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Abstract This paper is concerned with the numerical
prediction of viscoelastic flow past a cylinder in a chan-
nel and a sphere in a cylinder using molecular-based
models. The basis of the numerical method employed
is a micro–macro model in which the polymer dynam-
ics is described by the evolution of an ensemble of
Brownian configuration fields. The spectral element
method is used to discretize the equations in space.
Comparisons are made between the macroscopic simu-
lations based on the Oldroyd B constitutive model and
microscopic simulations based on Hookean dumbbells,
and excellent agreement is found. The micro–macro
approach can be used to simulate models, such as the
finitely extensible nonlinear elastic (FENE) dumbbell
model, which do not possess a closed-form constitutive
equation. Numerical simulations are performed for the
FENE model. The influence of the model parameters
on the flow is described and, in particular, the dependence
of the drag as a function of the Weissenberg number.
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Introduction

The significant improvements that have been made
in the mathematical modelling of polymeric liquids
over the last decade or so have necessitated a revo-
lution in the development of computational tech-
niques. This is because many models, such as the finitely
extensible nonlinear elastic (FENE) dumbbell model,
cannot be formulated in terms of closed-form consti-
tutive equations. Therefore, many of the techniques
that have been developed for solving differential or
integral constitutive equations are not directly relevant
or applicable to models based on kinetic theory, for
example.

The traditional macroscopic approach to modelling,
based on continuum fluid mechanics, in which the
stress on a macroscopic fluid element is related to the
deformation by a differential or integral constitutive
equation is sufficient to provide a qualitative descrip-
tion of important flow phenomena in some situations
for dilute polymer solutions. However, macroscopic
models are unable to provide quantitative agreement
with experimental observations in many complex flows
of polymeric solutions. It should be noted that the
situation for branched polymers is quite different, and
macroscopic models such as the differential form of
the pom-pom model (McLeish and Larson 1998) and
the extended pom-pom model (Verbeeten et al. 2001,
2002), for example, have been successful in predicting
the nonlinear behavior of materials in both shear and
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extension simultaneously and in simulating complex
flows of commercial polymer melts (Inkson et al. 2008).

Microscopic models, which utilize a coarse-grained
description of polymer dynamics, provide the potential
for computational rheologists to step nearer to the
goal of delivering numerical solutions to complex flows
of dilute polymeric solutions that are in quantitative
agreement with experimental measurements and obser-
vations. In the microscopic approach, the polymer con-
tribution to the extra stress is determined from the
configuration of a large ensemble of model polymer
molecules rather than from a constitutive equation.

The Fokker–Planck or diffusion equation (Bird et al.
1987), derived from considering a coarse-grained de-
scription of a polymer chain in terms of beads and
springs, furnishes information about the configuration
probability density function (pdf). However, numerical
techniques for solving this equation are not always
feasible, especially when the dimension of the configu-
ration space is large. However, recent work has shown
that the direct solution of the Fokker–Planck equation
can be much more efficient than stochastic methods in
the case of homogeneous flows, and moreover, complex
flows can also be investigated (see Lozinski et al. 2003,
for example).

Alternative approaches to the direct solution of the
Fokker–Planck equation may be adopted. For example,
by invoking a suitable closure approximation through
a finite dimensional representation of the configuration
pdf, one can derive a closed-form constitutive equation.
Consistent closure schemes for statistical models of
anisotropic fluids have been successfully developed and
tested by Kröger et al. (2008). However, care should
be exercised in deriving closure approximations since
some of the most popular closure approximations are
unable to reproduce the predicted behavior of the
original kinetic theory model in certain flows (Sizaire
et al. 1999). For example, we show in this paper that
the FENE-P model, which is a closure approximation
of the FENE model (Peterlin 1966), fails to provide
an accurate representation of the original model for
the complex flow past a cylinder in a channel. A more
realistic closure approximation for FENE kinetic the-
ory was developed by Lielens et al. (1999) using a
two-parameter representation of the canonical radial
distribution.

The idea of using stochastic simulations of the poly-
mer dynamics to determine the polymeric contribution
to the extra stress rather than solving closed-form con-
stitutive equations was pioneered by Laso and Öttinger
(1993) and further developed by Feigl et al. (1995)
and Hua and Schieber (1998). The approach is very
flexible and robust. Laso and Öttinger (1993) termed

this hybrid method CONNFFESSIT. This is now one
member of a broader class of numerical simulation
methods known as micro–macro methods. The micro–
macro approach in computational rheology combines
a macroscopic description of the kinematics with a
coarse-grained microscopic description of the evolution
of the stress. The approach allows for greater flexibility
in the kinetic theory models that can be used in numer-
ical simulations since they do not require the existence
of an equivalent or approximate closed-form consti-
tutive equation. Furthermore, effects such as polydis-
persity and hydrodynamic interactions can be easily
incorporated into these models since it is the motion
of individual polymer molecules that is simulated.

The original CONNFFESSIT method suffered from
several shortcomings, among which are the calculation
of the trajectories of a large number of model polymer
molecules and the possible generation of nonsmooth
stresses. Variance reduction has been developed to
reduce the statistical error in a stochastic simulation
without increasing the number of trajectories that
need to be simulated (Melchior and Öttinger 1995,
1996). These techniques have been implemented for
kinetic theory models. The Brownian configuration
field method of Hulsen et al. (1997) and Öttinger et al.
(1997) and the Lagrangian particle method of Halin
et al. (1998) belong to the second generation of micro–
macro methods. They possess much improved numer-
ical properties and are examples of variance-reduced
stochastic simulation methods based on the idea of
correlated local ensembles of model polymers. These
are efficient micro–macro simulation techniques since
they require the generation of fewer random numbers.
Furthermore, these methods reduce the spatial fluctua-
tions in the computed velocity and stress fields. These
approaches, which are based on correlated Brownian
forces, are suitable for problems in which physical fluc-
tuations are unimportant.

In the micro–macro approach, the computation of
the velocity and pressure is decoupled from the com-
putation of the extra stress. This means that a sym-
metric positive-definite system for velocity and pressure
is retained through the standard spectral element dis-
cretization of the mass and momentum equations. The
polymeric contribution is determined using the method
of Brownian configuration fields (Hulsen et al. 1997).
The method is based on the evolution of a number of
continuous Brownian configuration fields. Since these
fields are spatially smooth, this approach is well-suited
to a spectral element discretization, which is known to
be efficient and accurate for smooth problems (Orszag
1980; Patera 1984). A numerical study is performed
to investigate the use of a high-order spectral element
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method in predicting the complex flow of a dilute solu-
tion past a cylinder in a channel and a sphere in a
cylinder. The paper extends the work in Phillips and
Smith (2006) to axisymmetric configurations and also
provides a comprehensive set of results for the FENE
model in these flow geometries.

Stochastic simulations based on Hookean dumb-
bells are compared with predictions obtained using
the mathematically equivalent Oldroyd B constitutive
equation in order to validate the algorithm. Excellent
agreement is obtained as the number of configuration
fields is increased. An extensive set of numerical results
is presented for the flow of a FENE model fluid past a
cylinder in a channel. The influence of the Weissenberg
number, the Reynolds number, finite extensibility pa-
rameter and viscosity ratio on the drag, the stress along
the center line and around the cylinder, and the stream-
lines is explored. It is also shown that the FENE-P
model, which is a closure approximation of the FENE
model, does not provide a good approximation in this
flow configuration.

The paper is organized as follows: The macroscopic
conservation equations and the coarse-grained micro-
scopic model for of a polymer are presented. The
temporal discretization of both the macroscopic and
microscopic stages is described in the “Temporal dis-
cretization” section. The corresponding spatial discreti-
zation of these stages using the spectral element method
is described in the “Spatial discretization” section. In
the “Flow past a cylinder” section, numerical results
are presented for the flow past a cylinder in a channel
for the FENE and FENE-P dumbbell models in which
the behavior of the drag, profiles of the stress compo-
nents, and streamline patterns in terms of the material
parameters are considered. In the “Flow past a sphere”
section, we present the corresponding results for the
flow of a FENE model fluid past a sphere in a cylinder.
The main findings of the paper are summarized in the
“Conclusions” section.

Governing equations for viscoelastic flows

The equations that govern the isothermal incompress-
ible flow of a viscoelastic fluid comprise the conser-
vation laws of mass and momentum together with an
equation that relates the stress to the strain. The math-
ematical statements of the conservation laws of mass
and momentum are

∇ · u = 0 (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p + ∇ · T, (2)

respectively, where u is the velocity field, ρ is the
density of the fluid, p is the pressure, and T is the extra-
stress tensor. It is customary to express the extra-stress
tensor of a polymeric solution as the sum of a solvent
contribution, 2ηsd, and a polymeric contribution, τ ,
where ηs is the solvent viscosity and d is the rate-of-
deformation tensor given by

d = 1

2
(∇u + (∇u)T) (3)

With this decomposition of the extra-stress tensor, the
momentum equation becomes

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p + ∇ · τ + ηs∇2u (4)

The polymeric contribution to the extra-stress tensor
is determined using either a constitutive equation or
stochastic simulations.

One of the models considered in this paper is the
Oldroyd B model. This model can be derived from
either continuum mechanics considerations or an equiv-
alent microscopic description of the polymers dynamics
in terms of an ensemble of Hookean dumbbells. The
Oldroyd B constitutive model is

τ + λ
∇
τ = 2ηpd, (5)

where λ is the relaxation time, ηp is the polymeric
contribution to the viscosity, and the upper-convected
derivative of τ is defined by

∇
τ = ∂τ

∂t
+ (u · ∇)τ − ∇u · τ − τ · (∇u)T (6)

The governing equations Eqs. 1, 2, and 5 are made
dimensionless by scaling length, velocity, and time by
L, U , and L/U , respectively, and pressure and extra-
stress tensor by η0U/L where η0 is the total zero-shear-
rate viscosity given by η0 = ηs + ηp. The dimensionless
equations are

∇ · u = 0 (7)

Re
(

∂u
∂t

+ u · ∇u
)

= −∇ p + β∇2u + ∇ · τ (8)

τ + We
∇
τ = 2(1 − β)d, (9)

where the Reynolds number, Re; the Weissenberg
number, We; and the viscosity ratio parameter, β, are
defined by

Re = ρU L
η0

, We = λU
L

, β = ηs

η0
(10)

In this paper, polymer solutions are modelled as sus-
pensions of elastic dumbbells comprising two identical
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Brownian beads, with friction coefficient ζ , connected
by an elastic spring. The polymer solution is considered
to be sufficiently dilute so that the interaction between
dumbbells may be ignored. The internal configuration
of a dumbbell is given in terms of the end-to-end vector,
Q, connecting the two beads. This provides information
about the orientation and length of the spring.

Taking into account the spring force, the viscous drag
force, and the force due to Brownian motion, one can
derive the equation of motion for the beads and, hence,
the Fokker–Plank equation, which, for homogeneous
flow, assumes the form

∂ψ

∂t
=− ∂

∂Q
·
{(

κ(t)Q − 2

ζ
F(Q)

)
ψ

}
+ 2kT

ζ

∂

∂Q
· ∂

∂Q
ψ,

(11)

where κ is the velocity gradient, T is absolute tempera-
ture, k is Boltzmann’s constant, and F(Q) is the spring
force. The solution of Eq. 11 furnishes the probability
ψ(Q, x, t)dQ of finding a dumbbell with configuration
in the range Q to Q + dQ at (x, t). Once the configu-
ration pdf, ψ , is known, the polymer contribution to
the extra-stress may be computed using the Kramers
expression

τ = −nkTI + n〈Q ⊗ F(Q)〉, (12)

where n is the number of polymer molecules per unit
volume, the symbol ⊗ denotes the outer product of two
vectors, and the angular brackets denote the ensemble
average over the configuration space. Note that the
forms of the spring force considered (see Eqs. 13–15
below) ensure that the extra-stress tensor is symmetric.

Starting from the linear (Hookean) force law, given
by

F(Q) = HQ, (13)

where H is the spring constant, one can derive the
Oldroyd B model in which the relaxation time and the
polymeric viscosity are given by

λ = ζ

4H
, ηp = nkTλ.

The linear spring force law (Eq. 13) is useful in situa-
tions where the dumbbells remain close to their equi-
librium configuration. The problem with this expression
is that at high flow rates and in extensional flow the
dumbbells extend in length unboundedly, whereas real
polymers can only be extended, at most, to their fully
stretched length provided they do not break. The prop-

erty of finite extensibility of the chains can be incorpo-
rated into a model by introducing a FENE spring force:

F(Q) = HQ
1 − (Q/Q0)2

, (14)

where Q0 is the maximum extension of each chain seg-
ment. There is no direct closure for the FENE model.
If a closed-form constitutive equation is required, then
a suitable approximation must be made. One such
closure approximation for the FENE model is due to
Peterlin (1966) and is based on a preaveraging of the
spring force law in which the connector length in the
denominator of Eq. 14 is replaced by an ensemble
average, giving rise to the so-called FENE-P model

F(Q) = HQ
1 − (〈Q〉/Q0)2

, (15)

where Q2 = |Q|2.
In principle, the Fokker–Planck equation (Eq. 11)

may be solved for the configuration pdf of the polymer
configuration at each position within the flow domain.
This, in turn, can be used to determine the stress
using the Kramers expression. However, this proce-
dure is not always straightforward or computationally
efficient, especially for multi-bead-spring models for
representing polymer chains. Multi-bead-spring models
possess a configuration space of large dimension. An
alternative technique for generating the configuration
distribution is to use the mathematical equivalence that
exists, under certain conditions, between the Fokker–
Planck equation and a stochastic differential equation
(Öttinger 1996). However, since the stochastic approach
does not furnish the configuration pdf, the extra stress
cannot be evaluated using Eq. 12. Instead the extra
stress is estimated by taking an average over a large
number of realizations. This mathematical equivalence
is an extremely important and powerful result since
stochastic differential equations are generally more
tractable numerically than the diffusion equation. The
stochastic differential equation equivalent to Eq. 11 is

dQ(t) =
(

κ(t) · Q − 2

ζ
F(Q)

)
+

√
4kT
ζ

dW(t), (16)

where W(t) is a multidimensional Wiener process.
The components of W(t) are independent Wiener pro-
cesses, i.e., Gaussian processes with zero mean and
covariance 〈W(t)W(t′)〉 = min(t, t′)I. Physically, the
intermolecular collisions are uncorrelated and, there-
fore, so are the Wiener processes at different points in
space. However, the assumption of correlated Wiener
processes is made in the development of many nu-
merical stochastic simulation techniques including the
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method of Brownian configuration fields considered
here.

If we scale the length of the connector vector Q by√
kT/H, the stochastic differential Eq. 16 becomes

dQ(t) =
(

κ(t) · Q − 1

2λ
F(Q)

)
+

√
1

λ
dW(t). (17)

In the method of Brownian configuration fields, the
stochastic differential Eq. 17 is modified to account for
the convection of the configuration field by the flow, so
the evolution equation is

dQ(t) =
(

−u(x, t) · ∇Q(x, t) + κ(t) · Q − 1

2λ
F(Q)

)

+
√

1

λ
dW(t). (18)

Note that the spatial gradient of the configuration
field is well-defined and smooth since, in this formula-
tion, dW(t) only depends on the time and, therefore,
influences the configuration field in a spatially uniform
manner.

The Kramers expression for the polymer contribu-
tion to the extra-stress tensor becomes

τ = ηp

λ
(−I + 〈Q ⊗ F(Q)〉) (19)

for the Hookean and FENE dumbbell models. In the
case of the FENE-P model, the Kramers expression
Eq. 19 for the polymeric stress is multiplied by the fac-
tor (b + d)/b , where b = HQ2

0/kT is a dimensionless
finite extensibility parameter and d is the dimension of
the space.

For the planar flow past a cylinder, we assume, for
the sake of simplicity, that the dumbbells lie in the
plane of the flow, i.e., 2D dumbbell models are used for
the purposes of our simulations. Although, this is not a
physically reasonable assumption, it has been demon-
strated (Chauvière and Lozinski 2008) that, in the case
of the FENE dumbbells, the use of a 2D model does not
significantly deteriorate the predictions of the polymer
stress in shear flows. For the flow past a sphere, the 3D
dumbbell model is used.

The Brownian configuration fields method (Hulsen
et al. 1997) overcomes the problem of having to track
particle trajectories, provides efficient variance reduc-
tion, and may be interpreted as an Eulerian implemen-
tation of the idea of correlated local ensembles. This
method departs from the standard micro–macro ap-
proach in that it is based on the evolution of a number

of configuration fields rather than the convection of dis-
crete particles specified by their configuration vector.
Dumbbell connectors with the same initial configura-
tion and subject to the same random forces throughout
the flow domain are combined to form a configuration
field. The polymer dynamics is then described by the
evolution of an ensemble of configuration fields instead
of the evolution of local ensembles of model polymers.
The method also provides a smooth spatial representa-
tion of the configuration field that can be differentiated
to form the source term in the momentum equation.

An ensemble of N f configuration fields Qi(x, t),
i = 1, ..., N f , is introduced. Initially, these fields are
spatially uniform and their values are independently
sampled from the equilibrium distribution function of
the dumbbell model. The evolution of each Qi, i =
1, . . . , N f is governed by Eq. 18. This procedure for de-
termining the polymeric contribution to the extra-stress
tensor is equivalent to the tracking of individual model
polymer molecules. At each point (x, t), an ensemble
of configuration vectors is generated that experienced
the same history in terms of the kinematics but which
underwent different stochastic processes.

Temporal discretization

Most algorithms based on the micro–macro approach
decouple the solution of the conservation laws from
the solution of the evolution equation for the Brownian
configuration fields within each time step. This is the
only feasible strategy to adopt as far as micro–macro
methods are concerned since the microscopic part of
the calculation involves the evolution of an ensemble
of configuration fields rather than the evolution of a
constitutive equation for the extra-stress tensor. Typi-
cally, thousands rather than tens of configuration fields
are used in the computations, thus ruling out a coupled
or fully implicit solution procedure due to the con-
straints of computer memory. The coupling between
the macroscopic and microscopic stages is achieved as
follows. After the microscopic stage, the extra-stress
tensor is evaluated by taking an arithmetic mean over
the N f configuration fields, and then, its divergence
is computed and used to form the source term in the
momentum equation. After the microscopic stage, the
new velocity field is used to evolve the Brownian con-
figuration fields forward in time over the next time step.
In the macroscopic stage, all terms in the field equations
are discretized implicitly except the divergence of the
extra-stress tensor. In the microscopic stage, the sto-
chastic differential equation for the configuration fields
is discretized using second-order explicit schemes.
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Macroscopic stage

The field equations are discretized in time using the
first-order operator integration factor splitting scheme
of Maday and Patera (1989) to discretize the convec-
tion term in the momentum equation. The semidiscrete
approximation of the field equations is

∇ · un+1 = 0 (20)

Re
�t

(
un+1 − ũ

(
tn+1

)) = −∇ pn+1+∇ · τ n+β∇2un+1,

(21)

where ũ
(
tn+1

)
is the solution at time t = tn+1 of the pure

convection problem:

∂ũ
∂t

= −un · ∇ũ, t ∈ [
tn, tn+1

]
, with ũ(x, tn) = un(x)

(22)

This initial value problem is solved using a fourth-
order explicit Runge-Kutta (RK4) method. In the RK4
method, an additional time step, δt, is required where
δt = 
t/M, where M is the number of RK4 iterations
per outer time step and 
t = tn+1 − tn.

Microscopic stage

The temporal discretization of the evolution equation
for the configuration fields is performed using one of
two second-order schemes with the choice of scheme
dependent on the particular dumbbell model under
consideration. An explicit predictor–corrector method
is used in conjunction with the FENE-P model since
the use of an implicit model is not practicable in this
case due to the presence of the ensemble average in
the denominator of the force law Eq. 15. In particular,
the following predictor–corrector scheme is used in
conjunction with the FENE-P model:

Q̄n+1
i = Qn

i +
[
−un · ∇Qn

i + κQn
i − 1

2λ
F

(
Qn

i

)]

t

+
√

1

λ

Wn

i (23)

Qn+1
i = Qn

i − 1

2

[
un+1 · Q̄n+1

i + un · Qn
i

]

t

+1

2

[
κn+1Q̄n+1

i + κnQn
i

]

t

− 1

4λ

[
F

(
Q̄n+1

i

)
+ F(Qn

i )
]

t +

√
1

λ

Wn

i

(24)

The polymeric contribution to the extra-stress tensor at
the new time level tn+1 is then computed using.

τ n+1 = ηp

λ

(
b + d

b

) ⎛
⎝−I + 1

N f

N f∑
i=1

Qn+1
i ⊗ F

(
Qn+1

i

)⎞⎠

(25)

There is, however, a serious problem associated with
the use of explicit schemes such as the predictor–
corrector method (Eqs. 23 and 24) for FENE-type mod-
els in that, for any finite time step, 
t, the scheme may
produce a spring extension that exceeds the maximum
prescribed by the model. Öttinger (1996) suggested two
solutions to this problem. In the first approach, steps
that result in an extension that is very close to the maxi-
mum allowable extension are rejected. The step is then
repeated with a smaller time step. The second solution
to the problem, which applies to the FENE model,
completely avoids the possibility of predicting unphysi-
cal configurations by using an implicit algorithm. The
implicit algorithm is similar in form to the predictor–
corrector algorithm (Eqs. 23 and 24) except that the
spring force law is treated implicitly in the corrector
stage. Thus, we have the implicit scheme:

Q̄n+1
i = Qn

i +
(
− un · ∇Qn

i + κnQn
i

− 1

2λ

Qn
i[

1 − (Qn
i )

2/b
]
)

�t +
√

1

λ

Wn

i ,

(26)⎛
⎝1 + 1

4λ


t[
1 − (

Qn+1
i

)2
/b

]
⎞
⎠ Qn+1

i

= Qn
i − 1

2

[
un+1 · Q̄n+1

i + un · Qn
i

]

t

+ 1

2

[
κn+1Q̄n+1

i + κnQn
i

]

t

− 1

4λ

Qn
i[

1 − (Qn
i )

2/b
]
t +

√
1

λ

Wn

i . (27)

The orientation of the dumbbell, Qn+1
i , is given by

the right-hand side of Eq. 27, while its extension is
determined from the solution of a cubic equation for
Qn+1

i formed from Eq. 27. Öttinger (1996) has shown
that there is a unique solution of this cubic equation
lying in [0,

√
b ]. In the case of the FENE model, the

polymeric contribution to the extra stress is computed
using a expression similar to that in Eq. 25, except
that b + d is replaced by b + d + 2. Note that it is not
computationally feasible to apply the implicit scheme
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(Eqs. 26–27) to the FENE-P model for the reason given
earlier, i.e., that related to the ensemble average of the
configuration fields in the spring force law (Eq. 15).

Initial conditions

Initially, we require an equilibrium distribution for the
configuration fields at time t = 0. At equilibrium, the
polymeric contribution to the extra-stress tensor, τ ,
should be zero. This choice corresponds to a zero
velocity field. From the definition of τ in terms of the
ensemble average (Eq. 19), the equilibrium distribu-
tion, ψeq, must satisfy

∫
Rd

Q ⊗ F(Q)ψeq(Q)dQ = I, (28)

where the integral is over configuration space. For the
Hookean dumbbell model, the equilibrium distribution
function is a Gaussian distribution with zero mean and
unit covariance matrix. For the FENE-P model, the
initial configuration fields are generated using the equi-
librium distribution function for the FENE-P model
(Keunings 1997), which is, again, a Gaussian distrib-
ution with zero mean, but this time, the covariance
matrix is b/(b + d) times the unit matrix. Initially, the
fluid is assumed to be at rest, so that u(0) = 0.

Spatial discretization

The spectral element method is used to discretize both
stages of the numerical method in space. The physical
domain � is partitioned into K nonoverlapping spectral
elements �k, 1 ≤ k ≤ K, such that

⋃K
k=1 �k = �. We

denote by PN(�k) the space of all polynomials on �k of
degree ≤ N, and further define

PN(�) = {φ : φ|�k ∈ PN(�k)} (29)

Each of the spectral elements is mapped onto a
parent element D = [−1, 1] × [−1, 1], where each

point (ξ, η) ∈ D is associated with a point (x(ξ, η)),

(y(ξ, η)) ∈ �k by the transfinite mapping technique
of Gordon and Hall (1973). The dependent variables
are approximated on D using Lagrangian interpolants
of degree N in both spatial directions, based on the
Gauss–Lobatto–Legendre (GLL) points. This creates a
GLL grid inside the spectral elements.

Macroscopic stage

The spectral element method is applied to the weak
formulation of the semidiscrete equations (Eqs. 20 and
21). Suitable function spaces are chosen for the depen-
dent variables. The choice of function spaces is based
on theoretical considerations of the three-field Stokes
problem in the absence of any corresponding theory for
the viscoelastic problem. The velocity is chosen to be in
a subspace, V, of [H1(�)]2, whose elements satisfy the
prescribed velocity boundary conditions. The approxi-
mate spaces for pressure and stress for this generalized
Stokes problem are

P = [
L2(�)

]
, (30)

T = [
L2(�)

]4

s , (31)

where the subscript s denotes the space of symmetric
tensors. For this choice of function spaces, Gerritsma
and Phillips (2000) have shown that this choice results
in a well-posed problem for the corresponding Stokes
problem.

The weak formulation of Eqs. 20 and 21 is the fol-
lowing: find (un+1, pn+1) ∈ V × P, such that

d
(
un+1, q

) = 0, ∀q ∈ P, (32)

βa
(
un+1, v

) + Re
�t

b
(
un+1, v

) − d∗ (
pn+1, v

)

= −c
(
τ n, v

) + (
gn, v

) ∀v ∈ V, (33)
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where the bilinear forms a(·, ·), b(·, ·), c(·, ·), and d(·, ·)
are defined by

a(u, v) =
∫

�

∇u : ∇vd�,

b(u, v) =
∫

�

u · vd�,

c(τ , v) =
∫

�

τ : ∇vd�,

d(u, q) =
∫

�

∇ · uqd�,

and gn = Re
�t ũ

(
tn+1

)
. The bilinear forms a(·, ·), b(·, ·),

c(·, ·) and d(·, ·) induce continuous linear operators A :
V −→ V ′, B : V −→ V ′, C : T −→ V ′ and D : V −→
P′ defined by

[Au, v] = a(u, v), ∀u, v ∈ V,

[Bu, v] = b(u, v), ∀u, v ∈ V,

[Cτ , v] = c(τ , v), ∀τ ∈ τ,

[Du, q] = d(u, q), ∀u ∈ V, ∀q ∈ P,

[D∗ p, v] = d∗(p, v), ∀p ∈ P, ∀v ∈ V,

In this notation, the dual problem to Eqs. 32 and
33 is
Dun+1 = 0 (34)[
β A +

(
Re

t

)
B

]
un+1 − D∗ pn+1 = −Cτ n + gn. (35)

The discrete approximation spaces must satisfy a
compatibility condition, known as the LBB condition,
to ensure that the problem is well-posed. For spectral
elements, (Maday and Patera 1989) have shown that
the LBB condition is satisfied when the velocity approx-
imation space is the polynomial space PN(�) and the
pressure approximation space is PN−2(�). A Gauss–
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Lobatto quadrature rule will be used to integrate the
velocities, whereas a Gauss quadrature rule integrates
the pressure. The stress is approximated by polynomials
in the space PN(�) as well, with the difference being
that the stress components are allowed to be discon-
tinuous across the element boundaries. Gerritsma and
Phillips (2000) have shown that this is a sufficient condi-
tion for stability of the corresponding three-field Stokes
problem. The velocity and stress representations are
given by

uk
N(ξ, η) =

N∑
i=0

N∑
j=0

uk
i, jhi(ξ)h j(η) (36)

τ k
N(ξ, η) =

N∑
i=0

N∑
j=0

τ k
i, jhi(ξ)h j(η), (37)

where the Lagrangian interpolants hi(ξ) are defined by

hi(ξ) = − (1 − ξ 2)L′
N(ξ)

N(N + 1)LN(ξi)(ξ − ξi)
, 0 ≤ i ≤ N. (38)

The pressure representation is

pk
N(ξ, η) =

N−1∑
i=1

N−1∑
j=1

pk
i, j̃hi(ξ )̃h j(η), (39)

in which the Lagrangian interpolants are

h̃i(ξ) = − (1 − ξ 2
i )L′

N(ξ)

N(N + 1)LN(ξi)(ξ − ξi)
, 1 ≤ i ≤ N − 1.

(40)

The spectral element discretization of the dual prob-
lem (Eqs. 34 and 35) results in the following discrete
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Table 1 Steady state drag on
the cylinder surface as a
function of Weissenberg
number

We Drag

0.6 107.6528
1.0 96.4207
2.0 77.8543
3.0 74.9829
4.0 70.7530
5.0 64.3565
6.0 65.8450

problem:

DNun+1
N = 0 (41)

[
β AN +

(
Re

t

)
BN

]
un+1

N − D∗
Npn+1

N = −CNτ n
N + gn

N,

(42)

where DN and CN are the discrete divergence opera-
tors acting on the velocity and stress, respectively, and
DT

N is the gradient operator acting on pressure, AN

is the discrete Laplace operator, BN is the discrete
velocity mass matrix, and gN denotes the discrete form
of the right-hand side of Eq. 35. Eliminating the ve-
locity using the discrete continuity equation yields the
pressure equation:

DN H−1
N DT

Npn+1
N = −DN H−1

N

(
gN − CNτ n

N

)
, (43)

where

HN = β AN + Re
�t

BN (44)
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is a discrete Helmholtz-like operator. The operator
UN = DN H−1

N DT
N is known as the Uzawa operator.

Simplified, the pressure equation may be written as

UNpn+1
N = bN, (45)

where bN is the right-hand side of Eq. 42.
To solve the pressure equation (Eq. 45), a nested

preconditioned conjugate gradient (PCG) algorithm is
used. The solution of the pressure requires a nested
solver since both the Uzawa operator U = DH−1 DT

and the Helmholtz operator H need to be inverted.
Since both operators are symmetric, the PCG method
can be used. The inversion of the Helmholtz operator
is nested within the inversion of the Uzawa operator.
The Schur complement method has been used to re-
duce the size of the Helmholtz operator. This method
eliminates the interior degrees of freedom associated
with each spectral element to leave a system that serves
to determine the unknowns at element interfaces. The
Schur complement is stored in an LU decomposition
and used as a preconditioner for the conjugate gradient
method.

The preconditioner that was found to be the most
efficient for the Uzawa operator is based on the finite
element mesh comprised of the inner GLL nodes of
each spectral element. The mesh is triangulated with
no overlapping nodes. This preconditioner is based on
the finite element mass and stiffness matrices on the
local finite elements, which are MFE

k and EFE
k , and it is

given as:

P−1
U = FE−1

U =
K∑

k=1

RT
k

(
MFE

k

β
+ Ml EFE

k

)−1

Rk, (46)

where Rk is the restriction operator, which maps a
global vector to a vector of length equal to the number
of GLL nodes of the spectral element. The precondi-
tioner is stored as an LU decomposition.

Microscopic stage

The semidiscrete stochastic differential equations
(Eqs. 23 and 24 or Eqs. 26 and 27) are discretized in
space using the discontinuous Galerkin (DG) method.
The DG approach is efficient since it circumvents the
need to solve a large coupled system of equations of the
order of the total number of mesh points in the domain
�. Instead, the DG method requires the solution of
smaller problems defined over each spectral element.
The appropriate function space for the configuration
fields is Q = (L2(�))d. The DG method is constructed
by multiplying Eq. 24 or Eq. 27 by a test function
S ∈ Q and integrating over a spectral element �k. The

convection term is integrated by parts twice. In the
forward step, the condition Q = Qin is applied weakly
along inflow portions, γ in, of �k. The inflow portion
of the boundary is characterized by the condition u ·
n < 0 and Qin is the value of Q in the neighboring
upwind spectral element or the prescribed condition
at the inflow to the domain and n is the unit outward
normal to the boundary of �k. In the backward step,
the new boundary terms are left unchanged. Therefore,
in the weak formulation of Eq. 24 or Eq. 27 over each
spectral element �k, terms of the form (un · ∇Qi, S)�k

are replaced by
(
un · ∇Qi, S

)
�k

+ (
un · u(Qin

i − Qi), S
)
γ in (47)

for i = 1, ..., N f . The spatial discretization of the config-
uration fields is performed using discontinuous approx-
imations in PN(�). When N = 6, the microscopic part
of the calculation accounts for about 70% of the CPU
time.

Flow past a cylinder

The complex problem of flow past a cylinder placed
symmetrically in a channel is considered in this section.
The aspect or blockage ratio is defined to be � = R

H ,
where R is the radius of the cylinder and H is the
half-width of the channel. In this paper, we consider
the 50% blockage case, i.e., � = 0.5. This value has
been chosen consistently as one of the benchmark
problems in this field. The cylinder benchmark problem
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is acknowledged to be more difficult than the related
sphere problem because, for the same aspect ratio �,
the planar flow past a cylinder undergoes a stronger
contraction and expansion than the axisymmetric flow
past a sphere. The computational domain extends a dis-
tance 25 units upstream and 25 units downstream of the
cylinder, so that the assumption of fully developed flow
conditions at entry and exit is valid. A comprehensive
discussion of these problems (flow past a cylinder and
sphere) can be found in the monograph of Owens and
Phillips (2002).

A typical spectral element mesh for this problem is
shown in Fig. 1. In this particular mesh, the number of
spectral elements is K = 20 and the order of the spec-
tral approximation is N = 6. The time step is chosen
to be �t = 2 × 10−3. The pure convection problems are
solved with eight inner time steps per outer time step,
i.e., M = 8.

Although the dimensionless drag coefficient is often
used in the literature as a measure for testing the
accuracy of numerical approximations to the solution
of flow past a cylinder by comparing predictions with

Fig. 7 Comparison of the
dependence of the profiles
of the polymeric stress
components along the axis of
symmetry line (y = 0) and
around the cylinder on the
Weissenberg number for the
FENE model (left) and
FENE-P model (right) with
Re = 0.01, β = 1/9, and
b = 50 for N = 6 and
N f = 2,000
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other results in the literature, it may not be sensitive
to inaccuracies in the stress components away from
the cylinder surface. Therefore, it is important to ex-
amine the behavior of the stress components globally
since numerical oscillations or other mesh-dependent
features may be overseen by simply concentrating on
the computation of the drag coefficient. The expression
for the dimensionless drag on the cylinder is

F = 2
∫ π

0

{(
−p + 2β

∂u
∂x

+ τxx

)
cos θ

+
(

β

(
∂v

∂x
+ ∂u

∂y

)
+ τxy

)
sin θ

}
dθ, (48)

where F has been made dimensionless with ηU .
The value of the drag in the Navier–Stokes problem

is compared to a result generated by Hulsen et al.
(1997). For the Reynolds number Re = 0.01, Hulsen
et al. (1997) calculated the drag to be F = 132.3584,
which compares favorably with the value of F =
132.3507 calculated using our method. The two values
agree to within 0.01% of each other.

Oldroyd B and Hookean dumbbell models

The first set of results compares macroscopic pre-
dictions using the Oldroyd B model with micro–
macro predictions based on the evolution of Brownian
configuration fields using Hookean dumbbells. This
comparison is performed in order to validate the micro–
macro approach since the Hookean dumbbell model is
mathematically equivalent to the Oldroyd B model. A
comparison of the evolution of the drag predicted by
the two models is given in Fig. 2 for We = 0.6 and Re =
0.01. Very good agreement is obtained between the
two approaches, particularly as steady state is reached,
thereby confirming the validity of the micro–macro
approach. In the inset of Fig. 2, we plot the evolution
of the time-averaged value of the drag for t ≥ 3, i.e., we
plot the evolution of

1

K + 1

K∑
k=K0

drag(k
t), (49)

where K0 is the smallest integer greater than or equal
to 3/
t. The time-averaged values smooth out the

Fig. 8 Dependence of the
drag and the polymeric
extra-stress components
along the center line on the
finite extensibility parameter
b for the FENE dumbbell
model with We = 1, Re =
0.01, and β = 1/9 for N = 6
and N f = 2,000
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transient fluctuations in drag and clearly show the con-
vergence of the drag for two models.

However, good agreement of the two approaches as
far as the calculation of the drag is concerned should
not be interpreted as meaning that the corresponding
global fields are necessarily in close agreement as well.
We demonstrate that the global fields are in agreement
by comparing contours of the components of the extra-
stress tensor generated by the macroscopic and micro–
macro approaches. This comparison is shown in Fig. 3.
Excellent quantitative agreement is obtained across the
two approaches as evidenced by the fine-scale features
predicted using both approaches and the location of
contours of the same height.

FENE and FENE-P models

Our study of FENE models begins with a discussion of
the influence of the discretization parameters on the
evolution of the drag for We = 1, Re = 0.01, β = 1/9
and b = 50. In Fig. 4a, we present the evolution of
the drag on the cylinder as a function of polynomial
order, N, for the FENE model. The number of spectral
elements remains constant in these simulations. These
results demonstrate that mesh convergence is obtained

as the order of the approximation is increased. Very
little difference is observed in these predictions for
N > 4 and, certainly as steady state is reached, the
agreement is very good. The differences that exist can
be explained by appealing to the noise in the stochastic
simulations.

In Fig. 4b, we show the influence of the number
configuration fields, N f , on the evolution of the drag.
Steadily increasing the number of configuration fields,
N f = 100, 500, 1,000, 2,000, reduces the temporal fluc-
tuations in the drag as expected. Again, we see general
improvement in the prediction of the drag with refine-
ment in terms the microscopic part of the calculation,
and there is very little difference when the number
of configuration fields is doubled from 1,000 to 2,000.
In Fig. 4c, we plot the evolution of the time-averaged
value of the drag given by Eq. 49 for t ≥ 1, where K0 is
now the smallest integer greater than or equal to 1/
t.
The time-averaged values clearly show the convergence
of the drag as the number of configuration fields is
increased.

The dependence of the evolution of the drag on
the cylinder on the Weissenberg number is shown
in Fig. 4d for Re = 0.01, β = 1/9, and b = 50. Note
that the fluctuations in the evolution of the drag de-
crease with increasing elasticity. This is due to the

Fig. 9 Dependence of the
drag and the polymeric
extra-stress components
along the center line on the
viscosity ratio β for the
FENE dumbbell model with
We = 1, Re = 0.01, and
b = 50 for N = 6 and
N f = 2,000
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Fig. 10 Comparison of the streamlines for the flow around a
cylinder for different Weissenberg numbers using the FENE
model. The solid line is the Newtonian case and the dotted line
is for the FENE model for which Re = 0.01, β = 1/9, and b = 50
for N = 6 and N f = 2,000

decreasing contribution of the stochastic term in Eq. 18.
Both steady state and transient values of the drag
decrease monotonically with increasing We up to
We = 5. Thereafter, there is a slight increase in drag
from We = 5 to We = 6. The steady state values of the
drag are provided in Table 1. In the inset of Fig. 4d,
we plot the evolution of the time-averaged value of
the drag given by Eq. 49 for t ≥ 1, where K0 is now
the smallest integer greater than or equal to 1/
t. The
time-averaged values of the drag clearly decrease as the
Weissenberg number is increased up until We = 5, then
there is a small increase in drag for We = 6.

A comparison of contours of the components of the
polymeric stress and velocity for We = 0.6 and We = 5
is shown in Fig. 5. The contour plots of the velocity
components indicate large gradients near the cylinder
and the channel wall opposite the cylinder. The peak
values of the stress are also to be found in these regions.
The axial stress, τ xx, is the dominant stress component
and this exhibits stress relaxation as We is increased.
On the other hand, the polymeric shear stress increases

slightly in concentration in these regions as We is
increased from We = 0.6 to We = 5.

In Fig. 6, the evolution of the drag using the
Hookean and FENE dumbbell models, and the FENE-P
approximation to the FENE model, is compared for
We = 0.6, Re = 0.01, β = 1/9, and b = 50 with N = 6
and N f = 2,000. It can be seen that the steady state
values of the drag for the Hookean and FENE (with
b = 50) dumbbell models are very close, although there
is some difference in the transient behavior with the
drag for the Hookean dumbbell model lagging behind
that for the FENE model. The Oldroyd B model is
recovered in the limit as b → ∞ in the FENE model.
On the other hand, the initial transient behavior of the
drag for the FENE and FENE-P models agree very
well. However, at intermediate times, and certainly at
steady state, the drag predictions of the two FENE
models differ quite significantly for this flow. Therefore,
it appears that, for this problem, the FENE-P model is a
poor approximation of the FENE model. In the inset of
Fig. 6, we plot the evolution of the time-averaged value

We=1.0  FENE-P

We=3.0  FENE-P

We=5.0  FENE-P

We=8.0  FENE-P

Fig. 11 Comparison of the streamlines for the flow around a
cylinder for different Weissenberg numbers using the FENE-P
model. The solid line is the Newtonian case and the dotted line is
for the FENE-P model for which Re = 0.01, β = 1/9, and b = 50
for N = 6 and N f = 2,000
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Fig. 12 Comparison of the
streamline patterns for
We = 0.7 (solid) and We = 2
(dotted) for the FENE model
for which Re = 10, β = 0.59,
and b = 100 for N = 6 and
N f = 2,000
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Fig. 13 Comparison of the
contours of the velocity
components for We = 0.7
(solid) and We = 2 (dotted)
for the FENE model for
which Re = 10, β = 0.59, and
b = 100 for N = 6 and
N f = 2,000
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Fig. 14 Comparison of the
streamline patterns for
Re = 10 (solid) and Re = 20
(dotted) for the FENE model
for which We = 0.7, β = 0.59,
and b = 100 for N = 6 and
N f = 2,000
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Fig. 15 Comparison of the
contours of the velocity
components for Re = 10
(solid) and Re = 20 (dotted)
for the FENE model for
which We = 0.7, β = 0.59,
and b = 100 for N = 6 and
N f = 2,000
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Table 2 Dependence of the drag factor, F∗, on N and K for
Stokes flow past a sphere

N K F∗

6 8 5.9923
7 8 5.9731
8 8 5.9597
9 8 5.9526
10 8 5.9494
5 20 5.9472
6 20 5.9474
7 20 5.9474

of the drag given by Eq. 49 for t ≥ 1, where K0 is now
the smallest integer greater than or equal to 1/
t.

The difference in the predictions of the FENE and
FENE-P models can be clearly seen in Fig. 7, where
the polymeric stress components are plotted around the
cylinder and along the downstream axis for Re = 0.01,
β = 1/9, N f = 2,000, and b = 50. The influence of the
Weissenberg number on these profiles is shown in this
figure. The axial stress component τxx dominates the
other stress components on the surface of the cylin-
der. From We = 0.6, the axial stress starts decreasing
with increasing We. This behavior is more accentuated
for the FENE-P model than for the FENE model.
The maximum value of τxx in the rear wake remains
small in comparison with peak on the cylinder and
exhibits little variation with We. Although the FENE-
P model provides a good approximation to the FENE
model in steady flows, large differences are expected
for transient flows (see Herrchen and Öttinger 1997;
Keunings 1997, for example). The Peterlin approxima-
tion to the FENE model radically changes the statistical
properties of the underlying kinetic theory in the sense
that the configuration distribution for FENE-P dumb-
bells is always a Gaussian and, thus, is never localized,
irrespective of the flow dynamics (Keunings 1997). A
direct consequence of this is that nothing prevents in-
dividual FENE-P dumbbells from deforming beyond
their maximum extensibility

√
b . It is only the av-

erage 〈Q2〉 that is bounded for FENE-P dumbbells.
Therefore, drastic differences between the FENE and
FENE-P models are to be expected when simulating
complex flows.

The effect of the nondimensional maximum extensi-
bility parameter, b , on the drag on the cylinder and on
the stress components is shown in Fig. 8. For smaller
values of b , fluctuations of the drag increase, since the
molecular chain is small and the tension between the
beads is high. However, a smaller value of b makes
the chains more rigid, and so, the stresses are higher as
observed in Fig. 8. For large values of the maximum ex-

tensibility parameter, the behavior of the FENE model
approaches that of the Hookean model, as expected.

The effect of the viscosity ratio, β, on the drag on
the cylinder and on the polymeric stress components is
shown in Fig. 9. Increasing the value of β corresponds
to decreasing polymer concentration in the model. The
drag increases and the peak values of the polymeric
stress components on the cylinder and in the wake in
the rear of the cylinder decrease with increasing β.

Turning attention to streamline patterns, Mena and
Caswell (1974) presented an analysis for flow of an
Oldroyd B fluid past an immersed body by solving
the Oseen equations in the far field and matching this
solution asymptotically with the Stokes solution near
the body. For flow past a cylinder, Mena and Caswell
(1974) predicted that the effect of elasticity was to shift
the streamlines in the downstream direction. Pilate and
Crochet (1977) performed numerical simulations based
on a finite difference method using a second-order fluid
and found that viscoelasticity reduced the drag coef-
ficient for very low Reynolds numbers, in qualitative
agreement with Mena and Caswell (1974). In experi-
mental work on the slow flow of solutions of polyacry-
lamide in water or in a water-glycerol mixture past a
cylinder, Manero and Mena (1981) showed that, for
We < 1, the streamlines are shifted downstream, while
for We > 1, they are shifted upstream. The stream-
lines plots of Pilate and Crochet (1977) indicate that
elasticity manifests a downstream shift away from the
cylinder. In Figs. 10 and 11, we compare the streamline
patterns for a Newtonian fluid (Re = 0.01) with those
of the FENE and FENE-P models (Re = 0.01, β = 1/9)
for different Weissenberg numbers from We = 1 to
We = 8. We observe that, for the FENE model at
We = 1, the streamlines are ever so slightly shifted
downstream. On increasing elasticity, the stream-
lines are shifted in the upstream direction. Using the
FENE-P model, the streamlines experience a slight
upstream shift, but there is little variation with We,
unlike the corresponding behavior for the FENE
model.

Increasing Reynolds number

We proceed to evaluate the influence of inertia for the
planar flow past a cylinder. Matallah et al. (1998) have

Table 3 Drag factors, F∗, computed by various authors for
Stokes flow

Present Paper 5.9474
Lunsmann et al. (1993) 5.9472
Owens and Phillips (1996) 5.9474
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Fig. 16 Dependence of the
drag and the polymeric
extra-stress components
along the center line on
polynomial degree for the
flow past a sphere for the
FENE model for which
We = 3, Re = 0.01, β = 1/9,
and b = 5 for N f = 2,000
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performed a numerical study of viscoelastic flow past
a cylinder in an unbounded domain. The numerical
scheme used a recovery technique in conjunction with a
Taylor–Galerkin/pressure correction method with con-
sistent streamline upwinding in order to obtain greater
stability at higher Deborah numbers for flow of an
Oldroyd B fluid than proved possible using either
conventional Taylor–Galerkin (Carew et al. 1993), or
EVSS alternatives. By computing flow at Re = 10 past
a cylinder, the authors were able to compare the
streamlines of their results with those of Townsend
(1980) and Pilate and Crochet (1977). Good agreement
appeared to be reached, particularly with respect to the
downstream shift of the streamlines and the elongated
wake behind the cylinder when compared with the
Newtonian case. These numerical findings are in gen-
eral agreement with the experimental results of James
and Acosta (1970).

A more recent numerical study has been performed
by Hu et al. (2005) using DEVSS-G/SUPG finite ele-
ment scheme in conjunction with a CONNFFESSIT
approach to the microscopic part of the calculation.
In order to compare our simulations with those of Hu
et al. (2005), the boundary conditions for the velocity at
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Fig. 17 Comparison of the evolution of the time-averaged drag
for the flow past a sphere for the FENE dumbbell as a function
of the polynomial degree for We = 3, Re = 0.01, β = 1/9, and
b = 5 for N f = 2,000
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inflow are specified to be u = 1.5(1 − y2/4), v = 0. The
material and flow parameters are chosen to be Re = 10,
β = 0.59, and b = 100, unless otherwise stated. We
compare the streamlines and the velocity components
for two different values of elasticity, viz. We = 0.7 and
We = 2 in Figs. 12 and 13. The same vortex structure as
Hu et al. (2005) is obtained in the wake of the cylin-
der for We = 0.7. When we increase the elasticity to
We = 2, the streamlines and contours of both velocity
components shift in the downstream direction. Note
that the same contour heights are used in these plots.
The recirculation region behind the cylinder increases
considerably in the flow direction as We is increased.

When Re is increased from Re = 10 to Re = 20 with
We = 0.7, the streamlines shift a little in the upstream
direction and the vortex increases its size in the normal
direction to the flow, as can be seen in Fig. 14, causing
the position of the separation point at the rear of the
cylinder to move away from the axis of symmetry. For
nonzero values of the Reynolds number, the convection
effect propagates from upstream to downstream. The
velocity patterns shift downstream when the Reynolds
number is increased to Re = 10 from Re = 0.01. There
is little change when the Reynolds number is further
increased to Re = 20 (see Fig. 15).

Flow past a sphere

Stokes flow

As a precursor to the consideration of the flow of a
FENE model fluid past a sphere in a cylinder, the
Stokes problem is solved to validate the extension of
the method to axisymmetric flows. The numerical re-
sults are compared with those in the literature. Note
that the Stokes problem can be solved without recourse
to the transient algorithm by simply solving the steady
problem.

The drag is determined by integrating the total stress
over the surface of the sphere. The drag on the sphere,
F, is given by

F =−2πa2
∫ π

0

{(
−p + 2β

∂u
∂z

+ τzz

)
cos θ

+
(

β

(
∂v

∂z
+ ∂u

∂r

)
+ τrz

)
sin θ

}
sin θdθ,

(50)

where u and v are the components of the velocity in the
axial and radial directions, respectively. The quantity

Fig. 18 Dependence of the
drag and the polymeric
extra-stress components
along the center line on
Weissenberg number for the
flow past a sphere for the
FENE model for which
Re = 0.01, β = 1/9, and
b = 5 for N = 6 and
N f = 2,000
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Fig. 19 Comparison of the evolution of the time-averaged drag
for the flow past a sphere for the FENE dumbbell as a function
of the Weissenberg number for Re = 0.01, β = 1/9, and b = 5 for
N = 6 and N f = 2,000

that is generally used to compare numerical solutions
against each other is the drag factor F∗ defined as the
ratio of the drag experienced by a sphere to the drag
that would be experienced by the same sphere in an
infinite expanse of Newtonian fluid, and is given by the
formula

F∗ = F
6πηUa

(51)

Table 2 shows the convergence behavior of the drag
on the sphere surface as the order of polynomial ap-
proximation N is increased for K = 8 and K = 20. The
value of the drag factor F∗ computed using the spectral
element method was F∗ = 5.9474 when the discretiza-
tion parameters were chosen to be K = 20 and N = 7.
This is in excellent agreement with the predictions of
Lunsmann et al. (1993) and Owens and Phillips (1996)
as shown in Table 3.

FENE model

In the last part of this work, the numerical scheme ex-
tended to treat axisymmetric flow problems is applied
to the problem of viscoelastic flow past a sphere in
a cylinder using the FENE model. Convergence with
mesh refinement is demonstrated for We = 3, Re =
0.01, β = 1/9, and b = 5. In all cases, the number of
configuration fields is fixed at N f = 2,000. The velocity
field at inflow corresponds to uniform flow, i.e., u = 1,
v = 0. The evolution of the drag and the components
of the polymeric contribution to the extra-stress tensor
around the sphere and along the downstream axis are
shown in Fig. 16 as a function of the order of polynomial
approximation, N. The evolution of the time-averaged
drag is shown in Fig. 17. These plots show that, although
there is very little difference in the time-averaged drag,
which seems to have converged for low-order poly-
nomial approximations, there is great variation in the
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We=1
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We=3
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We=5

Fig. 21 Comparison of the streamline patterns for the flow
around a sphere for different Weissenberg numbers: Newtonian
(solid) and FENE (dotted) with Re = 0.01, β = 1/9, and b = 5
for N = 6 and N f = 2,000

profiles of the stress components around the cylinder
and along the center line. In particular, τxx is under-
predicted and τyy is vastly overpredicted on the sphere
itself when N is too small. Clearly, too coarse a mesh
fails to provide accurate predictions of these quanti-
ties even though the drag appears to have converged.
However, there is very little difference between the
predictions with N = 7 and N = 9 even in the peak
values of the stress components on and downstream of
the sphere. These figures show that, even though the
steady state value of the time-averaged drag appears
to be the same for all values of N, the variation in
the corresponding fields can be large if sufficient mesh
refinement has not been performed.

In Fig. 18, we show the influence of the Weissenberg
number on the evolution of the drag and the compo-

nents of the polymeric contribution to the extra-stress
tensor around the sphere and along the downstream
axis. There is drag reduction and stress relaxation as
the Weissenberg number is increased. This behavior is
similar to that observed in the corresponding cylinder
problem. The evolution of the time-averaged drag is
shown in Fig. 19. After the initial evolution, the time-
averaged drag settles down to its steady state value just
after t = 1. The influence of elasticity on the contours
of the components of the polymeric contribution of the
extra-stress tensor is shown in Fig. 20. In this figure,
the contours of the stress components are displayed
for We = 1 and We = 5. The normal stress compo-
nent τxx and the shear stress τxy relax with increasing
Weissenberg number. The normal stress component τyy

initially relaxes before increasing again from We = 3.
Finally, the influence of elasticity on the streamlines

is shown in Fig. 21. An upstream shift in the streamlines
is observed as We is increased.

Conclusions

In this paper, a spectral element method has been
presented for performing numerical simulations of di-
lute polymer solutions using the method of Brownian
configuration fields. The numerical method has been
used to predict the viscoelastic flow past a cylinder
using the Hookean, FENE, and FENE-P dumbbell
models. The method of Brownian configuration fields
based on Hookean dumbbells was validated by com-
paring predictions with those obtained using a macro-
scopic method based on the mathematically equivalent
Oldroyd B model. Excellent agreement was obtained
between the two distinct but equivalent modelling
approaches.

The method was then used to perform an exten-
sive set of calculations for the FENE model in which
convergence with mesh refinement was investigated
with respect to the order of polynomial approxima-
tion and the number of configuration fields used for
the stochastic part of the calculation. The influence
of the Weissenberg number, Reynolds number, finite
extensibility parameter and the viscosity ratio on the
drag, and the profiles of the polymeric contribution of
the extra stress around the cylinder and along the axis
of symmetry is investigated. The drag decreases with
increasing Weissenberg number since the increasing
domination of shear over extension around the cylinder
causes the stress to relax with increasing Weissenberg
number. Increasing the finite extensibility parameter
has a negligible effect on the steady state value of the
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drag, but there are large differences in the transient
development to steady state. Increasing the viscosity
ratio, β, diminishes the drag since the stress compo-
nents are substantially reduced as β → 1. There is an
upstream shift in the streamlines as the Weissenberg
number increases for the FENE model.

It is also shown that there are large differences be-
tween the FENE model and one of its closure approxi-
mations, the FENE-P model, in terms of the predictions
of the polymeric stress components along the axis of
symmetry and around the cylinder. The differences
along the axis of symmetry are to be expected since
the flow has a large extensional component and the
FENE-P model is known to provide a poor approxi-
mation to the FENE model in extensional-dominated
flows.

The numerical algorithm was modified for use in
axisymmetric flows in order to investigate the flow of
a FENE model fluid around a sphere in a cylinder.
As with the cylinder problem, it is shown that stress
relaxes around the sphere as the Weissenberg number
increases, causing a decrease in the drag. The stream-
lines exhibit an initial downstream shift with increasing
Weissenberg number, followed by a subsequent up-
stream shift as the Weissenberg number is increased
further.
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