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The role in superconductors of hole-Cooper-pairs (CPs) are examined and contrasted
with the more familiar electron-CPs, with special emphasis on their “background” effect
in enhancing superconducting transition temperatures Tc — even when electron-CPs
drive the transition. Both kinds of CPs are, of course, present at all temperatures. An
analogy is drawn between the hole CPs in any many-fermion system with the antibosons
in a relativistic ideal Bose gas that appear in substantial numbers only at higher and
higher temperatures. Their indispensable role in yielding a lower Helmholtz free energy
equilibrium state is established. For superconductors, the problem is viewed in terms
of a generalized Bose-Einstein condensation (GBEC) theory that is an extension of the

Friedberg-T.D. Lee 1989 boson-fermion BEC theory of high-Tc superconductors in that
the GBEC theory includes hole CPs as well as electron-CPs — thereby containing as well
as further extending BCS theory to higher temperatures with the same weak-coupling
electron-phonon interaction parameters. We show that the Helmholtz free energy of both
2e- and 2h-CP pure condensates has a positive second derivative, and are thus stable
equilibrium states. Finally, it is conjectured that the role of hole pairs in ultra-cold
fermionic atom gases will likely be negligible because the very low densities involved
imply a “shallow” Fermi sea.

Keywords: Superconductivity; fermionic atom superfluidity; hole-Cooper-pairs; Bose-
Einstein condensation; electron-phonon coupling.
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1. Introduction

Quantum many-body matter comprises a wide variety of both mass ρ and num-

ber densities n. For superconductors, superfluids and Bose-Einstein condensates

(BECs), a wide range of critical temperatures Tc is also present. For many-fermion

systems such as superconductors one has n = 1019−1023 cm−3 which implies Fermi

temperatures TF = 70−105K. For neutral-fermion superfluids, such as i) liquid-3He

one has n ' 1022 cm−3 (or ρ ' 0.1 g/cm3, i.e., about a 1/10th that of water) and

TF = 3 − 5K; ii) neutron-star matter ρ = 1015 g/cm3 and TF = 1012K; iii) dilute

mixtures of 3He in 4He; and iv) ultra-cold fermionic BECs with enormous average

spacings (when compared with inter-atomic potential ranges) ρ ' 10−8 g/cm3 and

TF < 10−6K.

Here, we survey the role of hole-Cooper-pairs in many-fermion gases, starting

with their analogy with antiparticles such as antineutrinos and antibosons in gen-

eral.

2. Role of Antiparticles

2.1. In high-energy physics

It is well-known that starting from the Einstein equation E = mrelc
2 relating the

energy E of a particle with relativistic mass mrel ≡ m/
√

1 − v2/c2 where m is the

particle rest mass, v its velocity and c the speed of light, as well as the relativistic

expression for linear momentum p = mrelv, one can readily deduce the relativistic

energy-momentum relation E2 = p2c2 + m2c4 for the particle. Solving for the energy

E leads to the two solutions E = ±(~2K2c2 + m2c4)1/2 ≡ ± | EK | . In 1928, Dirac

decided not to exclude the minus-sign solution and discovered antiparticles, the first

example of which was the antielectron or positron that was observed by Anderson in

1932. The simplest instance of the occurrence of antimatter in high-energy physics

is perhaps beta decay whereby an isolated neutron n decays into a proton p, an

electron e and an antineutrino νe, and occurs with a half-life of about 15 minutes,

namely

n → p + e + νe. (1)

Here, conservation of lepton number requires that the neutrino on the right-hand

side be an antiparticle. This contrasts with the inverse process

p + e → n + νe (2)

known as electron capture as occurs, e.g., under the influence of the enormous

gravitational attractions in the evolution of an ideal white dwarf into a neutron

star.
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2.2. In relativistic BEC

For any temperature T the correct energy-momentum relation of identical bosons

of mass m in a many-boson gas is, of course, not strictly EK = ~
2K2/2m but rather

|EK | ≡
√

c2~2K2 + m2c4 = mc2 + ~
2K2/2m + O(K4) if c~K � mc2 NR

= c~K[1 +
1

2
(mc/~K)2 + O(K−4)] if c~K � mc2 UR

where NR and UR stand for the nonrelativistic and ultrarelativistic limits. In the

UR case, the BEC singularity at T Nconst
c that follows by imposing constancy of the

total number of bosons N given by

N ≡ N0(T ) +
∑

K6=0

[exp β(| EK | −µ) − 1]−1 (3)

is well-known to be T Nconst
c = (~c/kB)[π2n/ζ(3)]1/3 where n ≡ N/L3 with L the

system size and ζ(3) ' 1.20206 is the Riemann Zeta function of order 3. Not surpris-

ingly, there is no mass m dependence. On the other hand, in the NR case one gets

the familiar formula T Nconst
c ' 3.31~

2n2/3/m which does have a mass dependence.

Indeed, both these expressions for T Nconst
c are special cases of a general dispersion

relation EK = CsK
s, with Cs a constant, in any dimensionality d and implying the

general Tc-formula1

kBT Nconst
c = Cs

[

sΓ(d/2)(2π)dn

2πd/2Γ(d/s)gd/s(1)

]s/d

(4)

where Γ(x) is the gamma function and gσ(1) ≡ ζ(σ) if σ > 1 but ∞ if σ ≤ 1.

This latter property leads to the well-known conclusion that Tc ≡ 0 ∀ d ≤ s but is

otherwise nonzero.

These results, however, ignore the appearance at higher and higher temperatures

of substantial numbers of antibosons. At high T ’s BEC must account for, say, N
′

antibosons along with N ′ bosons. Here, N
′
is N ′ as in (3) but with +µ instead of

−µ. Thus, in general it is not N ′ that is constant but rather N ′ −N
′
. The latter is

given by

(N ′ − N
′
) ≡ N ≡ nLd ≡

∑

K

(nK − nK) =
∑

K

{[exp{β(| EK | −µ)} − 1]−1 (5)

−same with µ → −µ}.
In the UR limit of this exact equation one can extract T N ′−N

′

const
c =

(~3/2c1/2/kB)(3n/m)1/2 which, surprisingly, now depends on m. The exact value

of the BEC Tc associated with (5) was found2 numerically to be higher than that

associated with (3) for all values of the dimensionless number density ~
3n/m3c3.

Their associated Helmholtz free energies were similarly found to be lower when

antibosons are not neglected as in (5) than when only bosons are included as in

(3). This means that the complete system with bosons as well as antibosons is the

stable thermodynamic state whereas the system without antibosons is a metastable

state.



October 13, 2008 15:8 WSPC/INSTRUCTION FILE 05012

4370 M. Grether et al.

BCS (1957)BCS (1957)
µµµµ(T) t EF, ∆∆∆∆(T)

generalized Bose-Einstein 
condensation

µ(µ(µ(µ(T),  ),  ),  ),  ∆(∆(∆(∆(T))))

Friedberg-
T.D. Lee (1989) 

model

ideal BF model

electron-CPs ���������������� ����������������
hole-CPs����

����	�����	�����	�����	�
������
���
������
���
������
���
������
���

��������	
��

���������	
��

����������������electron-CPs
�
��������������������hole-CPs

GBEC

TERNARY BF GAS BINARY BF GAS

BECBEC (1925)(1925)
mmBB = 2m2m

BCS-Bose 
crossover (1967)

Fig. 1. Flowchart showing how the GBEC theory reduces to: i) the BCS-Bose crossover theory
[defined by two coupled transcendental equations for ∆(T ) and µ(T )] whenever the number of
2e-CPs equals the number of 2h-CPs in both condensate n0(T ) = m0(T ) and noncondensate
nB+(T ) = mB+(T ); ii) the latter reduces to the ordinary BCS theory [defined by the gap equation
for ∆(T )] whenever interelectronic coupling λ is sufficiently small so that µ(T ) ' EF , the Fermi
energy; iii) the three theories shown on the rhs leg correspond to entirely ignoring 2h-CPs and
includes the ordinary BEC theory when all electrons are paired into bosons of mass 2m and
number density n/2 (i.e., strong coupling).

3. Hole-Cooper-Pairs in a Generalized BEC Theory

A generalized BEC theory (GBEC) of a ternary gas mixture — composed of two-

electron (2e)3 Cooper pairs (CPs), two-hole (2h) CPs and unpaired electrons — was

described earlier.4−6 It leads to three coupled transcendental equations for three

unknown functions of absolute temperature T which are n0(T ) (the condensate

number density of 2e-CPs), m0(T ) (the same for 2h-CPs) and the electron chemical

potential µ(T ).



October 13, 2008 15:8 WSPC/INSTRUCTION FILE 05012

Intriguing Role of Hole-Cooper-Pairs in Superconductors and Superfluids 4371

m0 (2h-BEC)

n0 

BEC (λ = ¶)

1/λ BCS for λ << 1

[if nB+(Τ) = mB+(Τ)]

,

(2p-BEC)

��� �
���

BCS-Bose crossover

Fig. 2. Parameter octant defined by the two condensate densities n0(T ) > 0 and m0(T ) > 0
as well as the (also nonnegative) inverse 1/λ > 0 of the interelectronic coupling λ, and valid in
principle at all temperatures T . The GBEC describes a ternary gas and holds in the entire octant.
The BCS-Bose crossover theory occurs only on the shaded plane defined by n0(T ) ≡ m0(T )
provided the additional restriction nB+(T ) = mB+(T ) is imposed whereby the total number of
2p noncondensate CPs equals that of 2h CPs. Here 2p refers to two-particle, i.e., two electrons
in superconductivity and two fermionic atoms (as opposed to two fermionic holes) in fermionic
superfluidity. BCS theory is valid along the forefront where λ � 1 of the shaded BCS-Bose
crossover plane. For quadratically-dispersive bosons the usual BEC theory ensues at the origin
of the octant where m0(T ) = 0 for all T and n0(Tc) = 0, giving there the implicit expression
Tc ' 3.31~2nB(T c)

2/3/2mkB . This result has the same form as the standard explicit BEC Tc-
formula for mass 2m bosons and where the boson number density nB is, of course, independent
of Tc.

The original BCS-Bose crossover picture for the electronic gap ∆(T ) and chem-

ical potential µ(T ) is now supplemented by the central relation

∆(T ) = f
√

n0(T ) = f
√

m0(T ) (6)

where f is a boson-fermion vertex interaction coupling constant inherent to the

GBEC theory. All three functions ∆(T ), n0(T ) and m0(T ) have the familiar “half-

bell-shaped” forms. Namely, they are zero above a certain critical temperature Tc,

and rise monotonically upon cooling (lowering T ) to maximum values ∆(0), n0(0)

and m0(0) at T = 0. The energy gap ∆(T ) is the order parameter describing the

superconducting (SC) [or superfluid (SF)] condensed state, while n0(T ) and m0(T )

are the BEC order parameters depicting the macroscopic occupation that occurs

below Tc in a BE condensate. This ∆(T ) is precisely the BCS energy gap if the

GBEC theory coupling f is made to correspond to
√

2V ~ωD where V and ~ωD
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Fig. 3. Order parameters (normalized to unity on both axes) of BCS theory and of the BEC
theory as related together by the GBEC theory in accordance with (7).

are the two parameters of the BCS model interelectronic interaction. Evidently, the

BCS and BEC Tcs are the same. Writing (6) for T = 0 and dividing this into (6)

gives the much simpler f -independent relation involving order parameters, as well

as temperatures T , normalized to unity in the interval [0, 1], namely

∆(T )/∆(0) =
√

n0(T )/n0(0) =
√

m0(T )/m0(0) −−→
T→0

1 as well as −−→
T≥Tc

0. (7)

The first equality, apparently first obtained in Ref. 8, connects in a simple way the

two heretofore unrelated “half-bell-shaped” order parameters of the BCS and the

BEC theories. The second equality4−6 implies that a BCS condensate is precisely a

BE condensate of equal numbers of 2e- and 2h-CPs. Figure 3 shows the relationship

between the normalized order parameters of BCS and BEC. Since (7) is independent

of the particular two-fermion dynamics of the problem, it can be expected to hold

for either SCs and SFs.

The insensitivity of Tc/TF exhibited in Fig. 3 as to whether BF vertex inter-

actions are present (f 6= 0) or not (f = 0) is a striking result that suggests how

“good” the zeroeth-order Hamiltonian H0 chosen in the GBEC Ref. 6, Eq. (1), and

how “unimportant” the interaction Hamiltonian Hint (which vanishes as f → 0)

Ref. 6, Eq. (2), turn out to be—at least in determining critical temperatures.
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Fig. 4. Phase boundary curve showing net two- to three-order-of-magnitude enhancement, over
the BCS prediction of Tc (in units of TF ) for the BCS model interaction with λ = 1/2 and
ΘD/TF = 0.005, obtained with the GBEC theory with f = 0 for the 2e-CP GBE condensate.
Square symbol on the extreme right give n/nf → ∞ limit of 2e-CP GBE condensate Tc/TF value
(third column of Table 1). The open circle marks the familiar value 0.218 (last column of Table
1) associated with an ideal Fermi gas in which all fermions are pair into bosons of mass 2m and
number density n/2; it is given for reference. RTSC stands for room-temperature superconductivity
in a material with TF = 103K. Inset highlights small differences in Tc/TF when calculations are
repeated with f 6= 0.

Table 1. GBEC 2e-CP condensate critical temperatures Tc/TF when n/nf → ∞. The
BCS value (dot in Fig. 4) is given by Tc/TF = 1.134(ΘD/TF ) exp(−1/λ) ' 0.0008
for λ = 1/2 and ΘD/TF = 0.005 and occurs as a special case of the GBEC phase
diagram at n/nf = 1. Note enhancements of Tc/TF above the familiar value of 0.218
(in bold) corresponding to a many-electron system with all electrons paired of asterisked
(∗) values associated with a hole-CP background present, i.e., mB+(T ) 6= 0, in the 2e-CP
condensate specified within the GBEC by the condition that the 2h-CP number density
in K = 0 state m0(T ) ≡ 0 for all T. Here n is the electron number density, nf (T ) the
unpaired-electron number density, εK = CsKs the bosonic CP dispersion (s = 1 or 2
signifying linear or quadratic), mB+(T ) the 2h-CP number density in all K > 0 states,
∆ the zero-temperature fermionic gap and 2∆ the zero-temperature bosonic CP gap in
the linearly-dispersive εK = 2∆+λ~vF K/4 Ref. 9 bosons moving in the Fermi sea, while
s = 2 refers to quadratically-dispersive εK = ~2K2/4m bosons (as, e.g., in Refs. 10 and
11) and is obviously independent of coupling λ. Uemura exotics data on both 2D and 3D
SCs is taken from Ref. 12 while the lowest shaded area refers to conventional 3D SCs.

3D (λ = 1/2 and ΘD/TF = 0.005) s = 1, 2∆ = 0 s = 1, 2∆ 6= 0 s = 2

with nf (T ) = 0 (i.e., all e’s paired) 0.129 0.130 0.218

with mB(T ) ≡ m0(T ) + mB+(T ) = 0 ∀ T 0.127 0.127 0.204
with m0(T ) = 0 but mB+(T ) 6= 0 ∀ T 0.359 0.361∗ 0.507∗
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4. Cold-atom BECs, Bosonic and Fermionic

Based on Ref. 13, p. 21, with additions and modifications, Table 2 reveals ranges

over 12 orders of magnitude in number density (in particles cm3) for several physical

systems. Also given, where appropriate, are condensation temperatures Tc. The

very-low-density conjectured “Efimov liquid” is based on Ref. 14.

Table 2. Number densities in particles/cm3 for a diverse variety of many-body systems. Also
given where appropriate are the critical temperatures Tc (in K) which refer to superconductor
or superfluidity or cold-atom BEC transition temperatures.

Many-body system statistics number density (cm−3) Tc (K)

electron gas in metals FD 1022 − 1023 0 − 23
liquid 4He BE ∼ 1022 2.2
liquid 3He FD ∼ 1022 2 × 103

exotic SCs (including cuprates) FD 1021 − 1022 1 − 164
Air (STP) [78% N2 + 21% O2 +· · ·] - ∼ 1019 -
ultracold Bose gases BE 1012 − 1015 10−8 − 10−5

ultracold Fermi gases FD 1012 − 1013 10−7 − 10−6

conjectured “Efimov liquid” BE or FD ∼ 1010 -

Below are compiled empirical parameters associated with both bosonic and

fermionic ultra-cold gases where BEC has been observed. Along with the usual

four states of matter—gas, liquid, solid and plasma—they constitute what have

sometimes been termed the Vth and VIth states.

Table 3. Ultra-cold bosonic-atom BEC (sometimes dubbed the “Vth state

of matter”) experimental parameters associated with trapped bosonic gases
in which BEC has been observed to date, N and N0 being the number of
atoms in the initial cloud and in the condensate, respectively; Tc the BEC
transition temperature; n0 the reported boson (or peak atom) number den-

sity at Tc of the condensate in cm−3; n
−1/3

0
is average interbosonic spacing

in Å.

BOSONS 87
37Rb 7

3Li 23
11Na 1

1H
85
37Rb

Year/Ref. 199515 199516 199517 199818 200019

N 4 × 104 2 × 105 5 × 105 - 3 × 108

N0 2 × 103 - - 109 104

Tc (µK) 0.17 0.4 2 50 0.015

n0 (cm−3) 2.5 × 1012 2 × 1012 1.5 × 1014 1.8 × 1014 1 × 1012

n
−1/3

0
(Å) 7, 368 7, 937 1, 882 1, 771 10,000
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BOSONS 4
2He 41

19K
133
55 Cs 174

70 Yb∗ 52
24Cr

Year/Ref. 200120 200121 200322 200323 200524

N 8 × 106 - 2 × 107 107 1.3× 108

N0 5 × 106 104 6.5× 104 5 × 103 5× 104

Tc (µK) 4.7 0.16 0.046 0.73 0.7

n0 (cm−3) 3.8× 1013 6 × 1011 1.3× 1013 7 × 1014 -

n
−1/3

0 (Å) 2, 974 11, 856 max 4, 253 1, 126 min -

∗of five stable isotopes.

Table 4. Ultra-cold fermionic-atom BEC (sometimes dubbed the
“VIth state of matter”) experimental parameters associated with
trapped fermionic gases in which BEC has been observed to Dec.
2007, N and N0 being the number of atoms in the initial cloud and
in the condensate, respectively; Tc the BEC transition temperature,
n0 the reported boson (or peak atom) number density of the conden-

sate at Tc in cm−3 and n
−1/3

0
is average interbosonic spacing in Å.

The lowest recorded temperature T ' 45 × 10−5µK Ref. 28 is ∼ 0.03
lower than lowest BEC critical temperature from Table 2 which is
T BEC

c (85Rb) = 0.015µK.

FERMIONS 6
3Li 40

19K 173
70 Yb (of 2 stable isotopes)

Year/Ref. 2003 25 2003 26 2007 27

N 3.5 × 107 1.4 × 106 -
N0 9 × 105 - -
Tc (µK) 0.6 0.07 cooled to T/TF = 0.37
n0 (cm−3) 7 × 1013 7 × 1012 -

n
−1/3

0
(Å) 2, 426 5, 228 -

5. Conclusion

We conclude that hole-Cooper-pairs play a significant role in determining the value

of the critical generalized BEC temperature at all temperatures, at least in super-

conductors, just as antibosons do in the relativistic ideal Bose gas problem at higher

temperatures where antibosons appear in substantial numbers. However, given that

in cold-atom fermion systems densities are so low, we conjecture that their role will

be significantly diminished.
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Appendix A. Stability of both 2e- and 2h-CP pure GBEC phases

The Helmholtz free energy per unit volume is by definition

F (T, Ld, µ, n0, m0)/Ld ≡ µn − P (T, Ld, µ, n0, m0) (A.1)

where P is the system pressure. A necessary condition for a stable equilibrium

thermodynamic state is a minimum in F with respect to n0 and m0, at fixed T ,

fixed number-density of electrons n = N/Ld and fixed electron chemical potential

µ = µ(T, n, n0). Here we show that both [∂2(F/Ld)/∂n2
0]n and [∂2(F/Ld)/∂m2

0]n
are positive definite in the GBEC theory. The thermodynamic potential per unit

d-dimensional volume is6

Ω(T, Ld, µ, n0, m0)/Ld ≡ −P (T, Ld, µ, n0, m0) =
∫ ∞

0

dεN(ε) [ε − µ − E(ε)] − 2 kBT

∫ ∞

0

dε N(ε) ln{1 + exp[−β E(ε)]} +

+[E+(0) − 2 µ] n0 + kBT

∫ ∞

0+

dε M(ε) ln{1 − exp[−β{E+(0) + ε − 2µ}]}+

+[2 µ− E−(0)] m0 + kBT

∫ ∞

0+

dε M(ε) ln{1− exp[−β{2µ − E−(0) + ε}]}

where N(ε) and M(ε) are the fermionic and bosonic, respectively, density of states,

while E+(0) and E−(0) are the phenomenological zero-center-of-mass-momentum

2e- and 2h-CPs, respectively. Here, the fermion spectrum E(ε) and fermion energy

gap ∆(ε) are related according to

E(ε) =
√

(ε − µ)2 + ∆2(ε) and ∆(ε) ≡ √
n0f+(ε) +

√
m0f−(ε). (A.2)

We first calculate (∂P/∂n0)µ and (∂P/∂m0)µ, which are

(∂P/∂n0)µ = −[E+(0) − 2 µ] +
f2

2

∫ Ef+~ωD

Ef

dε
N(ε)

E(ε)
tanh

1

2
βE(ε) (A.3)

(∂P/∂m0)µ = −[2 µ − E−(0)] +
f2

2

∫ Ef

Ef−~ωD

dε
N(ε)

E(ε)
tanh

1

2
βE(ε) (A.4)

where from (A.2) ∂E(ε)/∂n0 = f2/2E(ε) was employed. Next, letting x ≡ βE(ε)/2

one has

(∂P 2/∂n2
0)µ =

f4β2

16

∫ Ef+~ωD

Ef

dε
N(ε)

E(ε)

∂

∂x

[

tanh x

x

]

< 0 (A.5)

since ∂(tanh x/x)/∂x can be shown29 to be negative for all x > 0. Similarly, one

finds that

(∂P 2/∂m2
0)µ =

f4β2

16

∫ Ef

Ef−~ωD

dεN(ε)
1

E(ε)

∂

∂x

[

tanhx

x

]

< 0. (A.6)
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We then calculate
[

∂(F/Ld)

∂n0

]

n

= n

[

∂µ

∂n0

]

n

−
[

∂P

∂n0

]

n

= n

[

∂µ

∂n0

]

n

−
[

∂P

∂n0

]

µ

−
[

∂P

∂µ

]

n0

[

∂µ

∂n0

]

n

= −
[

∂P

∂n0

]

µ

(A.7)

since n = [∂P/∂µ]n0
. Next, for the pure 2e-CP GBEC phase one determines that

[

∂2(F/Ld)

∂n2
0

]

n

= −
[

∂

∂n0

]

n

[

∂P

∂n0

]

µ

= −
[

∂2P

∂n2
0

]

µ

−
[

∂µ

∂n0

]

n

[

∂

∂µ

]

n0

[

∂P

∂n0

]

µ

= −
[

∂2P

∂n2
0

]

µ

+

[

∂µ

∂n

]

n0

[

∂n

∂n0

]

µ

[

∂2P

∂µ∂n0

]

= −
[

∂2P

∂n2
0

]

µ

+

[

∂n

∂µ

]−1

n0

[

∂n

∂n0

]2

µ

> 0

where (A.5) was employed. The derivation to here closely follows that of Ref. 30.

Finally, we turn to hole-CPs where one can similarly show for the pure 2h-CP

GBEC phase that
[

∂2(F/Ld)

∂m2
0

]

n

= −
[

∂2P

∂m2
0

]

µ

+

[

∂n

∂µ

]−1

m0

[

∂n

∂m0

]2

µ

> 0

where (A.6) was used. QED. Thus, both pure phases are stable, equilibrium ther-

modynamic states. However, the 2h phase exhibits an unacceptable divergent Tc as

n/nf → 0 which will be investigated elsewhere.
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