimer adiabatic approxi-
mation fails and the nonadiabatic approach with the vib-
ronic interaction, mixing electronic states, has to be
applied. The broad scope of physical and physico-chemical
problems arising in this case includes the Jahn–Teller effect
[40,41] inelastic collisions [42], nonadiabatic molecular
dynamics [43,44], and etc.

The applicability of the DFT approaches to degenerate
states was analyzed in detail by Bersuker [21] who showed
that the DFT method cannot, in principle, be applied to
degenerate and pseudodegenerate states. On one hand,
because in these states the electronic and nuclear motions
are nonseparable and cannot be described by appropriate
densities. On the other hand, the important in the Jahn–
Teller systems Berry phase problem [45,46]: the strong
dependence of the resulting energy spectrum and wave
functions of the degenerate term of the phase properties
of the electronic wave function, is beyond the DFT
method. The latter is evident, since in the electron density
formalism, operating with the square modulus of the wave
function, the phase vanishes.

In Refs. [47,48] the authors claimed that they formulat-
ed the non-Born–Oppenheimer DFT. The simple analysis
shows that both formulations must be attributed to the
Born–Oppenheimer (BO) approximation. As was pointed
out in the Ref. [21], the approach developed by Capitani
et al. [47] corresponds to the BO approximation in its crude
form (the so-called Condon adiabatic approximation), in
which the electronic wave function does not depend upon
the nuclear coordinates. Although in the approach by
Kryachko et al. [48], the electronic density contains the
nuclear coordinates, it also corresponds to the BO approx-
imation, since the authors proceed from the multiplicative
form of electronic and nuclear densities that is valid only
for the nondegenerate states.

Final remark. There is an interesting similarity between
the Jahn–Teller effect and the Pauli exclusion principle [39].
Due to the Jahn–Teller effect, the initial electron degener-
acy is removed and the ground electronic state of non-lin-
ear molecules and solids is described by one-dimensional
representations of the point (space) groups. But the same
follows from the Pauli exclusion principle, according to
which the permitted states of a system of identical particles
must belong to symmetric or antisymmetric one-dimen-
sional representations of the permutation group. This sim-
ilarity in the two different principles connected with the
symmetry groups of different nature is worth-while for a
special study.

4. Conclusions

From the presented theorems and discussion follows
that the problems in DFT with the total spin and, in gen-
eral, with degenerate states cannot be rigorously solved
within the framework of the density matrix formalism, on
which DFT is based.

The insertion inside DFT the ab initio approaches (e.g.,
the expressions of the Hartree–Fock method) and exploit-
ing both q- and W-formalism can help to solve some of the
discussed problems but only for the exchange functional.
The construction of the correlation functional depending
on the total spin is still unsolved problem.
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