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a b s t r a c t

An analytical and numerical study of the one-dimensional double and super-exchange model is
presented. A phase separation between ferromagnetic and anti-ferromagnetic phases occurs at low
super-exchange interaction energy. When the super-exchange interaction energy gets larger, the
conduction electrons are self-trappedwithin separate small magnetic polarons. Thesemagnetic polarons
contain a single electron inside two or three sites depending on the conduction electron density and form
a Wigner crystallization. A new phase separation is found between these small polarons and the anti-
ferromagnetic phase. Our results could explain the spin-glass-like behavior observed in the nickelate
one-dimensional compound Y2−xCaxBaNiO5.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetic ordering of localized spins mediated by nonmagnetic
conduction electrons, the so-called double exchange (DE) or
indirect exchange, is the source of a variety of magnetic
behavior in transition metal and rare-earth compounds [1].
Conversely, this interplay affects the mobility of the carriers and
may lead to interesting transport properties such as colossal
magnetoresistance in manganites. The origin of the DE lies in
the intra-atomic coupling of the spin of the itinerant electrons

with localized spins
→

Si . In this coupling, localized and itinerant
electrons belong to the same atomic shell. According to Hund’s
rule, the coupling is ferromagnetic (F) when the local spins
have less than half-filled shells and anti-ferromagnetic (AF) for
more than half-filled shells [2]. This mechanism has been widely
used in the context of manganites [2–4]. A similar coupling also
occurs in Kondo systems via the so-called s–d exchange model.
In this case, local spins are from a d shell (or f shell in rare-
earth compounds) while the conduction electrons are from s
or p states and the coupling is anti-ferromagnetic. In recent
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literature the ferromagnetic coupling case is often referred to as
the Ferromagnetic Kondo model. Independently of the sign of the
coupling, the ‘‘kinetic’’ energy lowering, favors a F background
of local spins. This F tendency is expected to be thwarted by AF

super-exchange (SE) interactions between localized spins
→

Si as
first discussed by de Gennes [5] who conjectured the existence
of canted states. In spite of recent interesting advances, our
knowledge of magnetic ordering resulting from this competition
is still incomplete.
Although it may look academic, the one-dimensional (1D)

version of this model is very illustrative and helpful in building
an unifying picture. On the other hand, the number of pertinent
real 1D systems as the nickelate one-dimensional metal oxide
carrier-doped compound Y2−xCaxBaNiO5 [6] is increasing. In this
compound, carriers are essentially constrained to move parallel
with NiO chains and a spin-glass-like behavior was found at very
low temperatures T . 3 K for typical dopings x = 0.045, 0.095
and 0.149. Recently, it has been shown that three-leg ladders in the
oxyborate system Fe3BO5 may provide evidence for the existence
of spin and charge ordering resulting from such a competition [7].
Naturally, the strength of the magnetic interactions depends

significantly on the conduction band filling, x. At low conduction
electron density, F polarons have been found for localized S =
1/2 quantum spins [8]. ‘‘Island’’ phases, periodic arrangement

http://www.elsevier.com/locate/ssc
http://www.elsevier.com/locate/ssc
mailto:emapion@yahoo.com
http://dx.doi.org/10.1016/j.ssc.2008.11.001


E. Vallejo et al. / Solid State Communications 149 (2009) 126–130 127
of F polarons coupled anti-ferromagnetically, have been clearly
identified at commensurate fillings both for quantum spins in
one dimension [9] and for classical spins in one [10] and two
dimensions [11]. Phase separation between hole-undoped anti-
ferromagnetic and hole-rich ferromagnetic domains has been
obtained in the Ferromagnetic Kondomodel [12]. Phase separation
and small ferromagnetic polarons have been also identified for
localized S = 3/2 quantum spins [13]. Therefore, it is of
importance to clarify the size of the polarons, and whether it
is preferable to have island phases, separate small polarons or
eventually large polarons.
In this paper, we present an analytical and numerical study

of the one-dimensional double and super-exchange model. Our
results provide a plausible understanding of the ground state of the
nickelate 1D compound Y2−xCaxBaNiO5 allowing a straightforward
explanation of its spin-glass-like behavior [6]. The paper is
organized as follows. In Section 2 a brief description of themodel is
given. In Section 3, results and a discussion are presented. Finally,
our results are summarized in Section 4.

2. The model

The DE Hamiltonian is originally of the form,

H = −
∑
i,j;σ

tij(c+iσ cjσ + h.c.)− JH
∑
i

→

Si ·
→

σ i, (1)

where c+iσ (ciσ ) are the fermions creation (annihilation) operators of
the conduction electrons at site i, tij is the hopping parameter and
→

σ i is the electronic conduction band spin operator. In the second
term, JH is the Hund’s exchange coupling. Here, Hund’s exchange
coupling is an intra-atomic exchange coupling between the spin

of conduction electrons
→

σ i and the spin of localized electrons
→

Si .
This Hamiltonian simplifies in the strong coupling limit JH → ∞,
a limit commonly called itself the DE model. We will consider the

local spins as classical
→

Si → ∞, a reasonable approximation in
many cases in view of the similarity of the known results [9,12].
The DE Hamiltonian takes the well-known form,

H = −
∑
i,j

ti,j cos
(
θi,j

2

)
(c+i cj + h.c.). (2)

The itinerant electrons being now either parallel or antiparallel
with the local spins are thus spinless. θi,j is the relative angle
between the classical localized spins at sites i and j which are
specified by their polar anglesφi,ϕi definedwith respect to a z-axis
taken as the spin quantization axis of the itinerant electrons. The
super-exchange coupling is an anti-ferromagnetic inter-atomic

exchange coupling between localized spins
→

Si . The complete one-
dimensional DE+ SE Hamiltonian becomes,

H = −t
∑
i

cos
(
θi

2

)
(c+i ci+1 + h.c.)+ J

∑
i

→

S i ·
→

S i+1, (3)

where θi,i+1 = θi and J is the super-exchange interaction energy.

3. Results and discussion

In this section, we determine the complete phase diagram in
one dimension as a function of the super-exchange interaction
energy J and the conduction electron density x, showing that up
to now the model has not revealed all its richness. Besides the
quantum results already published [8,9,13] we find two types
of phase separation. In addition to the expected F–AF phase
separation appearing for small J , we obtain a new phase separation
Fig. 1. Magnetic phase diagram as a function of the SE energy J and the conduction
electron density x. A dotted line in this diagram represents a guide for the eyes. The
different phases are described in the text.

Fig. 2. P2 phase for x = 1/2, showing N − 1 angles (θ ) and charge distribution (n).
Angles in this figure are 0 or π exactly.

between small polarons (one electron within two or three sites)
and AF regions for larger J . It is interesting to note that large
polarons are never found stable in this limit.
The magnetic phase diagram has been obtained at T = 0 K

by using open boundary conditions on a linear chain of N = 60
sites. For a given conduction electron density x (0 ≤ x ≤ 0.5
because of the hole–electron symmetry), we have to optimize all
the N−1 angles θi. For this goal, we use an analytical optimization
and a classical Monte Carlo method. The analytical solution has
been tested as a starting point in the Monte Carlo simulation.
Our results are summarized in Fig. 1, showing the whole

magnetic phase diagram.
For the commensurate fillings x = 1/2 and 1/3, we recover the

‘‘island’’ phases with ferromagnetic polarons (θi = 0) separated by
antiferromagnetic links (θi = π ), P2 (· · · ↑↑↓↓↑↑↓↓↑↑↓↓ · · ·)
and P3 (· · · ↑↑↑↓↓↓↑↑↑↓↓↓ · · ·), Figs. 2 and 3 respectively,
identified previously for classical [10] and S = 1/2 quantum [9]
local spins. In the quantum case, the real space spin–spin
correlations illustrate such structures. For these phases, the
analytical optimization implies angles 0 or π exactly.
The electrons are individually self-trapped in small indepen-

dent ferromagnetic polarons of two and three sites respectively
forming a Wigner crystallization. In reference [14], a spiral phase
has been proposed instead of the P2 phase for x = 1/2. The ferro-
magnetic phase is stable for weak SE interaction below P2 phase,
P2 phase becomes stable for 2

π
−
1
2 < JS

2/t < 1
4 . For JS

2/t > 1
4 , P2
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Fig. 3. P3 phase for x = 1/3, showing the same as in Fig. 2.

transforms into a canted polaron phase CP2 in which the angle in-
side the F islands becomes finite (θ1) while the angle between the
polarons (θ2) still keeps the valueπ . A complete analytical solution
can be derived in this case.
Similar phases P3 and CP3 are obtained for x = 1/3. In CP3,

two angles θ1, θ2 are finite inside the 3-site polaronwhile, between
polarons, θ3 = π . This phase has a general continuous degeneracy
within each 3-site polaron given by the condition,

cos(θ1)+ cos(θ2) =
1

8(JS2/t)2
− 2. (4)

An example of this degeneracy of the spin configuration is clearly
seen in Fig. 8 where different sets of angles (θ1, θ2) appear within
the CP3 phase. Both CP2 and CP3 evolve towards complete anti-
ferromagnetism as JS2/t → ∞, see Eq. (4). P3 → CP3 at
JS2

t =
1
4
√
2
. These phases result from the ‘‘spin-induced Peierls 2kF

instability’’ due to the modulation of the hopping with I = 1/x
angles. For lower commensurate fillings x < 1/3, such PI polaron
phases are not found stable. Instead, next to the F phase at low J
we find AF–F phase separation. Of course, an anti-ferromagnetic
phase always occurs at x = 0. Fig. 1 shows that when the SE
interaction energy is small JS2/t . 0.12, the F phase occurs for a
large conduction electron density. The F–AF transition is given by
the F–AF phase separation (AF+ F in Fig. 1) consisting of one large
ferromagnetic polaron within an AF background as can be seen in
Figs. 4 and 5, for a typical value of JS2/t = 0.04. All electrons are
inside the polaron. The position of the polaron within the linear
chain is not important because of translation degeneracy. These
figures also show charge distribution (n) inside each polaron and
a spin configuration snapshot. In this region, the polarons’ size
diminishes with the conduction electron density, (Figs. 4 and 5).
For this F–AF phase separation, the analytical optimization implies
angles 0 andπ exactly for the F andAFdomains respectively (Figs. 4
and 5). In the thermodynamic limit N →∞, and forM � 3 sites
(M being the size of the F domain), the energy is obtained as,

U
Nt
= −2x cos (xoπ)−

JS2

t
, (5)

for x ≤ xo. xo corresponds to the Maxwell construction between
the anti-ferromagnetic energy U

Nt = −
JS2

t and the ferromagnetic

one UNt = −
2
π
sin (xπ)+ JS2

t . xo is given by the following equation,

xo cos (xoπ)−
1
π
sin (xoπ)+

JS2

t
= 0. (6)

The corresponding boundary given by Eq. (6) is shown by the full
line in Fig. 1. The analytical results for N = 60 sites are very
Fig. 4. AF + F phase at x = 0.05 (3 electrons) and JS2/t = 0.04, showing N − 1
angles, charge distribution and a spin configuration snapshot.

close to this line.When the conduction electron density gets larger
x ≥ xo, the F–AF phase separation becomes the F phase. The size
of the ferromagnetic polaron in the thermodynamic limit (N →
∞,M � 3) is ε = M

N =
x
xo
, for x ≤ xo, and ε = 1 in the

ferromagnetic phase. An important effect of lattice distortion is
expected between these F and AF domains [7]. The effect of lattice
distortion can be studied in the F–AF phase separation using the
following density matrix elements. Inside the F domain the matrix
elements are given by,

ρi,j =
2

M + 1

xN∑
p=1

(
sin

(p)(i)π
M + 1

)(
sin

(p)(j)π
M + 1

)
. (7)

Between F–AF domains and within AF domains the matrix
elements are zero. These density matrix elements suggest an
important lattice distortion inside F domains and null between
F–AF domains and within AF domains. This lattice distortion could
be detectable for example using neutron diffraction techniques
as in La2CuO4+δ [12]. Charge distribution is easily obtained for
ni = ρi,j=i (Figs. 2–7). For example in Fig. 6, charge distribution
of the F phase can be observed for 25 electrons and at JS

2

t =

0.04. For small SE interaction, the F–AF phase separation has been
reported in two dimensions [15], in one dimension using classical
localized spins and JH = 8 [14] and in the one-dimensional
ferromagnetic Kondo model [16]. Quantum results for S = 3/2,
showed phase separation when Coulomb repulsion was taken
into account [13]. We can see that in this limit, our results differ
from those of Koshibae et al. [10] within the ‘‘spin-induced Peierls
instability’’ mechanism.
At low concentration x < 1/3, if the SE interaction energy

increases 0.12 . JS2/t . 1
4
√
2
, we find a new phase separation

between P3 and AF phases as shown in Figs. 1 and 7. It transforms
into AF + CP3 for JS2/t > 1

4
√
2
as P3 becomes CP3. A phase such

as AF + P3(CP3) has been identified using S = 3/2 quantum
spins [13]. Figs. 7 and 8 show the AF + P3 and the AF + CP3
phases with 12 electrons among the 60 sites for typical values
of the SE interaction energy JS2/t = 0.13 and JS2/t = 0.20
respectively. These phase separations consisting in P3 or CP3
phases in an AF background and they are degenerate with phases
where the polarons can be ordered or not, while keeping the
number of F and AF bonds fixed. The phase obtained within
the ‘‘spin-induced Peierls instability’’ [10] belongs to this class.
The former degeneracy unifies ideas like phase separation and
individual polarons and gives a natural response to the instability
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Fig. 5. The same as in Fig. 4, but at x = 0.20 (12 electrons).

Fig. 6. F phase at x = 25
60 (25 electrons) and JS

2/t = 0.04, showing the same as in
Fig. 4.

at the Fermi energy and to an infinite compressibility as well. In
the thermodynamic limit, P3–AF phase separation energy is given
by the following equation

U
Nt
=

(
−
√
2+ 4

JS2

t

)
x−

JS2

t
. (8)

We find that the AF+F→ AF+P3 transition is first order. In Fig. 1,
the transition line JS2/t ' 0.12between the twophase separations
AF+ P3 and AF+ F has been determined using the corresponding
energies in the thermodynamic limit. Density matrix elements
suggest a large lattice distortion within each 3-site polaron in P3
phase. Charge distribution among the 3 sites i = 1, 2, 3 inside each
polaron is n1 = n3 = 1

4 and n2 =
1
2 , see Fig. 7.

Phase separation also takes place for fillings between x = 1/2
and x = 1/3 for SE interactions JS2/t ≥ 1

4
√
2
. It is between

CP3 and P2 or CP2 due to the canting inside the P2 polaron with
increasing J . The transition between the two occurs for JS2/t =
0.25, where P2 → CP2. Again, due to the AF links between the
polarons these phase separations are degenerate with respect to
the position of the two types of polarons. Below CP3 + P2, the
phase labeled T in Fig. 1 is a more general complex phase obtained
by the Monte Carlo method and can be polaronic like or not.
Close to the boundary with CP3 + P2 this phase resembles the
P3 + P2 phase separation, so as seen in Fig. 1, the transition line
Fig. 7. AF+ P3 phase at x = 0.20 (12 electrons) and JS2/t = 0.13, showing N − 1
angles, charge distribution and a spin configuration snapshot.

Fig. 8. AF + CP3 phase at x = 0.20 (12 electrons) and JS2/t = 0.20, showing the
same as in Fig. 7.

JS2/t = 1
4
√
2
, corresponding to P3 → CP3, is second order. This

boundary also extends in the region x < 1/3 between AF+ P3 and
AF + CP3. For the SE interaction region JS2/t > 1

4 (JS
2/t = 1

4 is
shown by the short-dotted line in Fig. 1), the spin configurations
(θ1, π ) or (π, θ2), i.e a CP2 polaron plus an AF link, belong to all
the possible degenerate configurations of CP3 polarons as can be
seen from Eq. (4). This means that in this region phase separation
AF+ CP3 may also contain a number of two-sites canted polarons
CP2. Similarly, this also occurs within CP3 + CP2 phase. The total
number of polarons remaining equal to the number of electrons;
we can label it as AF + CP3 + CP2. A single energy is found in the
whole conduction electron density regime (0 ≤ x ≤ 0.5). In the
thermodynamic limit, it corresponds to,

U
Nt
= −

x

8 JS
2

t

−
JS2

t
. (9)

The energies of each CP3 andCP2polarons are respectively− 1

8 JS
2
t

−

2JS2

t and−
1

8 JS
2
t

−
JS2

t .

Let us mention that homogeneous spiral phases (θi = θ )
could be possible ground states. In the thermodynamic limit,
these phases can occur for JS2

t ≥
sinπx
2π and have energy
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U
t = −

(sinπx)2

2π2( JS
2
t )
−

JS2

t . However, our Monte Carlo results show

that these are never stable within the model used here. This
can be proved analytically in the thermodynamic limit using the
expressions we have derived for the different phases, except for
the T-phase for which numerical results are necessary. In two-
dimension however, renewed interest in a spiral state results
from experiments indicating a spin glass behavior of high-
Tc La2−xSrxCuO4 at small doping [17].
Of course, all the phase separations involving CP3 (AF + CP3,

CP3 + P2, CP3 + CP2) present the spin configuration degeneracy
(θ1, θ2) of the CP3 polarons. This analytical continuous degeneracy
is consistent with a spin glass state. Therefore, we propose that
the ground state of Y2−xCaxBaNiO5 for the studied hole doping
x < 0.15 [6] belongs to the AF + CP3 phase providing a
plausible explanation for the observed spin-glass-like behavior. It
is interesting to note that such a possibility of polarons immersed
into an anti-ferromagnetic background has been invoked by Xu
et al. [18] to fit their neutron data. Finally, we remark that the
size chosen for the linear chain N = 60 sites and the boundary
conditions do not change the nature of the phases involved in the
phase diagram.

4. Conclusions

In this work, we presented an unifying picture for the magnetic
phase diagram of the one-dimensional DE + SE model using
large Hund’s coupling and classical localized spins. The solution
is in general a) phase separation between F and AF phases for
low SE interaction energy and b) phase separation between small
polaronic and AF phases when the SE interaction is large. In a
large SE limit a Wigner crystallization and a spin-glass behavior
can be identified. A spin-glass behavior can be obtained under the
condition JS

2

t & 1
4
√
2
≈ 0.177, when CP3 phase exists and could

explain the spin-glass-like behavior observed in the nickelate
one-dimensional doped compound Y2−xCaxBaNiO5. On the other
hand, density matrix elements suggest an important lattice
distortion in the phases involved in the phase diagram.
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