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Abstract

In this part, attention is given to the electrorheological effect of suspensions of polarizable particles in three different liquids of varying
conductivity. The electrorheological properties of the suspensions are analyzed with a kinetic model that describes the flow-induced modification
of the structures formed by the particles under dc electric fields. Under quiescent conditions, the model describes the variation of viscosity of the
suspension with the electric field and particle concentration, as well as the change in the yield stress with electric field. The effect of non-linear
conductivity is introduced in the model to account for the trend towards saturation observed in the viscosity at high electric fields and particle
concentration. Furthermore, the contribution of non-linear conduction in the model allows the prediction of the yield stress at high electric fields.
The model further describes the variation of viscosity with shear rate under a given electric field, and time-dependent phenomena arising from the

dynamics of the breakage-reformation process of the structures.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

According to the dielectric analysis exposed in Part 1 [1], itis
known that the interfacial polarization of the particles affects the
electric-field induced-aggregation in electrorheological fluids.
Likewise, the thermodynamic properties of the suspension are
strongly influenced by the dielectric relaxation. The dependence
of the thermodynamic driving force which causes the aggrega-
tion of particles on the value of the electric field is caused by
dielectric relaxation. As mentioned in Part 1, the presence of
the dielectric relaxation phenomena leads to the redistribution
of the charge at the interface between the particle and the sur-
rounding field. The relaxation time for the charge redistribution
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(characteristic time scale of the dielectric relaxation) caused by
the particle and fluid conductivity is given by

ep + 2¢¢
op + 201

tp =¢&p (1
where ¢, is the particles permittivity, &f and &g the fluid and
vacuum permittivities, and o}, and oy are the particles and fluid
conductivities [2].

In dc electric fields the particles aggregate only provided that
a certain relation between the ratio of the particle-to-suspending
liquid dielectric constants and that of the conductance is sat-
isfied. Hence, a correlation exists between the ER activity of
a suspension and its dielectric spectrum. Two limit cases can
be observed, first, when # <, there is no contribution of the
conductivity effects to the inter-particle interaction, or equiva-
lently, the situation corresponds to non-conducting particles in a
non-conducting fluid. Second, when 7> 1,,, conductivity effects
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Nomenclature
A measure of structure changes due to the flow and
electric fields
D rate of strain tensors
E the applied electric field
Gy the elastic modulus
k;, kinetic function (flow)
1 kinetic function (electric)
ko constant
Mn Mason number

Mn"  material constant

N(1) chain size

N(H)max maximum stable size of the chains

ta characteristic time scale for structure formation

tp relaxation time for the charge redistribution (char-
acteristic time scale of the dielectric relaxation)

Greek letters

B (ep—er)/(ep + 2¢r)

y shear rate

&o permittivity of free space, ¢p, and f are the static
dielectric constants of particles and dispersing
medium

n viscosity

NE viscosity induced by electric field

1o Newtonian viscosity

A the structure relaxation time

AE the relaxation time at high electric fields

2o the Maxwell relaxation time

Aoo the relaxation time at high deformation rates

o conductivity, o}, and ot are the conductivities of

the particles and medium
stress tensor

T shear stress

Ty yield stress

Ty0 yield stress at zero electric field

v . -

T upper-convected time derivative of the stress

tensor

contribute mainly to the inter-particle interaction. Let #, be the
characteristic time scale for structure formation, which may be
estimated by considering the time taken for a particle to move
a characteristic distance between the particles. In dc electric
fields, the inter-particle forces are determined by the interfacial
polarization which governs the ratio of the time scale of the par-
ticle motion to the time scale of the dielectric relaxation f,/f,.
When this ratio is much smaller than one for strong dc electric
fields, the inter-particle forces are determined only by the ratio
of the particle-to-suspending liquid dielectric constants and a
threshold value of the electric field always exists, above which
the particles having &, # ¢ will start aggregating as soon as the
electric field has been applied. When the ratio is larger than
one under weak dc electric fields, aggregation will occur if a
certain relation between the ratio of the particle-to-suspending

liquid dielectric constants and that of the conductance is
satisfied.

The electric field induces alignment of suspended particles
into chains and columns aggregated parallel to the electric field
lines. The external flow in turn modifies the alignment of chains
and can lead to fragmentation. For steady shear flow, the balance
between the hydrodynamic and electrostatic polarization forces
can be described by the Mason number, i.e.,

ny

Mn=—"——,
2808fﬂ2E(2)

(@)

where B=(ep—er)/(ep+2¢¢), y is the shear rate and 7 is the
viscosity.

The prediction of the electrorheological effect involves a
mathematical model which in principle should be capable to
account for the formation of structures induced by the electric
field and the fragmentation of such structures under flow. The
model should contain definite constants (material properties)
that one can measure (permittivities, conductivities, first and
second Newtonian viscosities, and others) and it should be able
to predict the experimental results once the material properties
are known.

The description of structural changes due to either elec-
tric field or external flow usually involves a kinetic process of
structure modification. The balance between electrostatic polar-
ization forces, hydrodynamic forces and thermal forces has been
analyzed by the so-called kinetic models. As an example, a
kinetic chain model has been proposed by Martin and Odinek
[3]. The model is based on the assumption that dipolar interac-
tions and hydrodynamic forces dominate thermal forces (as is
certainly clear in non-Brownian suspensions). The model fur-
ther assumes a maximum stable size of the chains N(f)pax, and
this dimension results from a balance between aggregation and
fragmentation. The kinetics of aggregation and fragmentation
follows a phenomenological expression

dN@W) _ kw |, N@? 3
dt ~ N@) N2«

The aggregation process is induced by the dipolar forces and
hence the kinetic constant ky is given by

8 2 g2
ket = kom (808;’:0> “

where kou is a concentration-dependent kinetic constant. Eq. (3)
has various asymptotic limits: when the chain reaches its max-
imum length no aggregation or fragmentation occurs since N(f)
is constant. When N(#) << N(f)max, Which means that the chain is
much smaller than the maximum size, then N(¥) is proportional to
/1. In this case, the chains aggregate slowly, in agreement with
predictions of See and Doi [4]. Finally, when N(#)max << N(t)
the chains are larger than their maximum stable length, then the
chains will fragment exponentially quickly. The fragmentation
rate is thus independent of the electric field.
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This model predicts a viscosity proportional to the electric
field squared and to inverse shear rate according to:

n= ﬁswﬂ%&%y‘l )
10
¢ is the volume fraction of particles.

Eq. (5) gives the simple shear-thinning behavior of a Bingham
fluid, corresponding to the presence of a real yield stress, and
which is consistent with experimental data at high fields. At low
fields, a shear-thinning exponent of around —2/3 is observed.

One of the aims of the present work is to propose a model that
can capture the behavior of electrorheological suspensions under
dc electric fields when a specific external flow is applied. The
model predictions are compared with experimental data taken in
electrorheological suspensions made with non-conductive par-
ticles and liquids of different conductivities.

2. Experimental part

The electrorheological fluids employed in this study and the
preparation methods are the same as those reported elsewhere
[5]. Suspensions of silica particles (Merck 60, 15-40 um) in
silicon oil, dioctyl phthalate and tricresyl phosphate with vol-
ume fractions between 0.03 and 0.16 were prepared, using a
Cowles-type mixer running at 3000 rpm during 10 min. Data on
the permittivity, conductivity and viscosity of the suspensions
were disclosed in Part 1 (Table 1). The electrorheological sus-
pensions were placed in a vacuum chamber to extract the air
bubbles prior to the rheological measurements.

The rheological properties of the suspension were evaluated
in a Carri-med CLS 500 controlled-stress rheometer, adapted
with an electro-polarizable cell. The measuring cell includes
parallel-plate geometry with 4 cm diameter. Electrode separation
gap was fixed at 0.75 mm and the voltage (dc) was supplied by
a Bertan high-voltage power source (Model 205 B-10R). The
applied electric fields ranged from 0.5 to 2 kV/mm at 30 °C.

3. The model

The model proposed in this work examines suspensions of
rigid particles dispersed in a liquid continuous phase, by pos-
tulating a generally valid invariant constitutive equation. The
system under study exhibits time-dependent, reversible, and
isothermal decrease of viscosity with shear flow. Conversely,
the suspension viscosity will increase upon application of an
external electric field. The equilibrium steady-state viscosity
represents a dynamic balance between the processes of buildup

Table 1
Characteristic of solid and liquid phases

and breakdown of structure. We therefore assume that the rate
of spontaneous buildup of structure, represented by increasing
viscosity, depends on the rate at which electric work is done on
the suspension and on the Brownian motion. The rate of break-
down of structure (or decreasing viscosity), on the other hand,
will depend on the rate at which shear work is done on the sus-
pension [6]. Moreover, electrorheological suspensions possess
elasticity and exhibit viscoelastic phenomena. This suggests that
the constitutive equation of the material can be an invariant non-
linear model, such as an Oldroyd-type equation of state, i.e., the
convected Maxwell equation, but with a time-dependent relax-
ation time. The relaxation time may be proportional to a scalar
which itself follows a kinetic equation representing the balance
between the two referred processes. The first process is a sponta-
neous buildup of structure, which always occurs as the electric
field polarizes the particles and they become arranged in spe-
cific structures. The second process is the breakdown of the
structure induced by the flow strength. The last ingredient of
the model assumes that the breakdown of structure depends on
the rate at which shear work and electric work are done on the
material.

The model proposed here is given by the following set of
equations:

T+ 2(z. D)T = 2GoX'(z. D)D ©)
AT, D)= A""x ©)
dA

1 Ao AQ
ol +k (22 A we+k (22— a)w
a =l )+°<Aoo )FJFI()\E )E

®)

T and D are the stress and rate of deformation tensors, respec-

tively, ¥ denotes the upper-convected time derivative of the stress
tensor, Gy is the elastic modulus at high frequencies and A is
a scalar, representing the suspension structure as function of
the flow and electric fields. The four characteristic times are A,
the structure relaxation time, Ag, the Maxwell relaxation time,
Ao, the relaxation time at high deformation rates, and Ag, the
relaxation time at high electric fields. k(, and k| are kinetic func-
tions. The expressions for the flow and electric works can be
given by:

Wgoxt:D )
Wg = E - P o« goep|EI*, (10)

where E and P are the electric field and polarization vectors,
respectively, | E| the magnitude of the applied electric field and

Materials Permittivity, 60 Hz Conductivity (Scm™!) Viscosity (mPas)
Silica (Merck 60, 0.015-0.040 mm) 10.9 20x107° -
Silicon oil (S100) 2.40 6.8 x 10716 95
Dioctyl phatalate (DOP) 4.60 23x 1071 50
Tricresyl phosphate (TCP) 6.10 1.4x107° 50
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& is the suspension permittivity, given by a simple mixing rule:

&= ¢ep + (1 — P)er. (11

In the following, | E| will be simply denoted by E.

To complete the model description, the kinetic functions are
given by the following expressions in terms of the electric field
parameters, i.e.,

K — k—o
0 2 12
1 + koepep o E

K, = ki (13)

(12)

In terms of the viscosity of the system, and following the
expression of the Maxwell model,

U

N=—
Gy

(14)

Substitution of Egs. (9)-(14) into Eq. (8), the kinetic equation
becomes:

dA (1 —A)  ko(ro/Aooc —A)T: D
d A 1 + kpeoepPpE?
A
+k (AO - A> e0sBRPE> (15)
E

The second term on the right-hand side depends on the expres-
sion assigned to k{, Eq. (12). This expression is justified as it
represents a balance between the work per unit time (or dissi-
pated energy per unit time) due to the flow and the work per unit
time of the electric field. When E vanishes and the flow strength
predominates, the second term can be much larger than the third
term. Conversely, when E is large, the third term can be much
larger than the second one, depending on the magnitude of the
viscous dissipation represented by the numerator of the second
term.

Specific particular cases may be derived from Egs. (6)—(8).
For example, when elastic effects are small, a “Newtonian”
approximation can be obtained, namely:

no .
T= XJ/ (16)
dA 1
E = —ACZ+X[9+C, (17)
where
_ konoi*(ho/roo)
=214k 2 E2, b= ————
. +hieach e 1+ kyeoeP2pE2
_ konoi? A0 2 2
o N p—— LA S () E
c T k2808,32¢E2 + K1 v £0eB” @

Let us consider the case of vanishing shear rate (i.e., b < 1).
Here, the initial viscosity of the suspension is close to the zero
shear rate viscosity, and, furthermore,

A
c=xr"14k (AE) e0eBPPE?

Under these conditions Egs. (16) and (17) can be solved for the
viscosity to give:

B 10
T (c/a)+ e

For weak electric fields and low shear rates, the viscosity
grows slowly as a function of time with rate proportional to
E?. Under strong electric fields, the viscosity growth with time
is exponential, and at long times the viscosity approaches the
limit.

_ (Mi) _ (19)
n="no *o =1E

n (18)

where 7 is the limiting viscosity at high electric fields. At short
times and in the case where a >> ¢, Eq. (18) gives the propor-
tionality of the characteristic time for structure formation with
the viscosity and electric field, i.e., t, & n/Ez.

Now, let us consider the limit where the flow is strong (b > 1).
In this case, structure induced by the electric field collapses with
a rate that is a function of time, shear rate and electric field. The
expression for the viscosity from Eqgs. (16) and (17) is:

"0
n=———=
1+ 2bt
Initially, the reference viscosity is the zero shear-rate viscos-

ity. Asymptotic analysis of Eq. (20) shows that at long times,
for weak electric fields, the viscosity decreases with a rate pro-

(20)

portional to (yﬁ)_l, whereas under strong electric fields, the
viscosity is proportional to E/y+/t. In the latter case, the ratio of
the electric field to the shear rate controls the viscosity decrease
with time. It is noteworthy to mention that the rate of fragmenta-
tion of the kinetic model (Eq. (3)) is independent of the electric
field, which agrees with the limit under weak electric fields of
Eq. (20).

For the general case of a viscoelastic fluid, specific particular
cases may be derived. For instance, when the electric field is
equal to zero, Egs. (6), (15) and (16) give:

A

A=20_0 Q1)
A n

dA (1-A) 170

@ k(22 —a)c:D 22

5 . +0(77c>o T: L (22)

where 1o and 1 are the zero-shear rate and infinite shear rate
viscosities. If the fluid is Generalized Newtonian, i.e., T=2nD,
Eqgs. (16) and (22) reduce the Fredrickson model for suspensions
[6]. It is known that this model accounts for time-dependent phe-
nomena occurring in an inelastic suspension of solid particles in
a Newtonian solvent. On the other hand, when the flow field van-
ishes, and considering steady-state, i.e., dA/df =0, the following
expression for the viscosity is obtained:

g = EQT kiheoeprpE?) 23
(1E/10) + kiAeosBr P E2

This expression accounts for the variation of the suspension vis-

cosity with the electric field in a quiescent state. For vanishing

electric fields, the viscosity is 19, while for high electric fields,
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the zero shear viscosity is ng. In the intermediate range of E,
there is a quadratic dependence of the viscosity on the elec-
tric field, which agrees with the kinetic model prediction for the
viscosity (Eq. (5)). Furthermore, Eq. (23) agrees with the asymp-
totic limit at long times given by Eq. (19) under vanishing shear
rates.

Eq. (15) also embodies particular cases, depending upon the
magnitude of each of its terms. For weak flows or under weak
electric fields, the first term in the r.h.s. of Eq. (15) predominates,
and hence Maxwellian behavior with characteristic time g is
predicted (i.e., A — 1). Also, this behavior is predicted in those
systems where the reformation of the structure occurs very fast
(i.e., L — 0). If the flow is the dominant force, then the second
term in the r.h.s. is the largest, and hence A — Xo/Aso and the
resultant behavior is Maxwellian with characteristic time Aqg.
Finally, if the electric force is the dominant one, then the third
term in the right-hand side is the largest, and hence A — A¢/AEg.
The dynamics in this case are dominated by the characteristic
time Ag.

In steady simple shear flow, it has been proved [6] that in the
absence of electric fields, the apparent yield stress is given by:

130 = Goy/ =2 4)
A
where we have identified k9 with Gy !, This identification is
justified since the yield stress is assumed proportional to the
structure of the material, represented by the elastic modulus.
In the presence of the electric field, Eq. (24) becomes:

(25)

(1 + kireoeB?PE2)(1 + kaeos2HE?)
7y = Co o

Clearly, for vanishing electric fields, Eq. (25) tends to Eq.
(24). On the other hand, as E increases, the apparent yield stress
as function of applied electric field approaches the following
scaling:

Ty = Ty \/k1k21808,32¢)E2 (26)

The proportionality of the yield stress with the volume frac-
tion of particles and the electric field given by Eq. (26) has
been verified experimentally in electrorheological suspensions
[22,7,8]. In fact, the so-called “polarization model”, attributed
the attractive force between particles to Maxwell-Wagner inter-
facial polarization. Within this framework, the yield stress
follows the scaling suggested in Eq. (26). This polarization
model shows excellent agreement with data for small particle
concentrations and electric fields.

3.1. Conductivity contributions to the electrorheological

effect

The increase of the conductivity of the liquid or particles
affects the electrorheological response of the suspension. Like-
wise, conductivity effects become important at high electric
fields, modifying the polarization state of the particles. In fact, it
is known that conductivity of the suspensions affects negatively

the actual polarization of particles, inhibiting the formation of
the structures responsible of the electrorheological effect. The
non-linear effects of suspension conductivity can be introduced
in the model through a term (1 — k30 E) in the expressions of the
kinetic constants, Eqs. (12) and (13), to account for the decrease
in polarization due to non-linear conductivity. Egs. (12) and (13)
become:

ko
ky = 27
0= 15 ka(1 — ksoE)egeP2g E2 @7
K, = ki(1 — ksoE)p 28)

k3 is a constant and the suspension conductivity is given in terms
of the conductivity of the particle and fluid as follows:

o =¢op + (1 — )oy (29)

Upon substitution of Eqs. (27) and (28) into the kinetic Eq.
(8), the resulting set of equations accounts for the non-linear
conductivity contribution to the electrorheological effect. The
immediate consequence of this contribution is the possibility to
predict a maximum in the variation of viscosity with electric
field, and a decrease in the power-law index of the scaling of
the yield stress with electric field, as shown in the experiments

[9].
4. Results

The steady-state flow curve must include time-independent
data as the shear rate is increased. To determine the region along
which the viscosity is independent of time, Fig. 1A and B show
the normalized stress-growth coefficient plotted as a function of
time in the silicon oil suspension for several electric fields and
for two shear rates: 0.1 s~ (Fig. 1A) and 1 g1 (Fig. 1B). Data
show that the time required to obtain a truly steady-state exceeds
1000 s and becomes longer as the shear rate is decreased. These
experiments reveal that under the electric fields considered, the
suspension takes a long time to achieve a steady-state at small
shear rates.

Steady-state data for various concentrations of the silicon
oil suspension and under several electric fields are depicted in
Fig. 2A-D. Model predictions are drawn as dashed and con-
tinuous lines. In Fig. 2B and C, the flow curve in absence of
electric field is also plotted. Notice that at these concentrations
(0.08 and 0.12) the suspension in the absence of electric field
is slightly shear-thinning and cannot be considered as Newto-
nian. Nevertheless, upon application of the electric field, the
zero-shear rate viscosity increases three decades. Common to
all data, the shear viscosity tends to level off for vanishing
shear rates. The increase in the viscosity is observed as the
electric field increases, and in it becomes asymptotic at suffi-
ciently high electric fields. This is in qualitative agreement with
predictions of Eq. (23). For very high shear-rates, the effect of
the electric field decreases as the viscosity approaches the sec-
ond Newtonian region. The slope of the viscosity versus shear
rate in the intermediate shear-rate range approaches —2/3 for
low electric fields, but becomes —1 at high fields. This is in
remarkable agreement with experimental data [3,10] and also
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Fig. 1. Normalized stress growth coefficient versus time (¢ = 0.08) for three electric fields. (A) Shear rate=0.1 s~ and (B) shear rate=1s""!.

it shows same dependence of the viscosity on shear rate at
high electric fields expressed in Eq. (5) of the kinetic model
Eq. (3). The model describes the simple shear-thinning behav-
ior of a Bingham plastic fluid at high fields, and at low fields
a behavior consistent with the so-called equilibrium droplet
model.

In Fig. 3, data and predictions of the relative viscosity (i.e.,
that normalized with respect to the high shear-rate asymptote)
versus Mason number of the silicon oil suspension are shown for
electric fields from 0.5 kV/mm to 2 kV/mm, and for particle con-
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centrations from 0.03 to 16 wt%. For Mason numbers higher than
unity, the viscosity approaches the second Newtonian plateau,
where the flow strength dominates. The model predicts a single
function where curves overlap, containing the zero shear-rate
Newtonian region for Mason numbers smaller than 103 and the
second Newtonian plateau at high Mason numbers. The slope at
intermediate Mn is near unity. Agreement between predictions
and experimental data is depicted.

In suspensions that exhibit yield stress, the shear viscosity
has a slope of —1 as the shear rate diminishes. The fact that
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Fig. 2. Data and predictions of the shear viscosity vs. shear rate for various electric fields. ¢ =0.03 (A), 0.08 (B), 0.12 (C) and 0.16 (D).
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Fig. 3. Predictions and experimental data of the relative viscosity vs. Mason
number in the silicon oil suspension, for various electric fields and particle
concentrations.

these suspensions attain a Newtonian region, albeit quite narrow
at very small shear rates, the yield stress cannot be considered
as “real”, but only an “apparent yield stress”. The yield stress
reported here has been determined by extrapolation of the flow
curve to zero shear rate. The trend to a Bingham behavior is
observable at high electric fields.

Fig. 4 shows a comparison between model predictions and
experimental data of the zero shear-rate viscosity versus ¢E>
in the silicon oil system for the four particle concentrations.
Predictions show the trend of the monotonic increase in the
viscosity with ¢E2. The increase in the viscosity follows the
scaling suggested by Eq. (23), i.e., a quadratic dependence on
E, and a linear dependence with concentration. The asymptotic
limit of Eq. (23) at high electric fields renders the value of ng.
As the electric field increases further, experimental data show
a trend to level-off of the viscosity, especially at high parti-
cle concentrations. The asymptotic behavior of the viscosity
with electric field is a manifestation of non-linear conductivity
effects, which become substantial as the electric field increases
or at high particle concentrations.

10* 5

107
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10’ +——ry — ———
0.01 0.1 1

¢ E* (kV/mm)’

Fig. 4. Predictions (continuous lines) and experimental data (silica particles in
silicon oil, symbols) of the zero shear-rate viscosity versus ¢E2 for four particle
concentrations.
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Fig. 5. Plot of the yield stress vs. ¢pE of the silicon oil suspension for various
particle concentrations. Lines: predictions; experimental data: symbols.

Fig. 5 shows predictions and experimental results in the
silicon oil system of the yield stress versus the product ¢E,
for particle concentrations from 0.03 to 0.16. The yield stress
increases with particle concentration and electric field squared,
and predictions follow closely the scaling given in Eq. (26) at
low values of ¢E2. For high values of the electric field and par-
ticle concentration, the scaling approaches ng o v/@®EZ. Notice
that the slopes of the predicted curves have a value close to
one at low electric fields and approach 1/2 at high electric
fields.

The following analysis considers an increase in the conduc-
tivity of the suspension and its effect upon the electrorheological
response of the system. Besides silicon oil, two liquids are exam-
ined: dioctyl phthalate (DOP) and tricresyl phosphate (TCP).
Conductivity effects are also important as the particle concen-
tration increases or at high electric fields. To account for the
decrease in the particle polarization due to conductivity effects,
Egs. (27) and (28) have been proposed. Introducing these equa-
tions into the expressions for the viscosity and yield stress for
vanishing shear rates (Egs. (23) and (25)), the consequence of
increasing conductivity is to modify the asymptotic behavior of
such equations. In fact, in both equations a cubic contribution
of the electric field now accounts for a maximum in the yield
stress and zero-shear viscosity.

Fig. 6 show data and predictions of the zero shear-rate vis-
cosity versus ¢E> when the particle concentration is 0.03 for the
three suspending fluids. Predictions for the silicon oil illustrate
quantitative agreement with data, except at high electric fields.
Nevertheless, predictions show the right trend toward levelling-
off in the viscosity along this region. Those for DOP and TCP
show good agreement.

Finally, the predictions of the dependence of the yield stress
with electric field for the three suspensions is illustrated in Fig. 7
(¢ =0.03) and Fig. 8 (¢ =0.16). In Fig. 7, for low electric fields
the predicted dependence of the yield stress with electric field
is quadratic, whereas the slope diminishes for higher fields. The
limiting slopes at high electric fields with increasing conductiv-
ity of the suspensions change from 2 to 3/2 and to 1, the latter
observed in the more conductive system. In the more concen-
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Fig. 6. The zero shear-rate viscosity of the three suspensions with varying
conductivity is plotted with $E2, for a particle concentration of 0.03. Model
predictions are shown. Experimental data: symbols.
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Fig. 7. Predictions and experimental data of the yield stress versus ¢E? for three
suspensions of varying conductivity. Particle volume fraction is 0.03.

trated suspensions, Fig. 8 depicts model predictions where the
limiting slopes at high electric fields can be as low as 0.7 for DOP
and TCP, and 1 for the silicon oil. Experimental data shown in
Figs. 7 and 8 are in agreement with the trends of the predictions.
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Fig. 8. Predictions and experimental data of the yield stress versus ¢E for three
suspensions of varying conductivity. Particle volume fraction is 0.16.

5. Discussion

The model proposed in Egs. (6)—(8) with the conductivity
contributions given in Eqs. (27) and (28) contains eight con-
stants: the time constants A, Ao, Aso, A and the kinetic constants
ko, k1, k2, k3. The time constant Ao is the Maxwell relaxation
time and it is related to the zero shear rate viscosity through
the relation ng = GoAg. A is related to the structure modification
and provides information about the time scale of the reformation
process. It appears in the expressions related to the viscosity and
yield stress, and controls the onset for shear thinning. When the
ratio A/Ag is small (i.e., <1), the reformation process occurs
in a time scale smaller than the time scale of the flow. For
large values, the structure does not reform in a time scale of
the flow, and time-dependent phenomena (such as thixotropy)
may arise. The other two time constants (Ao, and Ag) govern
the asymptotic behavior of the suspension at high shear rates
(second Newtonian viscosity) and that at high electric fields,
respectively.

The kinetic constant ky can be identified with the storage
modulus G (i.e., with Gy 1), as suggested in Egs. (24)—(26), and
together with k1, they govern the balance of the flow forces and
electric forces. k1 and k; are contained in the expressions for the
viscosity (Eq. (23)) and yield stress (Egs. (25) and (26)), respec-
tively, for vanishing shear rates. Finally, the constant k3 governs
the position of the maximum of the viscosity and yield stress
with electric field, and accounts for the non-linear conductivity
effects due to high electric fields or high medium conductiv-
ity. In summary, each of the phenomenological constants can be
evaluated separately from experimental data, and they embody
a determined physical meaning.

A relevant prediction of the model is to account for the general
features of structure formation kinetics. These are a rapid initial
change in particle positions after the application of an electric
field to a random suspension, followed by a much slower change
at long times. The exponential increase in viscosity followed
by a levelling off, represented by Eq. (18), accounts for such
behavior, which is described by microscopic models [8,11-14]
and verified in experimental studies by See [4] and Klingenberg
etal. [12,22,23]. According to Klingenberg et al. [22] at small to
moderate particle concentrations, the initial rapid rearrangement
is associated with the formation of chains that percolate in the
electric field direction and give rise to the remarkable increase
in viscosity. The slower coarsening at long times arises from
aggregation of these extended structures.

Simulations on the structure formation kinetics [12] predict
that the rate of structure changes is proportional to E2, and that
the structure at long time is independent of electric field strength,
in agreement with Eq. (18) and with the limit implied in Eq. (19).
Furthermore, the time scale of structure formation as predicted
by Eq. (18) is proportional to n/E?, provided that a > ¢, which
is justified since for an initial random structure (i.e., Al 0),
and hence c/a — Ao/Ag and Ag >MNg. Therefore, the formation
of structures is exponential with growth proportional to £, and
at short times the proportionality of time with n/E? arises. At
long times Eq. (18) predicts a limiting viscosity given by Eq.
(19).
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In steady-state flow, Marshall et al. [15] found that the
reduced shear viscosity referred to the second Newtonian vis-
cosity plotted with the Mason number (Mn) collapsed to a
single function of Mn. The presence of a region where the vis-
cosity varies inversely with Mn for small Mn, suggested the
existence of a dynamic yield stress, where electrostatic forces
dominate particle dynamics. For large Mn, flow forces dominate
and the viscosity becomes independent of the Mason num-
ber. Experimental data can be described well by the Bingham
model:

n Mn*

7274_1

;. Mn (Mn > 0) (30)

where Mn" is a material constant, equivalent to a dimension-
less dynamic yield stress. Predictions of the present model also
show a collapse to a single function of Mn, as depicted in Fig. 3.
Furthermore, the model predicts a region of slope —1 at low
Mn as in a Bingham plastic. The Bingham model predicts a
sharp transition at the onset of the second Newtonian region
(Mn=1=Mn"), whereas the present model shows a more grad-
ual transition, in agreement with experiments, and with the
fact that as the shear rate increases, a more gradual degra-
dation of the structure is feasible instead of an instantaneous
degradation predicted by the Bingham model. The non-
Bingham behavior is indeed associated with the gradual breakup
of field-induced structures [7,8,16] observed experimentally
[17].

The model presented here gives a clear indication of the
value of the dynamic yield stress, namely, that arising within the
region where the apparent shear viscosity should scale inversely
proportional to the shear rate. Stokesian dynamics simulations
[7,8] predict that at sufficiently low values of Mn, the hydrody-
namic contributions of the viscosity become only 10% of the
total viscosity and that the electrostatic contributions increase
steadily with decreasing Mn. At values of Mn around 2 x 1074,
where the rheology becomes dominated by electrostatic forces,
the hydrodynamic contribution to the viscosity appears to
plateau. This is in qualitative agreement with results presented in
Fig. 3.

Electrorheological models have focused on the fact that the
most drastic field-induced rheological effects are found at small
shear rates. In particular, they examine the region where the
yield stresses are predominant, and analyze the dependence of
the yield stress on the electric field. Yield stress data signifi-
cantly deviate from the scaling given by Eq. (26) at high electric
field strengths [19]. Experimental data [18] reveal that the yield
stress is proportional to the square of the electric field at low
fields and approaches E>? at high fields. As the gap between
conducting particles in the fluid decreases (increasing parti-
cle concentration) the electric response of the fluid becomes
non-linear under high electric field strengths. This non-linear
conductivity effect was incorporated with the bulk conduct-
ing particle model [19] giving rise to a yield stress model
which predicts a proportionality between the yield stress and
the field with a power-law index of 3/2. This power-law has
been verified in several systems [20,21]. The model presented
here accounts for the deviation and lowering of the exponent

of the electric field. Exponents lower than 3/2 are also pre-
dicted.

6. Conclusions

The model proposed here describes in a phenomenological
manner many manifestations of the electrorheological behavior
of non-Brownian suspensions. In particular, the model predicts
the right dependence of the structure formation kinetics with
time and electric field, and many of the observed trends in the
fragmentation kinetics. It accounts for the variation of the shear
viscosity with shear rate and electric field, predicting a single
function when data is plotted with the Mason number, in agree-
ment with experiments. It gives the right slope viscosity-shear
rate when the electric field is near zero (—2/3) and when it
approaches high field strengths (—1). Furthermore, the model
predicts the increase in viscosity with electric field and satura-
tion at high fields under quiescent conditions and a maximum
in the viscosity with electric field due to non-linear conduc-
tion. Finally, the model accounts for the dependency of the yield
stress with electric field, which is quadratic at low fields, but
deviates at high fields (around 3/2), once again, due to non-
linear conduction. Analytical expressions were provided for the
relevant material functions, from which is possible to estimate
the value of the model parameters by performing independent
experiments.
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