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Wave function behavior in a Fibonacci lattice with electronic correlation
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b P. en Optoelectrónica Facultad de Ciencias Fı́sico-Matemáticas, BUAP, Apartado Postal J-17, 72570 Puebla, Mexico
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Abstract

The electronic correlation and the spatial symmetry in quasicrystals are by themselves two very complicated research topics since we
cannot use the reciprocal space to study quasicrystals and the electronic correlation in many-body system has been solved exactly only for
one and for infinite dimension. We should note that even in one-dimensional quasiperiodic structures, the interactions between electrons
have often been neglected and only few results have been obtained. In this work, we solved the case of two interacting particles in a
Fibonacci lattice using a real-space method and the Hubbard model. The real-space method is based on mapping the correlated
many-body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space. Within the Hubbard
Hamiltonian we obtained the behavior of the wave function and the analysis of these eigen-functions in the Fibonacci lattice when cor-
relation is off shows a critical behavior.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Two of the most important discoveries in the last two
decades within the condensed matter physics, were the dis-
covery of quasicrystals in 1984 by Shechtman et al. [1] and
the high-Tc superconductivity in ceramic materials by Bed-
norz and Muller in 1987 [2]. These topics have generated a
large number of studies both experimental and theoretical
in the physics of low dimension. Also, these two discoveries
have modified some of the concepts in the solid state phys-
ics, for instance, it was believed that the fivefold symmetry
was incompatible with a long-range order and it was not
expected superconductivity in ceramics materials with a
high-Tc and a short coherence length. So, it has been very
important to revise both the spatial symmetry and the elec-
tronic correlation to see how it affects the physical proper-
ties in materials. In one-dimensional quasiperiodic
structures, the interactions between electrons have often
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been neglected and only few results have been obtained
[3,4].

The most widely studied model in one-dimensional
quasicrystals is based on the Fibonacci sequence which
started drawing interest after the two interesting papers
by Kohmoto et al. [5] and Ostlund et al. [6]. The spectral
properties of Fibonacci chain are exotic, the single-particle
eigenstates are neither extended nor localized but critical
and the spectrum is a Cantor set [5–8]. A Fibonacci
sequence consists of two letters A and B and the entire
sequence is generated by successive application of the sub-
stitution rule. The first few generations are G0 = B, G1 = A,
G2 = AB, G3 = ABA, G4 = ABAAB, . . . ,Gi = Gi�1Gi�2 for
i P 2, where the letter Gi indicates the generation i. In a
Fibonacci chain, the letters A and B of the Fibonacci
sequence may denote two different atoms (site model) or
two different bonds separating identical atoms (transfer
model). In this work, we will study the transfer model,
where the hopping integrals take two values tA and tB cor-
responding to a short bond and a large bond, respectively.
In the transfer model the number of short bonds is NA(n)
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and the number large bonds is NB(n). The total number of
bonds in a generation n is represented by N(n),
N(0) = N(1) = 1.

These numbers are related by

NðnÞ ¼ Nðn� 1Þ þ Nðn� 2Þ;
N AðnÞ ¼ Nðn� 1Þ;
N BðnÞ ¼ Nðn� 2Þ:

In the quasiperiodic limit (n!1), the ratio NA(n)/NB(n)
converges toward the golden mean r ¼ ð

ffiffiffi
5
p
þ 1Þ=2. The

Hubbard model [9] is the simplest one used to describe cor-
relations in narrow-band systems and has been studied
extensively [10,11]. However, even when the Hubbard
model is conceptually very simple, this model is very diffi-
cult to solve in general. The Hubbard Hamiltonian may
be written in real space as [12]

H ¼
X

hi;ji;r
ti;jcþi;rcj;r þ U

X

i

ni;"ni;#; ð1Þ

where hi, ji denotes nearest-neighbor sites, cþi;rðci;rÞ is the
creation (annihilation) operator with spin r = " or # at site
i, and ni;r ¼ cþi;rci;r. The parameters of the Hamiltonian are
ti,j the hopping integral and U the on-site Coulomb interac-
tion. It is worth mentioning that in principle, the parameter
U is positive because it is a direct Coulomb integral. How-
ever, U could be negative if attractive indirect interaction
through phonons or other bosonic excitations are included
and are stronger than the direct Coulomb repulsion.

In this paper, we will study the behavior of the wave
function in a Fibonacci lattice with two interacting elec-
trons of opposite spin.
b

2. Results and discussion

The Hamiltonian in Eq. (1) is analyzed by using the
mapping method previously reported [12]. This method
maps the original many-body problem onto a one-body
Fig. 1. Geometric representation (lattice of states) of the states of two
electrons with opposite spin in a Fibonacci lattice, the states are
represented by circles and the self-energy is indicated inside.
problem with some ordered site-impurities in a nd-dimen-
sional lattice, n being the number of particles and d the
dimensionality of the original system. In our case n = 2
and d = 1, so the mapped one-body problem is in two-
dimensional lattice, see Fig. 1.

In our calculations we use a Fibonacci lattice with 90
sites (10th generation) and hopping parameter given by
tA = �1.0 and tB = �2.0. In Fig. 2, we show the results
when the on-site electronic interaction is U = 0, for the
periodic linear chain (Fig. 2(a)), which was calculated only
to compare with the Fibonacci lattice, and for the Fibo-
nacci lattice (Fig. 2(b)). The wave functions correspond
to the band edge eigenvalues (EL = �3.997616562204283
and EF = �5.661148600328795 for the periodic chain and
Fig. 2. Wave function in a linear chain (a) and in a Fibonacci lattice (b)
with two non-interacting electrons with opposite spin, the wave function is
associated to the band edge eigenvalues.
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Fig. 3. Wave function in a linear chain (a) and in a Fibonacci lattice (b),
with two attractive interacting electrons. The results are associated to the
band edge eigenvalues.
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Fibonacci lattice, respectively). The results in the Fibonacci
lattice show us qualitatively the critical behavior of the
wave function. It is worth to mention that we obtained
the same results for the positive side of the band edge since
the Fibonacci lattice is also bipartite.

In Fig. 3, the results including a small on-site attractive
electronic interaction U = �1.0 are presented for the same
hopping parameters mentioned above. The attractive elec-
tronic interaction is similar to that used for the Cooper pair
formation in high temperature superconductors. The wave
functions presented here were also calculated for that
associated to the band edge eigenvalues (EL =
�3.994528104688936 and EF = �5.661648478876018 for
the periodic chain and Fibonacci lattice, respectively). We
can observe that the wave functions are localized along
the principal diagonal of the two-dimensional lattice of
states, since in this diagonal are localized the parameters
of the attractive on-site interaction. The critical behavior
of the wave function is still there.
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