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bstract

In this part, attention is given to the electrorheological effect of suspensions of polarizable particles in three different liquids of varying
onductivity. The electrorheological properties of the suspensions are analyzed with a kinetic model that describes the flow-induced modification
f the structures formed by the particles under dc electric fields. Under quiescent conditions, the model describes the variation of viscosity of the
uspension with the electric field and particle concentration, as well as the change in the yield stress with electric field. The effect of non-linear
onductivity is introduced in the model to account for the trend towards saturation observed in the viscosity at high electric fields and particle

oncentration. Furthermore, the contribution of non-linear conduction in the model allows the prediction of the yield stress at high electric fields.
he model further describes the variation of viscosity with shear rate under a given electric field, and time-dependent phenomena arising from the
ynamics of the breakage-reformation process of the structures.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

According to the dielectric analysis exposed in Part 1 [1], it is
nown that the interfacial polarization of the particles affects the
lectric-field induced-aggregation in electrorheological fluids.
ikewise, the thermodynamic properties of the suspension are
trongly influenced by the dielectric relaxation. The dependence
f the thermodynamic driving force which causes the aggrega-
ion of particles on the value of the electric field is caused by
ielectric relaxation. As mentioned in Part 1, the presence of

he dielectric relaxation phenomena leads to the redistribution
f the charge at the interface between the particle and the sur-
ounding field. The relaxation time for the charge redistribution
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characteristic time scale of the dielectric relaxation) caused by
he particle and fluid conductivity is given by

P = ε0
εP + 2εf

σp + 2σf
, (1)

here εp is the particles permittivity, εf and ε0 the fluid and
acuum permittivities, and σp and σf are the particles and fluid
onductivities [2].

In dc electric fields the particles aggregate only provided that
certain relation between the ratio of the particle-to-suspending

iquid dielectric constants and that of the conductance is sat-
sfied. Hence, a correlation exists between the ER activity of

suspension and its dielectric spectrum. Two limit cases can

e observed, first, when t � tp, there is no contribution of the
onductivity effects to the inter-particle interaction, or equiva-
ently, the situation corresponds to non-conducting particles in a
on-conducting fluid. Second, when t � tp, conductivity effects

mailto:lrejon@iie.org.mx
dx.doi.org/10.1016/j.colsurfa.2007.03.051
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Nomenclature

A measure of structure changes due to the flow and
electric fields

D rate of strain tensors
E the applied electric field
G0 the elastic modulus
k′

0 kinetic function (flow)
k′

1 kinetic function (electric)
k2 constant
Mn Mason number
Mn* material constant
N(t) chain size
N(t)max maximum stable size of the chains
ta characteristic time scale for structure formation
tp relaxation time for the charge redistribution (char-

acteristic time scale of the dielectric relaxation)

Greek letters
β (εp−εf)/(εp + 2εf)
γ̇ shear rate
εo permittivity of free space, εp, and εf are the static

dielectric constants of particles and dispersing
medium

η viscosity
ηE viscosity induced by electric field
η0 Newtonian viscosity
λ the structure relaxation time
λE the relaxation time at high electric fields
λ0 the Maxwell relaxation time
λ∞ the relaxation time at high deformation rates
σ conductivity, σp, and σf are the conductivities of

the particles and medium
τ stress tensor
τ shear stress
τy yield stress
τy0 yield stress at zero electric field
∇
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τ upper-convected time derivative of the stress
tensor

ontribute mainly to the inter-particle interaction. Let ta be the
haracteristic time scale for structure formation, which may be
stimated by considering the time taken for a particle to move
characteristic distance between the particles. In dc electric

elds, the inter-particle forces are determined by the interfacial
olarization which governs the ratio of the time scale of the par-
icle motion to the time scale of the dielectric relaxation ta/tp.

hen this ratio is much smaller than one for strong dc electric
elds, the inter-particle forces are determined only by the ratio
f the particle-to-suspending liquid dielectric constants and a
hreshold value of the electric field always exists, above which

he particles having εp �= εf will start aggregating as soon as the
lectric field has been applied. When the ratio is larger than
ne under weak dc electric fields, aggregation will occur if a
ertain relation between the ratio of the particle-to-suspending

p
t
c
r
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iquid dielectric constants and that of the conductance is
atisfied.

The electric field induces alignment of suspended particles
nto chains and columns aggregated parallel to the electric field
ines. The external flow in turn modifies the alignment of chains
nd can lead to fragmentation. For steady shear flow, the balance
etween the hydrodynamic and electrostatic polarization forces
an be described by the Mason number, i.e.,

n = ηγ̇

2ε0εfβ2E2
0

, (2)

here β = (εp−εf)/(εp + 2εf), γ̇ is the shear rate and η is the
iscosity.

The prediction of the electrorheological effect involves a
athematical model which in principle should be capable to

ccount for the formation of structures induced by the electric
eld and the fragmentation of such structures under flow. The
odel should contain definite constants (material properties)

hat one can measure (permittivities, conductivities, first and
econd Newtonian viscosities, and others) and it should be able
o predict the experimental results once the material properties
re known.

The description of structural changes due to either elec-
ric field or external flow usually involves a kinetic process of
tructure modification. The balance between electrostatic polar-
zation forces, hydrodynamic forces and thermal forces has been
nalyzed by the so-called kinetic models. As an example, a
inetic chain model has been proposed by Martin and Odinek
3]. The model is based on the assumption that dipolar interac-
ions and hydrodynamic forces dominate thermal forces (as is
ertainly clear in non-Brownian suspensions). The model fur-
her assumes a maximum stable size of the chains N(t)max, and
his dimension results from a balance between aggregation and
ragmentation. The kinetics of aggregation and fragmentation
ollows a phenomenological expression

dN(t)

dt
= kM

N(t)

[
1 − N(t)2

N(t)2
max

]
(3)

The aggregation process is induced by the dipolar forces and
ence the kinetic constant kM is given by

M = k0M

(
8ε0εfβ

2E2
0

η0

)
(4)

here k0M is a concentration-dependent kinetic constant. Eq. (3)
as various asymptotic limits: when the chain reaches its max-
mum length no aggregation or fragmentation occurs since N(t)
s constant. When N(t) � N(t)max, which means that the chain is

uch smaller than the maximum size, then N(t) is proportional to
t. In this case, the chains aggregate slowly, in agreement with
redictions of See and Doi [4]. Finally, when N(t)max � N(t)
he chains are larger than their maximum stable length, then the
hains will fragment exponentially quickly. The fragmentation
ate is thus independent of the electric field.
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This model predicts a viscosity proportional to the electric
eld squared and to inverse shear rate according to:

= 3
√

6

10
ε0εfβ

2φE2
0γ̇

−1 (5)

is the volume fraction of particles.
Eq. (5) gives the simple shear-thinning behavior of a Bingham

uid, corresponding to the presence of a real yield stress, and
hich is consistent with experimental data at high fields. At low
elds, a shear-thinning exponent of around −2/3 is observed.

One of the aims of the present work is to propose a model that
an capture the behavior of electrorheological suspensions under
c electric fields when a specific external flow is applied. The
odel predictions are compared with experimental data taken in

lectrorheological suspensions made with non-conductive par-
icles and liquids of different conductivities.

. Experimental part

The electrorheological fluids employed in this study and the
reparation methods are the same as those reported elsewhere
5]. Suspensions of silica particles (Merck 60, 15–40 �m) in
ilicon oil, dioctyl phthalate and tricresyl phosphate with vol-
me fractions between 0.03 and 0.16 were prepared, using a
owles-type mixer running at 3000 rpm during 10 min. Data on

he permittivity, conductivity and viscosity of the suspensions
ere disclosed in Part 1 (Table 1). The electrorheological sus-
ensions were placed in a vacuum chamber to extract the air
ubbles prior to the rheological measurements.

The rheological properties of the suspension were evaluated
n a Carri-med CLS 500 controlled-stress rheometer, adapted
ith an electro-polarizable cell. The measuring cell includes
arallel-plate geometry with 4 cm diameter. Electrode separation
ap was fixed at 0.75 mm and the voltage (dc) was supplied by
Bertan high-voltage power source (Model 205 B-10R). The

pplied electric fields ranged from 0.5 to 2 kV/mm at 30 ◦C.

. The model

The model proposed in this work examines suspensions of
igid particles dispersed in a liquid continuous phase, by pos-
ulating a generally valid invariant constitutive equation. The
ystem under study exhibits time-dependent, reversible, and

sothermal decrease of viscosity with shear flow. Conversely,
he suspension viscosity will increase upon application of an
xternal electric field. The equilibrium steady-state viscosity
epresents a dynamic balance between the processes of buildup

W

w
r

able 1
haracteristic of solid and liquid phases

aterials Permittivity, 60 Hz

ilica (Merck 60, 0.015–0.040 mm) 10.9
ilicon oil (S100) 2.40
ioctyl phatalate (DOP) 4.60
ricresyl phosphate (TCP) 6.10
icochem. Eng. Aspects 303 (2007) 191–200 193

nd breakdown of structure. We therefore assume that the rate
f spontaneous buildup of structure, represented by increasing
iscosity, depends on the rate at which electric work is done on
he suspension and on the Brownian motion. The rate of break-
own of structure (or decreasing viscosity), on the other hand,
ill depend on the rate at which shear work is done on the sus-
ension [6]. Moreover, electrorheological suspensions possess
lasticity and exhibit viscoelastic phenomena. This suggests that
he constitutive equation of the material can be an invariant non-
inear model, such as an Oldroyd-type equation of state, i.e., the
onvected Maxwell equation, but with a time-dependent relax-
tion time. The relaxation time may be proportional to a scalar
hich itself follows a kinetic equation representing the balance
etween the two referred processes. The first process is a sponta-
eous buildup of structure, which always occurs as the electric
eld polarizes the particles and they become arranged in spe-
ific structures. The second process is the breakdown of the
tructure induced by the flow strength. The last ingredient of
he model assumes that the breakdown of structure depends on
he rate at which shear work and electric work are done on the

aterial.
The model proposed here is given by the following set of

quations:

-- + λ′(τ--, D-- )
∇
τ-- = 2G0λ

′(τ--, D-- )D-- (6)

′(τ--, D-- ) = A−1λ0 (7)

dA

dt
= 1

λ
(1 − A) + k′

0

(
λ0

λ∞
− A

)
WF + k′

1

(
λ0

λE

− A

)
WE

(8)

and D are the stress and rate of deformation tensors, respec-

ively,
∇
τ denotes the upper-convected time derivative of the stress

ensor, G0 is the elastic modulus at high frequencies and A is
scalar, representing the suspension structure as function of

he flow and electric fields. The four characteristic times are λ,
he structure relaxation time, λ0, the Maxwell relaxation time,
∞, the relaxation time at high deformation rates, and λE, the
elaxation time at high electric fields. k′

0 and k′
1 are kinetic func-

ions. The expressions for the flow and electric works can be
iven by:

F ∝ τ- : D- (9)
E = E- · P- ∝ ε0εβ
2|Ē|2, (10)

here E and P are the electric field and polarization vectors,
espectively, |Ē| the magnitude of the applied electric field and

Conductivity (S cm−1) Viscosity (mPa s)

2.0 × 10−9 –
6.8 × 10−16 95
2.3 × 10−11 50
1.4 × 10−9 50
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is the suspension permittivity, given by a simple mixing rule:

= φεp + (1 − φ)εf. (11)

In the following, |Ē| will be simply denoted by E.
To complete the model description, the kinetic functions are

iven by the following expressions in terms of the electric field
arameters, i.e.,

′
0 = k0

1 + k2ε0εβ2φE2 (12)

′
1 = k1φ (13)

In terms of the viscosity of the system, and following the
xpression of the Maxwell model,

′ = η

G0
(14)

ubstitution of Eqs. (9)–(14) into Eq. (8), the kinetic equation
ecomes:

dA

dt
= (1 − A)

λ
+ k0(λ0/λ∞ − A)τ- : D-

1 + k2ε0εβ2φE2

+ k1

(
λ0

λE
− A

)
ε0εβ

2φE2 (15)

he second term on the right-hand side depends on the expres-
ion assigned to k′

0 Eq. (12). This expression is justified as it
epresents a balance between the work per unit time (or dissi-
ated energy per unit time) due to the flow and the work per unit
ime of the electric field. When E vanishes and the flow strength
redominates, the second term can be much larger than the third
erm. Conversely, when E is large, the third term can be much
arger than the second one, depending on the magnitude of the
iscous dissipation represented by the numerator of the second
erm.

Specific particular cases may be derived from Eqs. (6)–(8).
or example, when elastic effects are small, a “Newtonian”
pproximation can be obtained, namely:

= η0

A
γ̇ (16)

dA

dt
= −Aa + 1

A
b + c, (17)

here

= λ−1 + k1ε0εβ
2φE2, b = k0η0γ̇

2(λ0/λ∞)

1 + k2ε0εβ2φE2 ,

= λ−1 − k0η0γ̇
2

1 + k2ε0εβ2φE2 + k1

(
λ0

λE

)
ε0εβ

2φE2

et us consider the case of vanishing shear rate (i.e., b � 1).
ere, the initial viscosity of the suspension is close to the zero
hear rate viscosity, and, furthermore,

= λ−1 + k1

(
λ0

λE

)
ε0εβ

2φE2
T
c
e
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nder these conditions Eqs. (16) and (17) can be solved for the
iscosity to give:

= η0

(c/a) + e−at
(18)

For weak electric fields and low shear rates, the viscosity
rows slowly as a function of time with rate proportional to
2. Under strong electric fields, the viscosity growth with time

s exponential, and at long times the viscosity approaches the
imit.

= η0

(
λE

λ0

)
= ηE (19)

here ηE is the limiting viscosity at high electric fields. At short
imes and in the case where a � c, Eq. (18) gives the propor-
ionality of the characteristic time for structure formation with
he viscosity and electric field, i.e., ta ∝ η/E2.

Now, let us consider the limit where the flow is strong (b � 1).
n this case, structure induced by the electric field collapses with
rate that is a function of time, shear rate and electric field. The
xpression for the viscosity from Eqs. (16) and (17) is:

= η0√
1 + 2bt

(20)

nitially, the reference viscosity is the zero shear-rate viscos-
ty. Asymptotic analysis of Eq. (20) shows that at long times,
or weak electric fields, the viscosity decreases with a rate pro-

ortional to (γ̇
√

t)
−1

, whereas under strong electric fields, the
iscosity is proportional to E/γ̇

√
t. In the latter case, the ratio of

he electric field to the shear rate controls the viscosity decrease
ith time. It is noteworthy to mention that the rate of fragmenta-

ion of the kinetic model (Eq. (3)) is independent of the electric
eld, which agrees with the limit under weak electric fields of
q. (20).

For the general case of a viscoelastic fluid, specific particular
ases may be derived. For instance, when the electric field is
qual to zero, Eqs. (6), (15) and (16) give:

= λ0

λ′ = η0

η
(21)

dA

dt
= (1 − A)

λ
+ k0

(
η0

η∞
− A

)
τ-- : D-- (22)

here η0 and η∞ are the zero-shear rate and infinite shear rate
iscosities. If the fluid is Generalized Newtonian, i.e., τ = 2ηD,
qs. (16) and (22) reduce the Fredrickson model for suspensions

6]. It is known that this model accounts for time-dependent phe-
omena occurring in an inelastic suspension of solid particles in
Newtonian solvent. On the other hand, when the flow field van-

shes, and considering steady-state, i.e., dA/dt = 0, the following
xpression for the viscosity is obtained:

= ηE(1 + k1λε0εβ
2φE2)

(23)

(ηE/η0) + k1λε0εβ2φE2

his expression accounts for the variation of the suspension vis-
osity with the electric field in a quiescent state. For vanishing
lectric fields, the viscosity is η0, while for high electric fields,
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he zero shear viscosity is ηE. In the intermediate range of E,
here is a quadratic dependence of the viscosity on the elec-
ric field, which agrees with the kinetic model prediction for the
iscosity (Eq. (5)). Furthermore, Eq. (23) agrees with the asymp-
otic limit at long times given by Eq. (19) under vanishing shear
ates.

Eq. (15) also embodies particular cases, depending upon the
agnitude of each of its terms. For weak flows or under weak

lectric fields, the first term in the r.h.s. of Eq. (15) predominates,
nd hence Maxwellian behavior with characteristic time λ0 is
redicted (i.e., A → 1). Also, this behavior is predicted in those
ystems where the reformation of the structure occurs very fast
i.e., λ → 0). If the flow is the dominant force, then the second
erm in the r.h.s. is the largest, and hence A → λ0/λ∞ and the
esultant behavior is Maxwellian with characteristic time λ∞.
inally, if the electric force is the dominant one, then the third

erm in the right-hand side is the largest, and hence A → λ0/λE.
he dynamics in this case are dominated by the characteristic

ime λE.
In steady simple shear flow, it has been proved [6] that in the

bsence of electric fields, the apparent yield stress is given by:

y0 = G0

√
λ∞
λ

(24)

here we have identified k0 with G−1
0 . This identification is

ustified since the yield stress is assumed proportional to the
tructure of the material, represented by the elastic modulus.

In the presence of the electric field, Eq. (24) becomes:

y = G0

√
(1 + k1λε0εβ2φE2)(1 + k2ε0εβ2φE2)

λ/λ∞
(25)

Clearly, for vanishing electric fields, Eq. (25) tends to Eq.
24). On the other hand, as E increases, the apparent yield stress
s function of applied electric field approaches the following
caling:

y = τy0

√
k1k2λε0εβ

2φE2 (26)

The proportionality of the yield stress with the volume frac-
ion of particles and the electric field given by Eq. (26) has
een verified experimentally in electrorheological suspensions
22,7,8]. In fact, the so-called “polarization model”, attributed
he attractive force between particles to Maxwell–Wagner inter-
acial polarization. Within this framework, the yield stress
ollows the scaling suggested in Eq. (26). This polarization
odel shows excellent agreement with data for small particle

oncentrations and electric fields.

.1. Conductivity contributions to the electrorheological
ffect

The increase of the conductivity of the liquid or particles

ffects the electrorheological response of the suspension. Like-
ise, conductivity effects become important at high electric
elds, modifying the polarization state of the particles. In fact, it

s known that conductivity of the suspensions affects negatively

o
r
l
r
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he actual polarization of particles, inhibiting the formation of
he structures responsible of the electrorheological effect. The
on-linear effects of suspension conductivity can be introduced
n the model through a term (1 − k3σE) in the expressions of the
inetic constants, Eqs. (12) and (13), to account for the decrease
n polarization due to non-linear conductivity. Eqs. (12) and (13)
ecome:

′
0 = k0

1 + k2(1 − k3σE)ε0εβ2φE2 (27)

′
1 = k1(1 − k3σE)φ (28)

3 is a constant and the suspension conductivity is given in terms
f the conductivity of the particle and fluid as follows:

= φσp + (1 − φ)σf (29)

Upon substitution of Eqs. (27) and (28) into the kinetic Eq.
8), the resulting set of equations accounts for the non-linear
onductivity contribution to the electrorheological effect. The
mmediate consequence of this contribution is the possibility to
redict a maximum in the variation of viscosity with electric
eld, and a decrease in the power-law index of the scaling of

he yield stress with electric field, as shown in the experiments
9].

. Results

The steady-state flow curve must include time-independent
ata as the shear rate is increased. To determine the region along
hich the viscosity is independent of time, Fig. 1A and B show

he normalized stress-growth coefficient plotted as a function of
ime in the silicon oil suspension for several electric fields and
or two shear rates: 0.1 s−1 (Fig. 1A) and 1 s−1 (Fig. 1B). Data
how that the time required to obtain a truly steady-state exceeds
000 s and becomes longer as the shear rate is decreased. These
xperiments reveal that under the electric fields considered, the
uspension takes a long time to achieve a steady-state at small
hear rates.

Steady-state data for various concentrations of the silicon
il suspension and under several electric fields are depicted in
ig. 2A–D. Model predictions are drawn as dashed and con-

inuous lines. In Fig. 2B and C, the flow curve in absence of
lectric field is also plotted. Notice that at these concentrations
0.08 and 0.12) the suspension in the absence of electric field
s slightly shear-thinning and cannot be considered as Newto-
ian. Nevertheless, upon application of the electric field, the
ero-shear rate viscosity increases three decades. Common to
ll data, the shear viscosity tends to level off for vanishing
hear rates. The increase in the viscosity is observed as the
lectric field increases, and in it becomes asymptotic at suffi-
iently high electric fields. This is in qualitative agreement with
redictions of Eq. (23). For very high shear-rates, the effect of
he electric field decreases as the viscosity approaches the sec-

nd Newtonian region. The slope of the viscosity versus shear
ate in the intermediate shear-rate range approaches −2/3 for
ow electric fields, but becomes −1 at high fields. This is in
emarkable agreement with experimental data [3,10] and also
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Fig. 1. Normalized stress growth coefficient versus time (φ = 0.08) f

t shows same dependence of the viscosity on shear rate at
igh electric fields expressed in Eq. (5) of the kinetic model
q. (3). The model describes the simple shear-thinning behav-

or of a Bingham plastic fluid at high fields, and at low fields
behavior consistent with the so-called equilibrium droplet
odel.

In Fig. 3, data and predictions of the relative viscosity (i.e.,

hat normalized with respect to the high shear-rate asymptote)
ersus Mason number of the silicon oil suspension are shown for
lectric fields from 0.5 kV/mm to 2 kV/mm, and for particle con-

i
a

h

Fig. 2. Data and predictions of the shear viscosity vs. shear rate for var
ee electric fields. (A) Shear rate = 0.1 s−1 and (B) shear rate = 1 s−1.

entrations from 0.03 to 16 wt%. For Mason numbers higher than
nity, the viscosity approaches the second Newtonian plateau,
here the flow strength dominates. The model predicts a single

unction where curves overlap, containing the zero shear-rate
ewtonian region for Mason numbers smaller than 10−3 and the

econd Newtonian plateau at high Mason numbers. The slope at

ntermediate Mn is near unity. Agreement between predictions
nd experimental data is depicted.

In suspensions that exhibit yield stress, the shear viscosity
as a slope of −1 as the shear rate diminishes. The fact that

ious electric fields. φ = 0.03 (A), 0.08 (B), 0.12 (C) and 0.16 (D).
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ig. 3. Predictions and experimental data of the relative viscosity vs. Mason
umber in the silicon oil suspension, for various electric fields and particle
oncentrations.

hese suspensions attain a Newtonian region, albeit quite narrow
t very small shear rates, the yield stress cannot be considered
s “real”, but only an “apparent yield stress”. The yield stress
eported here has been determined by extrapolation of the flow
urve to zero shear rate. The trend to a Bingham behavior is
bservable at high electric fields.

Fig. 4 shows a comparison between model predictions and
xperimental data of the zero shear-rate viscosity versus φE2

n the silicon oil system for the four particle concentrations.
redictions show the trend of the monotonic increase in the
iscosity with φE2. The increase in the viscosity follows the
caling suggested by Eq. (23), i.e., a quadratic dependence on
, and a linear dependence with concentration. The asymptotic

imit of Eq. (23) at high electric fields renders the value of ηE.
s the electric field increases further, experimental data show
trend to level-off of the viscosity, especially at high parti-

le concentrations. The asymptotic behavior of the viscosity

ith electric field is a manifestation of non-linear conductivity

ffects, which become substantial as the electric field increases
r at high particle concentrations.

ig. 4. Predictions (continuous lines) and experimental data (silica particles in
ilicon oil, symbols) of the zero shear-rate viscosity versus φE2 for four particle
oncentrations.
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ig. 5. Plot of the yield stress vs. φE2 of the silicon oil suspension for various
article concentrations. Lines: predictions; experimental data: symbols.

Fig. 5 shows predictions and experimental results in the
ilicon oil system of the yield stress versus the product φE2,
or particle concentrations from 0.03 to 0.16. The yield stress
ncreases with particle concentration and electric field squared,
nd predictions follow closely the scaling given in Eq. (26) at
ow values of φE2. For high values of the electric field and par-
icle concentration, the scaling approaches η0 ∝

√
φE2. Notice

hat the slopes of the predicted curves have a value close to
ne at low electric fields and approach 1/2 at high electric
elds.

The following analysis considers an increase in the conduc-
ivity of the suspension and its effect upon the electrorheological
esponse of the system. Besides silicon oil, two liquids are exam-
ned: dioctyl phthalate (DOP) and tricresyl phosphate (TCP).
onductivity effects are also important as the particle concen-

ration increases or at high electric fields. To account for the
ecrease in the particle polarization due to conductivity effects,
qs. (27) and (28) have been proposed. Introducing these equa-

ions into the expressions for the viscosity and yield stress for
anishing shear rates (Eqs. (23) and (25)), the consequence of
ncreasing conductivity is to modify the asymptotic behavior of
uch equations. In fact, in both equations a cubic contribution
f the electric field now accounts for a maximum in the yield
tress and zero-shear viscosity.

Fig. 6 show data and predictions of the zero shear-rate vis-
osity versus φE2 when the particle concentration is 0.03 for the
hree suspending fluids. Predictions for the silicon oil illustrate
uantitative agreement with data, except at high electric fields.
evertheless, predictions show the right trend toward levelling-
ff in the viscosity along this region. Those for DOP and TCP
how good agreement.

Finally, the predictions of the dependence of the yield stress
ith electric field for the three suspensions is illustrated in Fig. 7

φ = 0.03) and Fig. 8 (φ = 0.16). In Fig. 7, for low electric fields
he predicted dependence of the yield stress with electric field

s quadratic, whereas the slope diminishes for higher fields. The
imiting slopes at high electric fields with increasing conductiv-
ty of the suspensions change from 2 to 3/2 and to 1, the latter
bserved in the more conductive system. In the more concen-
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Fig. 6. The zero shear-rate viscosity of the three suspensions with varying
conductivity is plotted with φE2, for a particle concentration of 0.03. Model
predictions are shown. Experimental data: symbols.
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ig. 7. Predictions and experimental data of the yield stress versus φE2 for three
uspensions of varying conductivity. Particle volume fraction is 0.03.
rated suspensions, Fig. 8 depicts model predictions where the
imiting slopes at high electric fields can be as low as 0.7 for DOP
nd TCP, and 1 for the silicon oil. Experimental data shown in
igs. 7 and 8 are in agreement with the trends of the predictions.

ig. 8. Predictions and experimental data of the yield stress versus φE2 for three
uspensions of varying conductivity. Particle volume fraction is 0.16.
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. Discussion

The model proposed in Eqs. (6)–(8) with the conductivity
ontributions given in Eqs. (27) and (28) contains eight con-
tants: the time constants λ, λ0, λ∞, λE and the kinetic constants
0, k1, k2, k3. The time constant λ0 is the Maxwell relaxation
ime and it is related to the zero shear rate viscosity through
he relation η0 = G0λ0. � is related to the structure modification
nd provides information about the time scale of the reformation
rocess. It appears in the expressions related to the viscosity and
ield stress, and controls the onset for shear thinning. When the
atio λ/λ0 is small (i.e., �1), the reformation process occurs
n a time scale smaller than the time scale of the flow. For
arge values, the structure does not reform in a time scale of
he flow, and time-dependent phenomena (such as thixotropy)

ay arise. The other two time constants (λ∞ and λE) govern
he asymptotic behavior of the suspension at high shear rates
second Newtonian viscosity) and that at high electric fields,
espectively.

The kinetic constant k0 can be identified with the storage
odulus G0 (i.e., with G−1

0 ), as suggested in Eqs. (24)–(26), and
ogether with k1, they govern the balance of the flow forces and
lectric forces. k1 and k2 are contained in the expressions for the
iscosity (Eq. (23)) and yield stress (Eqs. (25) and (26)), respec-
ively, for vanishing shear rates. Finally, the constant k3 governs
he position of the maximum of the viscosity and yield stress
ith electric field, and accounts for the non-linear conductivity

ffects due to high electric fields or high medium conductiv-
ty. In summary, each of the phenomenological constants can be
valuated separately from experimental data, and they embody
determined physical meaning.

A relevant prediction of the model is to account for the general
eatures of structure formation kinetics. These are a rapid initial
hange in particle positions after the application of an electric
eld to a random suspension, followed by a much slower change
t long times. The exponential increase in viscosity followed
y a levelling off, represented by Eq. (18), accounts for such
ehavior, which is described by microscopic models [8,11–14]
nd verified in experimental studies by See [4] and Klingenberg
t al. [12,22,23]. According to Klingenberg et al. [22] at small to
oderate particle concentrations, the initial rapid rearrangement

s associated with the formation of chains that percolate in the
lectric field direction and give rise to the remarkable increase
n viscosity. The slower coarsening at long times arises from
ggregation of these extended structures.

Simulations on the structure formation kinetics [12] predict
hat the rate of structure changes is proportional to E2, and that
he structure at long time is independent of electric field strength,
n agreement with Eq. (18) and with the limit implied in Eq. (19).
urthermore, the time scale of structure formation as predicted
y Eq. (18) is proportional to η/E2, provided that a � c, which
s justified since for an initial random structure (i.e., λ−1 → 0),
nd hence c/a → λ0/λE and �E ��0. Therefore, the formation

f structures is exponential with growth proportional to E2, and
t short times the proportionality of time with η/E2 arises. At
ong times Eq. (18) predicts a limiting viscosity given by Eq.
19).
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In steady-state flow, Marshall et al. [15] found that the
educed shear viscosity referred to the second Newtonian vis-
osity plotted with the Mason number (Mn) collapsed to a
ingle function of Mn. The presence of a region where the vis-
osity varies inversely with Mn for small Mn, suggested the
xistence of a dynamic yield stress, where electrostatic forces
ominate particle dynamics. For large Mn, flow forces dominate
nd the viscosity becomes independent of the Mason num-
er. Experimental data can be described well by the Bingham
odel:

η

η∞
= Mn∗

Mn
+ 1 (Mn > 0) (30)

here Mn* is a material constant, equivalent to a dimension-
ess dynamic yield stress. Predictions of the present model also
how a collapse to a single function of Mn, as depicted in Fig. 3.
urthermore, the model predicts a region of slope −1 at low
n as in a Bingham plastic. The Bingham model predicts a

harp transition at the onset of the second Newtonian region
Mn = 1 = Mn*), whereas the present model shows a more grad-
al transition, in agreement with experiments, and with the
act that as the shear rate increases, a more gradual degra-
ation of the structure is feasible instead of an instantaneous
egradation predicted by the Bingham model. The non-
ingham behavior is indeed associated with the gradual breakup
f field-induced structures [7,8,16] observed experimentally
17].

The model presented here gives a clear indication of the
alue of the dynamic yield stress, namely, that arising within the
egion where the apparent shear viscosity should scale inversely
roportional to the shear rate. Stokesian dynamics simulations
7,8] predict that at sufficiently low values of Mn, the hydrody-
amic contributions of the viscosity become only 10% of the
otal viscosity and that the electrostatic contributions increase
teadily with decreasing Mn. At values of Mn around 2 × 10−4,
here the rheology becomes dominated by electrostatic forces,

he hydrodynamic contribution to the viscosity appears to
lateau. This is in qualitative agreement with results presented in
ig. 3.

Electrorheological models have focused on the fact that the
ost drastic field-induced rheological effects are found at small

hear rates. In particular, they examine the region where the
ield stresses are predominant, and analyze the dependence of
he yield stress on the electric field. Yield stress data signifi-
antly deviate from the scaling given by Eq. (26) at high electric
eld strengths [19]. Experimental data [18] reveal that the yield
tress is proportional to the square of the electric field at low
elds and approaches E3/2 at high fields. As the gap between
onducting particles in the fluid decreases (increasing parti-
le concentration) the electric response of the fluid becomes
on-linear under high electric field strengths. This non-linear
onductivity effect was incorporated with the bulk conduct-
ng particle model [19] giving rise to a yield stress model

hich predicts a proportionality between the yield stress and

he field with a power-law index of 3/2. This power-law has
een verified in several systems [20,21]. The model presented
ere accounts for the deviation and lowering of the exponent

[
[

[
[
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f the electric field. Exponents lower than 3/2 are also pre-
icted.

. Conclusions

The model proposed here describes in a phenomenological
anner many manifestations of the electrorheological behavior

f non-Brownian suspensions. In particular, the model predicts
he right dependence of the structure formation kinetics with
ime and electric field, and many of the observed trends in the
ragmentation kinetics. It accounts for the variation of the shear
iscosity with shear rate and electric field, predicting a single
unction when data is plotted with the Mason number, in agree-
ent with experiments. It gives the right slope viscosity-shear

ate when the electric field is near zero (−2/3) and when it
pproaches high field strengths (−1). Furthermore, the model
redicts the increase in viscosity with electric field and satura-
ion at high fields under quiescent conditions and a maximum
n the viscosity with electric field due to non-linear conduc-
ion. Finally, the model accounts for the dependency of the yield
tress with electric field, which is quadratic at low fields, but
eviates at high fields (around 3/2), once again, due to non-
inear conduction. Analytical expressions were provided for the
elevant material functions, from which is possible to estimate
he value of the model parameters by performing independent
xperiments.
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