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a b s t r a c t

The effect of the interplay between magnetism, charge ordering and lattice distortion within a like

double and super-exchange model is studied in low-dimensional systems. An important magnetoelastic

effect that leads to a lattice contraction is presented in conjunction with an analytical minimization for

a three-site one-dimensional model. The model is discussed in connection with the magnetism, charge

ordering and the contraction of the rungs experimentally observed within the three-leg ladders (3LL)

present in the oxyborate Fe3O2BO3.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

In 1950, Jonker and Van Santen proposed an empirical
correlation between ferromagnetism and electrical conduction
in certain compounds of manganese with perovskite structure [1].
This interplay between magnetism and electronic motion was
interpreted by Zener as an indirect spin coupling of incomplete d-
shells via the conducting electrons (the so-called double exchange
(DE) process [2]). The origin of the DE mechanism lies in the intra-
atomic Hund’s spin coupling JH of localized electrons with
itinerant electrons. It is the source of a variety of magnetic
behavior in transition metals and rare-earth compounds. Accord-
ing to Hund’s rule, this intra-atomic spin coupling is ferromag-
netic (F) when the local spins have less than half-filled shells and
antiferromagnetic (AF) otherwise. Pauli’s principle also implies an
AF spin coupling between the spin of conduction electrons and
the spin of localized electrons in more than half-filled localized
shells [3]. A similar AF coupling also occurs in Kondo systems via
the so-called s–d exchange model. In this case, local spins are from
a d-shell or f-shell while the conduction electrons are from s or p
states. Independently of the sign of the coupling, the kinetic
energy lowering, favors a F background of local spins. This F
tendency is expected to be thwarted by AF super-exchange (SE)
ll rights reserved.
interactions between localized spins S
!

i. This was first discussed
by de Gennes [4] who conjectured the existence of canted states.
In spite of recent interesting advances our knowledge of magnetic
ordering resulting from this competition is still incomplete.

It has been shown recently that three-leg ladders (3LL) in the
oxyborate system Fe3BO5 may provide evidence for the existence
of spin and charge ordering resulting from a DE+SE competition
[5]. The former Fe–oxyborate known as Fe–ludwigite contains
subunits in the form of 3LL of Fe cations. It also presents an
interesting structural and charge ordering transition at Tc � 283 K
such that long and short bonds on the rungs alternate along the
ladder axis [6]. As evidenced by Mössbauer studies [7,8] and X-ray
diffraction [9] each rung can be viewed as three Fe3þ ions (triad)
with high-spin S ¼ 5

2 local spins sharing an extra itinerant electron.
Additional X-ray diffraction studies have shown an important
contraction of the triads [10].

In this report, the effect of the interplay between magnetism,
charge ordering and lattice distortion within a like double and
super-exchange model is studied in low-dimensional systems. An
important magnetoelastic effect is shown due to this interplay. An
analytical minimization is presented for a three-site model. The
model is discussed in connection with the magnetism, charge
ordering and the contraction of the triads experimentally
observed within the 3LL present in the oxyborate Fe3O2BO3. The
paper is organized as follows. In Section 2 a brief description of
the model is given. Section 3 presents the results and a discussion.
Finally, the results are summarized in Section 4.
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2. The model

The DE Hamiltonian is originally of the form

H ¼ �
X
i;j;s

ti;jðc
þ

iscjs þ h:c:Þ � JH

X
i

Si

!

�s
!

i, (1)

where cþisðcisÞ are the fermions creation (annihilation) operators of
the conduction electrons at site i and spin s, ti;j is the hopping
parameter and JH is Hund’s exchange coupling. Here, Hund’s
exchange coupling is an intra-atomic exchange coupling between
spins of conduction electrons s!i and the spin of localized
electrons S

!
i. Because of the exactly half-filled shells in the

Fe–ludwigite, this Hamiltonian simplifies in the strong coupling
limit JH !�1. This limit is similar to the commonly called the DE
model JH !1 used basically in manganite systems. Due to the
high-spin configuration S ¼ 5

2 of local spins in the triads in the 3LL
Fe–ludwigite, classical localized spins S

!
i!1will be used in this

work. The like DE Hamiltonian takes the well-known form

H ¼ �
X

i;j

ti;j cos
yi;j

2

� �
ðcþi cj þ h:c:Þ. (2)

In the Fe–ludwigite a spinless model is obtained because of the
antiparallel spin orientation of itinerant electrons with respect to
the spin of localized ions. yi;j is the relative angle between the
classical localized spins at sites i and j which are specified by their
polar and azimuth angles fi and ji, respectively, defined with
respect to a z-axis. This axis is taken as the spin quantization axis
of the itinerant electrons. The like DE+SE Hamiltonian in one
dimension becomes

H ¼ �
X

i

ti;iþ1 cos
yi

2

� �
ðcþi ciþ1 þ h:c:Þ þ J

X
i

S
!

i � S
!

iþ1, (3)

where yi;iþ1 ¼ yi, and J is the super-exchange interaction energy.
Finally, the effect of lattice distortion will be considered. For

this goal, the complicated inter-atomic potential will be repre-
sented using classical springs to join the localized atoms. The
spring forces are assumed to be linear (small displacements,
Hooke’s law). The hopping term changes as ti;iþ1 ¼ tð1þ diÞ with
�15di51 being di the i-spring displacement because of lattice
distortion. Elastic energies B and V will be introduced. Similar to a
boundary condition, an additional elastic energy V will be
considered to avoid a large displacement of the final atom. It is
important to show that this elastic energy V and the new lattice
distortion proposed in this work (an extra degree of freedom)
were not considered in Ref. [5]. This new lattice distortion gives
the possibility to study the contraction of the triads experimen-
tally observed using X-ray diffraction techniques in the Fe–lud-
wigite system [10]. The complete Hamiltonian is given by

H ¼ � t
X

i

ð1þ diÞ cos
yi

2

� �
ðcþi ciþ1 þ h:c:Þ

þ JS2
X

i

cosðyiÞ þ B
X

i

d2
i þ V

X
i

di

 !2

. (4)

In the 3LL Fe–Ludwigite the distance between Fe ions along the
c-axis of the ladder is 3.071 Å. Within the rungs, in the high
temperature phase, this distance corresponds to 2.786 Å. These
distances are not too large to avoid overlap among the 3d orbitals
of the Fe ions [11]. It has been shown recently that magnetic
interactions are important in Fe–ludwigite [5]. Vallejo and
Avignon presented an A-phase, fully F localized spins inside the
rungs and AF ones along the c-axis of the ladder. This is in
qualitative agreement with the magnetic structure proposed from
neutron experiments at 82 K [5,9]. In the former magnetic phase it
is clear that electronic displacement along c-axis of the ladder is
considerably reduced. Itinerant electrons are found basically in
the triads. On the other hand, lattice distortion was also found
mainly perpendicular to the c-axis therefore, in a first approxima-
tion, a three-site one-dimensional model could be used. The
approach used in this paper is completely different to the used in
Ref. [5]. For example, different Hamiltonian, symmetry, boundary
conditions, lattice distortion and phase factor of hopping were
used [5].
3. Results and discussion

Eq. (5) will be used to solve Eq. (4) for three sites and one
electron.

0 t1;2 0

t1;2 0 t2;3

0 t2;3 0

0
B@

1
CAjCi ¼ ZjCi, (5)

where t1;2 ¼ �tð1þ d1Þ cosðy1=2Þ, t2;3 ¼ �tð1þ d2Þ cosðy2=2Þ and Z

is the kinetic energy. In Eq. (5) the corresponding eigenvalues are

Zo ¼ 0 and Z� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

1;2 þ t2
2;3

q
. For one electron only Z� will be

considered. For Z� the corresponding normalized eigenvector is

jCi� ¼
t1;2ffiffiffi
2
p

Z�
j1i þ

1ffiffiffi
2
p j2i þ

t2;3ffiffiffi
2
p

Z�
j3i. (6)

Charge distribution in i-site is easily obtained using the former
eigenvector as ni ¼ hijCi�hCjii. It is clear that charge distribution
on site two is constant and always 1

2. This behavior was observed
using Mössbauer studies (40 KoTo160 K) [8]. The total energy U

can be obtained as

U ¼ Z� þ EMag þ EElas, (7)

where

EMag ¼ JS2
ðcosðy1Þ þ cosðy2ÞÞ and

EElas ¼ Bðd2
1 þ d2

2Þ þ Vðd1 þ d2Þ
2.

An analytical minimization was made for two angles y1 and y2

and two spring displacements d1 and d2. To obtain this
minimization, critical points were considered. The condition of
being a critical point is either the derivative (Jacobian in vector
calculus or gradient to every smooth function in the presence of a
Riemannian metric or a symplectic form) vanishes, or it is not of
full rank (or, in either case, the function is not differentiable). In
this paper only stationary points were calculated. A stationary
point is a critical point where the function stops increasing or
decreasing (the derivative or the gradient are equal to zero). The
condition of local minimum can be calculated using the Jacobian
of the gradient. That is the Hessian matrix. The condition of local
minimum is obtained for a non-degenerate critical point (the
determinant of the Hessian matrix is non zero) when all
eigenvalues of the Hessian matrix are positive. A local maximum
is the case when all the eigenvalues are negative and it is a saddle
point otherwise. For a degenerate critical point (the determinant
of the Hessian matrix is zero) the test can be inconclusive.

In this paper, to calculate the stationary points and the local
minimum condition, the total energy (Eq. (7)) and the first and the
second derivatives are required. A total energy as a function of xN

variables U ¼ Uðx1; x2; . . . ; xNÞ is chosen. Next, it is necessary to
choose a variable xi as a starting point. The first partial derivative
of the total energy as a function of xi equals zero gives
xi;mðx1;x2; . . . ; xNÞ where xi;m is not a function of xi. This means
qU=qxij ðx1 ;x2 ;xi;m ;...;xN Þ ¼ 0: To guaranty the first partial derivative of
xi at xi;m equals zero xi must be substituted for xi;m in total energy.
To obtain all set fxi;mg (for i ¼ 1 to N) we choose another variable
and follow the steps previously indicated. The point fxi;mg is a
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Fig. 2. Same as Fig. 1 but for the case B=t ¼ 2:3 and V=t ¼ 150.

E. Vallejo / Journal of Magnetism and Magnetic Materials 321 (2009) 640–643642
stationary point because

r
!

Ujfxi;mg
¼
XN

i¼1

qU

qxi

�����
fxi;mg

x
^

i ¼ 0. (8)

Local minimum condition is obtained using Hessian matrix
HðUðx1; x2; . . . ; xNÞÞi;j ¼ DiDjUðx1; x2; . . . ; xNÞ: Dm is the differentia-
tion operator with respect to the mth argument. When all
eigenvalues of the Hessian matrix are positive, a local minimum
condition can be achieved.

Analytical solution of Eq. (4) implies basically four angular
phases for the condition Ba1. If the following arrangement is
considered ðy1; y2;d1; d2Þ the stationary points are ð0;0; d1;m; d2;mÞ;

ð0; y2;m; d1;m; d2;mÞ; ð0;p; d1;m; d2;mÞ and ðy1;m;p; d1;m; d2;mÞ: For B!

1 two stationary points were found. The point ð0;0;0;0Þ and the
general stationary point ðy1; y2;0;0Þ. The first point is a local
minimum for the condition ð1=4

ffiffiffi
2
p
Þ4ðJS2=tÞ: The second one is

degenerated with the following degeneracy condition:

cosðy1Þ þ cosðy2Þ ¼
1

8
JS2

t

 !2
� 2. (9)

This degeneracy condition gives complete antiferromagnetism as
JS2=t!1. The former general stationary point is a singular point
or a degenerate critical point because it presents eigenvalues zero
in the Hessian matrix. This solution gives a natural spin-glass
behavior.

Figs. 1 and 2 present the phase diagram for two sets of typical
values of the elastic energy B and the boundary elastic energy V.
The value of the elastic energies B and V have been chosen to
guarantee: (a) small displacements of all the atoms and (b) small
spring displacements in the three-site chain.

For low super-exchange interaction energies JS2=to0:17886
(Fig. 1) and JS2=to0:17698 (Fig. 2) the following F local minimum
solution has been found

0;0;
1

2
ffiffiffi
2
p B

t
þ 2

V

t

� � ; 1

2
ffiffiffi
2
p B

t
þ 2

V

t

� �
0
BB@

1
CCA. (10)

The former phase is a magnetic phase that has been observed
experimentally in the triads at 82 K [9]. In this phase d1 ¼ d2 for
Fig. 1. Phase diagram as a function of the SE energy JS2=t , for typical values of the

elastic energy B=t ¼ 30 and V=t ¼ 0. Lines in this diagram represent a guide for the

eyes.
symmetry reasons. Another important stationary point was found,

0;p;

B

t
þ

V

t

2
B

t

B

t
þ 2

V

t

� � ; �
V

t

2
B

t

B

t
þ 2

V

t

� �
0
BB@

1
CCA, (11)

where the local minimum condition is given by

B

t
40,

B

t
þ 2

V

t
40,

2
B

t

B

t
þ 2

V

t

� �
þ

B

t
þ

V

t

8
B

t

B

t
þ 2

V

t

� � 4
JS2

t
and

2
B

t

B

t
þ 2

V

t

� �
�

V

t

� �2

8
B

t

B

t
þ 2

V

t

� �
2

B

t

B

t
þ 2

V

t

� �
þ

B

t
þ

V

t

� �o
JS2

t
. (12)

The former conditions were obtained using the Hessian matrix
and the condition that all the eigenvalues of the Hessian matrix
are positive. Between ð0;0; d1;m; d2;mÞ and ð0;p; d1;m; d2;mÞ phases it
was found the phase ð0;y2;m; d1;m;d2;mÞ shown in Figs. 1 and 2. For
high super-exchange interaction energy, phase ðy1;m;p; d1;m; d2;mÞ

was obtained. For this phase the stationary point is given by

y1;m ¼ arccos
ð1þ d1;mÞ

2

8
JS2

t

 !2
� 1

0
BBBBB@

1
CCCCCA,

y2;m ¼ p,

d1;m ¼

B

t
þ

V

t

�
B

t
þ

V

t

� �
þ 8

JS2

t

B

t

B

t
þ 2

V

t

� � and

d2;m ¼

�
V

t

�
B

t
þ

V

t

� �
þ 8

JS2

t

B

t

B

t
þ 2

V

t

� � . (13)

Lattice contraction is given by d1 þ d2a0 (Figs. 1 and 2). This
contraction was obtained because of an important magnetoelastic
effect given by the interplay between magnetic interactions and
lattice distortion. At low temperature T ¼ 15 K X-ray diffraction
studies propose d2�� d1 and d1 þ d2a0 [10]. The X-ray studies
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Fig. 3. Charge ordering for B=t ¼ 30 and V=t ¼ 0.

Fig. 4. Same as Fig. 3 but in this case B=t ¼ 2:3 and V=t ¼ 150.
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are more easily improved in a y1ay2 magnetic phase as shown in
Fig. 2 for basically JS2=t40:177. Fig. 2 shows that the experimental
results (at low temperature) of magnetic ordering and lattice
contraction can be obtained for the condition JS2=t�0:18. Fig. 2
also shows that for JS2=t ¼ 0:18 ðy1 ¼ 0 and y2 ¼ 1:15477Þ, a
magnetic phase observed experimentally in the triads at 10 K [9].
At JS2=t ¼ 0:18 the following triads distortion ðd1�� d2 and d1 þ

d2a0Þ were found in a good qualitative behavior as observed by
X-ray diffraction [10].

Charge distribution is presented in Figs. 3 and 4 for these two
sets of values of the elastic energy B=t and V=t. Charge distribution
is crucial in the Fe–ludwigite ladder so it will be analyzed in detail
(see Figs. 3 and 4). Experimentally [7,8] two charge regimes were
identified: (i) above Tc sites 1 and 3 are identical n1 ¼

n3�0:2520:3 while the central site 2 has more electrons n2�0:5
and (ii) below Tc down to 74 K the charge on site 1 (the site which
gets closer to site 2) increases close to the charge of site 2 which
remains stable, n2 � n1�0:5, and at the same time the charge of
site 3 decreases to n3�0:15. These values [9] indicate only the
tendencies since one should have n1 þ n2 þ n3 ¼ 1. However,
below 74 K, two contradictory behaviors have been reported
[8,9,12]. Bordet and Douvalis et al. [9,12] found that the low
temperature ordering below Tc persists down to T ¼ 0, while
Larrea et al. [8] recovered the same charge ordering as above Tc

[5]. The experimental results of Bordet at 10 K [9] are obtained in
this paper for ðJS2=t ¼ 0:18; B=t ¼ 2:3 and V=t ¼ 150Þ. In this
regimen charge ordering behavior is given by n2 ¼ 0:5 and n14n3.
Lattice distortion is also obtained for these conditions in a good
qualitative behavior as observed at 15 K by X-ray diffraction [10].

The high temperature regime of the Ludwigite system could be
obtained in this model taking the F phase. A magnetic phase that
has been observed experimentally in the triads at T ¼ 82 K [9].
Charge ordering in this case is given by ðn2 ¼ 0:5;n1 ¼ n3 ¼ 0:25Þ.
4. Conclusions

In this paper, a three-site one-dimensional exchange model
with lattice distortion was presented. An analytical solution of this
model was shown to study the magnetic-charge ordering and
lattice distortion properties of the triads in the 3LL Fe3O2BO3

Ludwigite. An important magnetoelastic effect was found due to
the interplay between magnetic interactions and lattice distor-
tion. Magnetic phases, charge ordering and lattice contraction
were obtained in a good qualitative behavior as observed by
neutron [9] and X-ray [10] studies, respectively.
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