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Abstract – We study the flow of a homogeneous nematic cell under the simultaneous action of
an applied electric field and an applied shear flow. Using a hydrodynamic model that describes
the response of a flow-aligning nematic liquid crystal (5CB) we obtain the director’s configuration
and the velocity profile at the steady states. From these results we construct a phase diagram
in the electric field vs. shear flow space that displays regions for which the system may have
different steady-state configurations of the director’s field. The selection of a given steady-state
configuration depends on the history of the sample. Due to the competition between shear flow
and electric field, the system’s viscosity shows a complex non-Newtonian response with regions of
shear thickening and thinning. Interestingly, as a consequence of the hysteresis of the system, this
response may be asymmetric with respect to the direction of the shear flow. The results also show
a moderate electrorheological effect which is also dependent on the history of the sample.

Copyright c© EPLA, 2008

Introduction. – Nematic liquid crystals exhibit inter-
esting flow phenomena due to its non-Newtonian behavior
originated by the coupling between the local molecular
orientation and the velocity field [1–3]. Although some of
these properties have been known for a long time, a large
amount of theoretical, numerical and experimental work
has been produced in recent years. In particular, a number
of publications treat the behavior of nematic liquid crys-
tals in shear and Poiseuille flow fields [4–12].
On the other hand, it has been shown that the influence

of an electric field strongly modifies the rheology of liquid
crystals [11,12]. This has considerable interest due to its
possible application in microsystems [13] since homoge-
neous fluids, like liquid crystals, present some advantages
over conventional electrorheological fluids. Among them,
we can mention that liquid crystals, in contrast to other
active fluids, do not contain suspended particles. This
homogeneity is of particular importance for microsystems
since small channels are easily obstructed by suspended
particles. Also, they prevent agglomeration, sedimenta-
tion and abrasion problems [13]. The electrorheological

(a)E-mail: cmendoza@iim.unam.mx

properties and the static and dynamic flow characteris-
tics of liquid crystals under different conditions have been
treated in several papers [13–19].
The purpose of the present work is to study theoretically

the steady-state characteristics of a homogeneous cell
under the simultaneous action of a shear flow and a
perpendicularly applied low-frequency electric field. In
spite of the large amount of work done for this and
related systems, there are important issues that remain
open. Among them, the possibility of multiple steady-
state solutions has rarely been considered. For example,
in ref. [1] two different director configurations for steady-
state Poiseuille flow in a homeotropic cell it is predicted.
Also, in ref. [3] this possibility is not excluded for the case
of a hybrid nematic cell under shear flow. Here we show
that it is possible to construct a phase diagram in the
electric field vs. shear flow space which contains regions
for which multiple steady-state solutions exist and that
the choice between the different solutions depends on the
history of the sample. We also show that this history-
dependent response affects the complex non-Newtonian
behavior of the system that becomes dependent on the
direction of the shear stress.
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Fig. 1: Schematics of a homogeneous cell subjected to a normal
electric field and an applied shear flow.

Model and governing equations. – The system
under study consists of a thermotropic nematic layer
of thickness l confined between two parallel plates, as
depicted in fig. 1. The transverse dimensions, L, of the cell
are large compared to l and the cell is under the action of
a perpendicular low-frequency electric field. Additionally,
the plates may move in opposite directions, each one with
speed v0, producing a shear flow in the (x, z)-plane and
along the x-axis. The velocity profile may then be written
as v= (vx, 0, 0) (see fig. 1).
The orientational angle, θ(ς), defined with respect to the
z-axis satisfies strong anchoring conditions at the plates

θ(ς =±1/2) = π/2, (1)

and the only relevant component of the velocity field, vx,
satisfies the non-slip boundary conditions

ṽx(ς =±1/2) =±sgn(v0), (2)

where we have defined the normalized variables ς ≡ z/l
and ṽx ≡ vx/ |v0|, and sgn(x) represents the sign function.
Using the common approach of describing the flow of

rod-shaped LCs with the theory of Ericksen, Leslie and
Parodi (ELP) [20] it is possible to show that the equations
that governs the steady state of the system are

0 =
(
sin2 θ+κ cos2 θ

) d2θ
dς2
+(1−κ) sin θ cos θ

(
dθ

dς

)2

−εaε0
2K1
l2E2 sin (2θ)+

l |v0|
K1

(
α3 sin

2 θ−α2 cos2 θ
)dṽx
dς
, (3)

dṽx
dς
= sgn (v0)

c (q,m)

η (θ)
. (4)

The first equation reflects the equilibrium of torques on a
given element of fluid while the second is the momentum
conservation equation. Here, αi are the Leslie viscosities
and κ≡K3/K1 withK1 andK3 the splay and bend elastic
constants of the LC. In eq. (4) c(q,m) is a positive constant
that depends only on the electric field and the shear rate
and is given by

c (q,m) =
2∫ 1/2

−1/2
dς′

η[θ(ς′)]

, (5)

where

η (θ) = α1 sin
2 θ cos2 θ+ ηb sin

2 θ+ ηc cos
2 θ, (6)

is the position dependent viscosity of the LC. In this
equation, ηb = (α3+α4+α6)/2 and ηc = (α4+α5−α2)/2
are two of the three Miesowicz viscosities [21].
Substituting eq. (4) in eq. (3), we obtain

0 =
(
sin2 θ+κ cos2 θ

) d2θ
dς2
+(1−κ) sin θ cos θ

(
dθ

dς

)2
−q sin (2θ)+ m

η (θ)

(
α3 sin

2 θ−α2 cos2 θ
)
, (7)

where we have defined a dimensionless field strength

q≡ εaε0
2K1
l2E2, (8)

and the dimensionless shear rate

m≡ lv0c (q,m)
K1

. (9)

Notice that q takes only positive values, whilem is positive
if the upper plate of the cell moves to the right and
negative if it moves to the left (see fig. 1). Also, note that
m and v0 are not linearly related due to the factor c(q,m).
The stationary configuration of the nematic’s director
can be found by solving eq. (7) numerically using the
“shooting” method [22].

Results. – In what follows, the calculations are
performed for 4′-n-pentyl-4-cyanobiphenyl (5CB), a flow-
aligning LC whose Leslie coefficients at T = 25 ◦C are:
α1 =−0.0060Pa s, α2 =−0.0812Pa s, α3 =−0.0036Pa s,
α4 = 0.0652Pa s, α5 = 0.0640Pa s, and α6 =−0.0208Pa s;
and the splay and bend elastic constants are K1 = 12pN
and K3 = 1.316K1, respectively.
Let us first consider the orientational profile. In fig. 2a

we plot the orientational angle θ vs. the position in
the cell ς, as obtained from eq. (7) for various values
of the field strength q. In the absence of flow (m= 0),
we recover the usual Frederiks transition in which the
molecules are reoriented only for electric field intensities
larger than a critical value qF . Once this threshold is
surpassed, we observe that θ decreases with increasing
values of q. This is in agreement with the tendency of
the molecules to be aligned with the direction of the
electric field. Actually, there are two possible steady-
state configurations of the director’s field, one being
the specular reflection of the other with respect to the
z-axis. In contrast, once a shear flow is present (m �= 0),
the molecules are reoriented for any value of the electric
field as shown in fig. 2b. What is more interesting is
that there exist combinations of values for the electric
field and the applied shear flow for which there are more
than one stationary configuration of the director’s field.
Additionally, in this case the stationary solutions are
not the specular reflection of each other. In fig. 2b we
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Fig. 2: Nematic’s configuration θ as a function of ς for 5CB
at T = 25 ◦C. (a) m= 0 and (b) m= 20. In the latter case two
sets of solutions are shown. For the second set we plot 180◦− θ
instead of θ.

have plotted two solutions for each set of parameters,
one set of solutions corresponds to configurations much
more vertically aligned than the others. The first set of
solutions, the ones that are less inclined, are tilted in the
opposite direction that the second set, which are more
inclined, except for the small region with negative θ near
the center of the cell. Note that in order to plot the two
sets of solutions in the same graphic, we plot 180◦− θ
for the second set. The origin of the negative region is
easy to understand. Let us suppose that under the action
of the electric field the molecules will orient with a tilt
that conflicts the one the flow acting alone would produce.
Then, if we increase the flow, the molecules near the center
of the cell will try to adopt the tilt induced by the flow.
If the flow is large enough then the molecules near the
center of the cell may exceed the vertical position an adopt
the right tilt which is given by the negative part of the
curves in fig. 2b. The solutions that are less inclined are
the continuation of the corresponding to the single solution
region as will be explained in more detail in fig. 6. A phase
diagram in the q vs. m plane that displays regions with one
or multiple configurations can be constructed, as shown in
fig. 3.
This figure shows the usual Frederiks transition for zero

shear flow (m= 0) which separates the low electric-field
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Fig. 3: Phase diagram in the q vs. m space showing regions
with only one or several steady-state configurations.
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Fig. 4: Nematic’s configuration θ as a function of ς for q= 2
and different values of m. For the more inclined solution with
m= 10 we plot 180◦− θ instead of θ. The upper right panel
shows the position in the phase space of the parameters q
and m considered. Also, the lower panels show a sketch of the
corresponding nematic’s steady-state configurations.

region (q < qF ) in which there is no reorientation of the
director, from the high electric field region (q > qF ) for
which the director’s field is reoriented in two possible
configurations each one being the specular reflection of
the other. The phase diagram shows that this transition
can be extended to the case in which there is shear flow
albeit in this case, there is reorientation of the director
field for all values of q and the multiple solutions are
not specular reflections of each other. Notice also that
for high enough shear rates, the single valuated region
disappears and multiple solutions appear for all values
of q. In order to understand more clearly the meaning
of these regions, in fig. 4 we have plotted the stationary
solutions of θ vs. ς, for a given value of q and different
values of m. In the specific example shown, for q= 2 there
is a unique solution when m= 0 and m= 5. However, for
m= 10, there are two steady-state configurations. One of
the two stationary solutions corresponds to a configuration
in which the molecules are tilted to the left, which is
the tilt direction that the flow would impose in the
absence of the electric field. In the other solution, the
molecules are tilted to the right, contrary to the tendency
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imposed by the flow acting alone. These configurations are
schematically shown in the right panel of fig. 4 together
with their position in the phase space. Note again that for
the second solution for m= 10 we have plotted 180◦− θ.
The question of how to set up these different stationary
configurations rises naturally. Actually, the selection of
one of the configurations over the other depends on the
history of the sample as will be discussed below. Let us
remark that the solutions we have plotted are the ones
that are real stable states. The solutions corresponding to
the single-solution region are always stable and continue
into the multiple-solutions region. The new solutions in
this region appear always in pairs, one of them is unstable
(not plotted) and the other locally stable. Which of the
stable solutions in this region will be preferred will depend
on the conditions of the experiment. Note, however, that
the other solution can exist as a metastable state. We have
verified that no significant change of the results occurs
when we include a pretilt parallel or antiparallel in the
boundary conditions. Therefore our results are robust with
respect to the presence of a pretilt. Additional crossover
lines can be drawn in fig. 3 which separates regions with
two, four, and more stable states but these appear for
very strong shears and for clarity are not drawn. The fact
that the system presents at least two different stable or
metastable liquid crystal alignments leads to think of the
possibility of switching between these states and use this
fact as a mean to produce bistable or multistable devices
that could be useful for applications.
Once θ(ς) has been determined numerically, the velocity

profile of the nematic can be obtained integrating eq. (4)
taking into consideration the non-slip boundary conditions
given by eq. (2) to obtain

ṽx(ς) =−sgn(v0)

1− 2

∫ ς
−1/2

dς′
η[θ(ς′)]∫ 1/2

−1/2
dς′

η[θ(ς′)]


 . (10)

As shown in fig. 5 the velocity profile departs from the
isotropic Newtonian behavior and this departure is more
pronounced for the configurations in which the molecules
are tilted in the opposite direction as the one imposed
by the flow acting alone. The profile of the curves is
symmetrical with respect to the plane that crosses the cell
at its middle point. Panel (a) corresponds to the set of
solutions that are only slightly reoriented while panel (b)
corresponds to the set of solutions that are more vertically
aligned.
The practical problem of how to set up the different

stationary configurations is exemplified in fig. 6. For
clarity, in this figure we have recasted the phase diagram
drawing the positive and negative parts of the m-axis and
we consider two different processes. In first place, let us
suppose that we have the system flowing with a positive
shear flow and no applied electric field as indicated by
the point A of the phase diagram (see fig. 6). In this
situation the system adopts its only possible configuration
which is therefore determined by the direction of the flow.
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Fig. 5: Velocity profiles ṽx vs. ς for different values of q and
m. Panel (a) corresponds to the set of solutions in which the
director is only slightly reoriented with the application of the
electric field while panel (b) corresponds to solutions in which
the director is strongly reoriented with q.
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Fig. 6: Sketch of two possible trajectories in the phase diagram
that gives rise to two different steady states for a given
pair q, m.

Then, one applies gradually an increasing electric field
until reaching point B. The electric field tends to align
the molecules towards the z-axis but maintaining the tilt
direction established previously by the flow at point A.
If one now gradually decreases the flow, the system will
eventually be located at point C with a configuration
whose tilt sense is the same of that of the previous states of
the system as indicated by the drawings in fig. 6. Finally,
we increase gradually the flow until reaching the same
magnitude as in point B but with the opposite direction.
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The system is then located in its final state indicated
by point B′. During this part of the process, the flow is
trying to tilt the molecules in the opposite direction as
the one it had previously. However, if the electric field
is larger than qmax then the flow cannot overcome the
original tilt and the system adopts a configuration as
the one sketched at point B′ in fig. 6. Note that this
final configuration does not correspond to the specular
reflection of the one at point B. If on the other hand,
we start the whole process at point A′ then the system
will adopt there its only stationary configuration which
is the specular reflection with respect to the z-axis of
the corresponding one at point A. Increasing gradually
the electric field until reaching point B′ the configuration
adopted by the system at that point will be the specular
reflection of the corresponding configuration at point B,
which is therefore different from the configuration adopted
by the system at that same point (B′) for the first process.
Thus, the final configuration of the system for the same
set of parameters q and m depends on the history of the
sample. It is also possible to switch from one configuration
to the other by simply turning off and on the electric
field. For example, if the system is at point B′ with the
alignment produced by the first process explained above,
then, turning off and then turning on the electric field will
switch the system to the second configuration at B′. To
switch again to the first configuration (more precisely, to
switch to the specular image of the first configuration) it
is necessary to reverse the flow.
The procedure described in the previous paragraph to

set up the different stationary configurations may be used
to induce a directional response of the system. This can be
seen if we consider the trajectory BB′ of fig. 6. Starting
from point B, a slow oscillatory movement of the plates
of the cell will go from B to C to B′, then back to C and
finally to the original point B. It is clear that the sections
of the trajectory corresponding to positive flow will induce
velocity profiles different as the ones for negative flow since
director’s field will be different as well. This directional
response is reflected in the average viscosity of the LC

〈η(q,m)〉 ≡
∫ 1/2
−1/2

η [θ (ς)] dς, (11)

where η [θ (ς)] is the position-dependent viscosity given by
eq. (6).
In fig. 7, we show the average viscosity as a function

of m for the first of the trajectories described above.
We observe an interesting non-Newtonian behavior with
alternate regions of shear thickening and thinning. The
regions of shear thinning are the result of the competition
between the direction of flow that tends to orientate the
molecules with a tilt in the opposite direction as the
original director’s configuration. The contrary is true for
the shear thickening region for which the contributions
of the flow adds up to that of the one the system had
previously. The net result is that the molecules tend to
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Fig. 7: Averaged apparent viscosity as a function of m showing
regions of shear thickening and shear thinning.
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a moderate electrorheological effect.

be more vertically aligned than in the case of zero shear.
For larger magnitudes of the shear rate, the effect of the
flow dominates producing the shear thinning regions. Note
that the presence of the electric field renders the non-
Newtonian behavior less pronounced in the sense that
in this case the viscosity varies more smoothly with m.
The second of the trajectories (the one starting at A′ in
fig. 6) would produce the same curves for the viscosity but
interchanging m with −m.
The increase of the apparent viscosity as we increase

the value of the electric field is evident in fig. 8. This
electrorheological effect is of moderate intensity since the
minimum value that the apparent viscosity may take is
ηb, when the molecules are oriented parallel to the plates,
which occurs at small shear rates and electric fields, and
the maximum value that it can take is ηc, when the
molecules are perpendicularly aligned with respect to the
direction of flow, which occurs for large electric fields.
In the present case the minimum and maximum values
are ηb � 0.0204Pa s and ηc = 0.1052Pa s, respectively. The
solutions labeled with m< 0 would also correspond to the
second solution for the case with positive m and viceversa.

Conclusions. – In summary, based on a hydrodynamic
model we have studied the flow of a homogeneous nematic
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cell under the action of an applied shear flow and a perpen-
dicular electric field. We have constructed a phase diagram
in the electric field vs. shear rate space that shows regions
in which the director’s field has multiple stationary config-
urations. Interestingly, the selection of a given configura-
tion of the director’s field depends on the history of the
sample. This may lead to a remarkable non-Newtonian
behavior with alternate regions of shear thickening and
thinning that may also produce an asymmetric flow profile
with respect to the direction of shear by properly choosing
the intensity of the electric field.
We have shown that the reorientation produced by the

electric field gives rise to an augment in the apparent
average viscosity of the LC as a function of the applied
electric field (electrorheological effect). This viscosity can
be as low as ηb and not larger than ηc. Additionally, under
the action of the electric field the non-Newtonian behavior
is less pronounced.
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