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a b s t r a c t

In the last decades, a wide collection of experimental evidence has been found in the
study of supercooled glassformers on the existence of a crossover between two dynamical
regimes at a temperature Tc . We discuss the validity of the Vogel–Fulcher–Tammann
in both regions. The breakdown of the Stokes–Einstein relation below Tc is presented,
indicating that the diffusion coefficient of a tracer becomes decoupled from the
viscosity through an exponent ξ, and the diffusion process is intensified. We verify
that a temperature shift on the diffusion coefficient introduces the same effect as the
Stokes–Einstein breakdown equation. We present the dependence of this exponent on the
ratio between the radii of the tracer and the host liquid molecule.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Relaxation processes that take place in supercooled liquids in the vicinity of the glass transition temperature Tg , have been
extensively studied in the last two decades. One of themost significant features of a liquid approaching the glass transition is
the rapid increase of the viscosity. Theoretically, many efforts have been undertaken to study the temperature dependence
of the viscosity and other thermodynamic properties.

One of the most important empirical equations that deals with the behavior of the viscosity as the system approaches Tg
is the Vogel–Fulcher–Tammann (VFT) equation, namely [1–3],

logη = A −
B

T − T0
, (1)

where A and B are independent parameters and T0 may be interpreted as the isoentropic temperature, namely, the
temperature where the configurational entropy vanishes. The relaxation phenomena described by the VFT equation
correspond to the very slow α-relaxation processes. One may find, however, that fast relaxation processes occur in the
vicinity of Tg , namely the β-relaxation processes [4–14]. Relaxation and diffusion mechanisms present drastic changes
around a cross-over temperature Tc which lies within the interval [1.15Tg, 1.28Tg] [15–34]. There are two important aspects
that characterize this cross-over region. The VFT equation does no longer describe the experimental results for the viscosity
below Tc, and, furthermore, the diffusion mechanisms undergo changes.

The Stokes–Einstein (SE) equation establishes that the diffusion coefficient of a sphere of radius a in a fluidwhose viscosity
is η, is given by

D =
kBT

6πaη
, (2)
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where kB is Boltzmann’s constant. In the case of a glassformer at temperatures above Tc, the SE equation works. However,
for temperatures below Tc, the SE equation breaks down, and the diffusion process is enhanced. In this region, the influence
of the viscous relaxation upon the diffusion coefficient may be expressed in terms of the relation

D ∝ η−ξ, (3)

where

0 < ξ < 1.

In fact, both experimental [35–47] and theoretical [48–56] results have indicated that as a supercooled glass forming
liquid is cooled towards Tg , its dynamics becomes increasingly heterogeneous presenting magnified diffusion mechanisms.
For temperatures below Tc, one may assume a dynamic heterogeneity consisting of two different mobile domains, more
mobile domains that govern the translational molecular displacement and less mobile domains that determine structural
relaxation [35]. In this case, the diffusion decouples from the viscosity (ξ < 1) due to the so-called microviscosity effect [48]
that considers that the viscosity around a small tracer is rather different from that of the bulk due to size effects. The
single particle dynamics of the tracer and the collective dynamics of the supercooled liquid, as it is taken towards lower
temperatures, occur on different time and length scales. and ξ increases with increasing size of the tracer.

In this work, we present the enhancement of the diffusion coefficient of small tracers in glass formers in the region below
the crossover temperature Tc taking into consideration that the VFT equation is not valid for this region, In Section 2 we give
a brief presentation of an empirical equation for the viscosity in the temperature range between Tg and Tc. In Section 3,
we present the behavior of different tracers in supercooled liquids and we obtain the SE equation breakdown below Tc.
We discuss the effect of a temperature shift on the diffusion coefficient by means of the time-temperature superposition
principle [35]. In addition, we find different values for the exponent ξ in terms of the ratio between the radius of the tracer
and that of the host and the dependence of the exponent with the glass transition temperature of the host. Finally, we
present in Section 4 some conclusions,

2. The viscosity

One strong evidence of the crossover of the regimes is that a single VFT equation cannot fit the data for the viscosity
in the whole range of temperatures from Tg , the glass transition temperature, to Tm, the fusion temperature [5–7,13,21,26–
30,57–60]. As we have already discussed these two regimes are separated by the temperature Tc. It has been proven that
the experimental data for the viscosity for temperatures above Tc may always be fitted by a VFT equation. In the literature
one may find different proposals to fit the data for the viscosity for temperatures below Tc. Some authors propose that a
different VFT, namely one with different parameters of those of the VFT fit above Tc, may fit the data below Tc [5,13,26–30,
60]. Another empirical equation that is also used to fit the viscosity data is the well known Williams–Landel–Ferry (WLF)
equation [61] which actually also fits nicely the data for the viscosity above Tc. One may find proposals where a different
WLF equation may also fit the data below Tc [6,7]. There is also strong evidence that the data below Tc must be fitted using
different equations, as for example those given in references [13,26,27,56–59]. Stickel’s derivative analysis [26,27] provides
an excellent way to prove which is the right answer to this question. This method consists of the study of a given equation
used to fit the data below Tc in terms of the temperature derivative analysis for the quantities,

x =

{
f/Hz,σdcε0/s

−1,η−1/poise−1
}
, (4)

where f is the frequency of the peak of the loss function, the imaginary part of the complex dielectric function, σdc is the dc
conductivity, and η the viscosity. The method consists on the evaluation of three derivatives of a given empirical form for
log x, [d log x

dT

]−1/2

(5)

d
dT

[(d log x

dT

)−1/2]
(6)

Θ =

d log x
dT

d2 log x
dT2

(7)

and the comparison of the values of the derivatives for the given form and the VFT equation, finding whether experimental
data fit VFT or not.

In this work, we propose an empirical form for the viscosity for the T < Tc region which has already been discussed in a
previous work [56], namely,

log
η(T∗)

η(T)
= C (TA − T)2 + E (8)
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Table 1
Values for the coefficients and temperature TA given in Eq. (8) for the glasssformers here considered and the values of the χ2 test and of the correlation
coefficient R2

Glassformer C E TA(K) χ2 R2

Salol −0.0025 9.686 282 0.00058 0.99993
PDE −0.0019 9.063 362 0.00695 0.99791
OTP −0.0024 11.956 310 0.00417 0.99569
TNB −0.0008 10.740 453 0.00049 0.99993

Table 2
Values for the parameters of the VFT equation, Eq. (9) for the glasssformers here considered and the values of the χ2 test and of the correlation coefficient
R2

Glassformer A B T0(K) χ2 R2

Salol 10.733 483 175 0.0036 0.9931
PDE 12.161 324 278 7.25 × 10−8 1
OTP 17.763 675 202 0.0050 0.9931
TNB 14.700 433 330 0.0031 0.9956

Fig. 1. The viscosity of PDE [27]. The dashed line corresponds to the expression for the viscosity above Tc given by Eq. (9), namely the VFT equation. The
full line represents the viscosity obtained using Eq. (8) below Tc .

that fits the data of different fragile supercooled glass forming liquids [26,27,62,63], T∗ is a reference temperature, taken
here as Tg .

We have studied four supercooled fluids, namely, phenyl salicylate (salol), phenolphthaleine-dimethyl-ether (PDE),
orthoterphenyl (OTP) and tri-naphthylbenzene (TNB). Fitting the data for their viscosity in the region below Tc using Eq. (8),
in Table 1, we present the values for the parameters of the equation for these liquids. On the other hand, for temperatures
above Tc, the experimental data fit indeed a VFT equation, that is,

log
η(T∗)

η(T)
= A −

B

T − T0
. (9)

The values of the parameters of Eq. (9) for the same liquids are given in Table 2. In both Tables 1 and 2 we present the
values of theχ2 test and the correlation coefficient R2 for each fit. Theχ2 test is a statistical test thatmeasures the differences
between experimental an theoretical distributions. The correlation coefficient R2 indicates de degree of linear dependence
between the experimental and fit values and must be a number close to 1 to have a good fit. As an example, in Figs. 1 and 2
we present the plot of both Eqs. (8) and (9) for the viscosity of OTP and PDE in the regions below and above respectively. The
derivative analysis presented by Sickel et al. [26,27] permits us to carry on three calculations that give a physical support to
our proposal, namely, Eq. (8) to fit the values of the viscosity below Tc.

We shall present four physical features that support our Eq. (8) throughout this work.
Firstly, as we have discussed in a previouswork [56], it is easily seen that in the vicinity of Tc both description, Eqs. (8) and

(9) overlap as one may observe in Figs. 1 and 2. A similar behavior may be observed in the case of salol and TNB. Since the
description in terms of the derivative analysis has been useful to distinguish differences between the two dynamic regimes
in a supercooled liquid, we find the temperature T ′

c where both descriptions intersect, using the fact that,

ΘT<Tc(T
′

c) = ΘT>Tc(T
′

c) (10)
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Fig. 2. The viscosity of OTP [6127]. The dashed line corresponds to the expression for the viscosity above Tc given by Eq. (9), namely the VFT equation. The
full line represents the viscosity obtained using Eq. (8) below Tc .

Table 3
Values of the temperatures Tg and Tc and the value for T′

c predicted from the intersection given by Eq. (10)

Glassformer Tg (K) Tc (K) T′
c (K)

Salol 220 265 260
PDE 294 325 327
OTP 240 290 283
TNB 342 410 412

where Θ is given by Eq. (7). In Table 3 we present the values for T ′

c and the reported values for Tc, and we find that they both
present a very good agreement,may be taken, within a very small deviation, as equal.

Eq. (10) allows us to give a second physical interpretation to Eq. (8). If we evaluate Θ for Eq. (8), we find that

Θ = T − TA (11)

and for the VFT equation (9),

ΘVFT = −
T − T0

2
. (12)

Since both expressions (11) and (12) intersect at Tc, Eq. (10) we may find an expression for the empirical temperature TA
in Eq. (8) in terms of the temperatures TA in Eq. (8) in terms of the temperatures Tc and T0 that have a well known physical
meaning, that is,

TA =
3Tc − T0

2
(13)

thus, the temperature is not an independent parameter. In Fig. 3, we may observe the good linear fit between the values of
T ′

A, the value of TA evaluated by Eq. (13), and the value TA that appears in Eq. (8).
The third physical fact that wemay analyze using Stickel’s method is the assertion by several authors, as we have already

mentioned, that two different VFT equations may be fitted for each one of the two regimes regions. If we now propose a VFT
equation for T > Tc,[

log
η(T∗)

η(T)

]
T>Tc

= A1 −
B1

T − T01
(14)

and a second VFT equation for T < Tc,[
log

η(T∗)

η(T)

]
T<Tc

= A2 −
B2

T − T02
(15)

using the fact that Θ must intersect at Tc, Eq. (10), we obtain

T01 = T02 (16)

that contradicts the fact that two different VFT equations may be fitted in the regions above and below for temperatures Tc.
Thus, following the three results obtained via Stickel’s method, Eq. (8) is a good proposal to fit the viscosity data below

Tc.



A. Andraca et al. / Physica A 387 (2008) 4531–4540 4535

Fig. 3. Temperature TA given in Eq. (8) as a function of the temperature T′
A evaluated by Eq. (13). The error bars are of a 3%. Thus both values are in a very

good agreement.

Table 4
Values for the radii and glass transition temperatures of different hosts [35,45]

Host rH (nm) Tg (K)

PDBE 0.47 346
FDE 0.45 318
ODE 0.43 285
Salol 0.35 218
CDE 0.43 310
mTCP 0.42 205
TNB 0.46 342
OTP 0.38 243
PDE 0.41 294

Table 5
Values for the radii of the tracers [35,47]

Tracer rT (nm)

TTI 0.38
Rubrene 0.8
Tetracene 0.5
ONS-A 0.72
ACR 0.38

3. The diffusion coefficient

As far as the diffusion process is concerned, the crossover that occurs at Tc between the SE regime and its breakdown
from ξ = 1 to ξ < 1 is due to the inhomogeneity of the system as it is brought towards Tg . While supercooling, the viscosity
of the liquid increases faster than the decrease in the diffusion coefficient. This decoupling depends largely on the relative
size of the tracer with respect to the size of the liquid molecules and on the temperature region where the liquid is studied.
In Tables 4 and 5, we present van der Waals radii for different hosts and tracers.

In order to quantify the breakdown of the SE relation below Tc we have analyzed the dependence of the diffusion
coefficient with the viscosity for three liquids, using in each case three tracers of different sizes. In Figs. 4–6, we have
plotted logη(T∗)/η(T) vs. logD(T)/D(T∗) for TNB, OTP and PDE, respectively, using for the viscosity the form given by Eq.
(8) for T < Tc, and experimental data for the diffusion coefficients [39,41,47], providing the exponent ξ as the slope of each
straight line. We have not made this analysis in the case of salol, since only one tracer, namely, TTI, has been reported in the
literature [41]. The value of ξ in salol has been already reported in Ref. [56]. In the case of TNB, Fig. 4, we can see that the
smaller value of ξ corresponds to the smallest tracer, TTI, while the larger value corresponds to the larger tracer, rubrene.
This same behavior is observed in the case of OTP, Fig. 5 and PDE, Fig. 6. The different values of ξ obtained in our work are
given in Table 6.

We may compare the experimental values for the diffusion coefficient with those obtained from the Stokes–Einstein
equation, Eq. (2) and the modified fractional expression, Eq. (3). For example, in Fig. 7, we present the experimental values
for the diffusion coefficient of TTI in TNB, and compare them with those that may be obtained from the SE relation, Eq. (2),
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Fig. 4. Diffusion coefficients for tracers in TNB in terms of the viscosity. Experimental values for TTI (�), rubrene (�) and tetracene (N) [47]. The full,
dotted and dashed lines represent the linear fits for TTI, rubrene and tetracene, respectively, where ξ is the slope in each case.

Fig. 5. Diffusion coefficients for tracers in OTP in terms of the viscosity. Experimental values for TTI (�), rubrene (�) and tetracene (N) [39]. The full,
dotted and dashed lines represent the linear fits for TTI, rubrene and tetracene, respectively, where ξ is the slope in each case.

Fig. 6. Diffusion coefficients of tracers in PDE in terms of the viscosity. Experimental values for TTI (�), ONS-A (N) and ACR (�) [41]. The full, dashed and
dotted lines represent the linear fits for TTI, ONS-A and ACR, respectively, where ξ is the slope in each case.



A. Andraca et al. / Physica A 387 (2008) 4531–4540 4537

Table 6
Values for the exponent ξ for different tracers in TNB, OTP and PDE obtained in this work and the corresponding correlation coefficient R2 for the linear fit

ξ TTI R2 Tetracene R2 Rubrene R2 ONS-A R2 ACR R2

TNB 0.784 0.998 0.854 0.992 0.914 0.995
OTP 0.75 0.991 0.747 0.994 0.955 0.997
PDE 0.761 0.984 0.962 0.998 0.76 0.977

Fig. 7. TTI in TNB. Comparison among the experimental data for the diffusion coefficient (�) [47], the values obtained by the SE Eq. (2), (full line) and the
values obtained by the modified expression in terms of ξ, Eq. (3) (dotted line) in terms of the temperature.

and the modified expression, Eq. (3). It is easily seen that the experimental data fit quite well with the relation that results
from the breakdown of the SE regime for temperatures below Tc. This same result may be obtained with the other tracers in
TNB and as well as for PDE and OTP and their corresponding tracers.

The fourth physical feature that supports our equation for the viscosity below Tc is that we obtain a similar result as the
one obtained by Heuberger and Sillescu [35]. They suggest that a temperature shift ∆T in the temperature dependence of
the diffusion coefficient evaluated via the SE equation, Eq. (2), has the same effect as evaluating this coefficient through the
breakdown SE expression, Eq. (3). They evaluate both expressions using the VFT equation, and equating both results they
find the value of the temperature shift ∆T in terms of the exponent ξ. We repeat this calculation using our expression for
the viscosity below Tc, Eq. (8), instead of the VFT equation and obtain the ∆T that makes both calculations coincide.

Using the SE equation, Eq. (2), we may write for the diffusion coefficient

log
TgDη (T)

TD0
= C (TA − T)2 + E. (17)

Now, introducing a temperature shift ∆T,

log
TgDη (T + ∆T)

(T + ∆T)D0
= C (TA − T − ∆T)2 + E. (18)

The power law assumption changes C into ξC,

log
TgDξ (T)

TD0
= ξC (TA − T)2 + E. (19)

Equating the lhs of Eqs. (18) and (19) one finds

ξ − 1 = −2
∆T

TA − T

or alternatively,

∆T =
1
2

(1 − ξ) (TA − T) . (20)

As an example, in Fig. 8, we present the behavior of the diffusion coefficient of TTI in TNB. It is easily seen that the diffusion
coefficient, given by the SE equation, shifted in temperature by the shift given in Eq. (20) fits well with the experimental
data for the same coefficient. We find the same behavior for the other tracers in TNB, and for the case of PDE and OTP and
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Fig. 8. TTI in TNB. Comparison between the experimental data for the diffusion coefficient (�) [47] and the values obtained by means of the temperature
shift given in Eqs. (18) and (20) in terms of the temperature (full line).

Fig. 9. The exponent ξ, obtained in this work, in terms of the ratio of the radii, ρ =
rT
rH

[35] for different tracers in different hosts, PDE (�), OTP (�) and
TNB (N).

their corresponding tracers. In each case, the temperature shift ∆T depends on the corresponding tracer in a host and the
value for TA that appears in Eq. (8). Thus, an horizontal shift on the diffusion coefficient may have the same influence of the
breakdown of the SE relation through the exponent ξ.

Furthermore, we have studied the dependence of ξ with the ratio ρ between the radius of the host and that of the tracer,
that is,

ρ =
rT
rH

where rT and rH are the radii of the tracer and the host,respectively, given in Tables 4 and 5. In Fig. 9, we have plotted values
of ξ for different tracers vs the ratio ρ for TNB, OTP and PDE. We can observe that the dependence of ξ on the ratio of the
radii is clearly an increasing function. In Fig. 10, we present values of ξ for the tracer TTI in nine different host liquids. Fig. 10
may indicate that the exponent ξ may depend on other parameters. For example, in Fig. 11 we present the dependence of ξ
on the glass transition temperature Tg of the host.

Analyzing our results, we find important evidence of the enhancement of the diffusion processes in small tracers. This
behavior decreases as the size of the tracer increases. This suggests that the Stokes–Einstein equation works well for tracers
large enough when compared with the size of the host molecule.



A. Andraca et al. / Physica A 387 (2008) 4531–4540 4539

Fig. 10. The exponent ξ, evaluated in this work and those given in reference [35] in terms of the ratio of the radii ρ =
rT
rH

for TTI in different hosts.

Fig. 11. The exponent ξ, evaluated in this work and those given in reference [35], in terms of the glass transition temperatures for TTI in different hosts.

4. Conclusions

As it has been discussed, for more than a decade, important experimental results have shown that the VFT equation for
the viscosity is not valid to fit the experimental data for the viscosity in the whole range of temperatures from Tg to Tm.
We present an expression for the viscosity in the region below Tc region that depends on a temperature TA that may be
expressed in terms of the isoentropic temperature T0 and Tc. We also show that two different VFT equations may be used to
fit separately the regions below and above Tc.

For small tracersweobserve that as the temperature is lowered towards Tg , in the region below the crossover temperature
Tc, the SE relation (2) breaks down presenting a pronounced enhancement of the diffusion of the tracer though an exponent
ξ < 1, whose value depends on the relative size of the tracer with respect to the host liquid and the glass transition
temperature of the host. We have noted that introducing a temperature shift on the diffusion coefficient may have the
same effect as the one observed in the breakdown of the SE equation. Particularly, the proper supersposition principle T − t
may be used to replace the use of the fractional power expression in terms of ξ in the diffusion coefficient in terms of the
viscosity.

Several scenarios may be taken into consideration to deal with the explanation of the decoupling between the viscosity
and the translational diffusion coefficient. The enhancement of the tracer diffusion coefficient over other kinds of relaxation
processes such as those described by the variables given in Eq. (4) may be explained assuming that, through supercooling
at low temperatures in the vicinity of Tg , the dynamics of the liquid becomes heterogeneous. One may picture mobile or
“fluid-like” regions that are responsible of the translational displacements, and less mobile “frozen solid-like” regions that
determine the structural relaxation. The dynamic heterogeneity provokes that the fluctuating processes in the liquid occur
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at different scales of length and time. On supercooling liquids, below Tc, besides the conventional hydrodynamic modes,
the hopping mode presents an important contribution [48,49,51]. Using these ideas, one may find several models in the
literature – such as the obstructionmodel –where the diffusion of a tracer ismodeled in terms of a diffusion process through
obstructions [49], and the simulations of the diffusion on three dimensional cubic lattices [50,51], both reproducing the same
results on the enhancement of the diffusion for small tracers.
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