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The motion of air bubbles undergoing collisions with solid walls was studied experimentally. Using
a high speed camera, the processes of approach, contact, and rebound were recorded for a wide
range of fluid properties. The process is characterized considering a modified Stokes number, St�

= �CAM�deqU0� / �9��, which compares the inertia associated with the bubble �added mass� and
viscous dissipation. We found that the dependence of the coefficient of restitution, �=−Ureb /U0,
with the impact Stokes number can be approximated by −log ���Ca /St��1/2, where Ca is the
capillary number; this behavior is very different from that found for the case of solid spheres. Most
importantly, it shows that � does not depend on the approach velocity. Considering a model for the
process of contact and rebound of a deformable particle, this dependence is validated. Furthermore,
by comparing the experimental trajectories and velocities of the bubble approach with model
predictions, it was found that the film drainage is dominated by inertial effects; viscous effects,
which would dominate for the case of approaching solid particles, are of secondary importance in
this case. © 2009 American Institute of Physics. �DOI: 10.1063/1.3210764�

I. INTRODUCTION

Particulate two-phase flows are common in many prac-
tical engineering applications, such as reactors, mineral pro-
cessing, and oil extraction. Although a full comprehension of
such flows is far from complete, many studies have been
conducted for motion of single isolated particles;1 a good
understanding of the phenomena has been achieved. On the
other hand, when particles interact with each other and with
walls, not as many studies have been conducted and, there-
fore, the phenomena are less understood. Particularly, contact
of particles �fluid or solid� is relevant in many applications
and in some cases these interactions have a significant effect
in the global behavior of the mixture. For instance, the col-
lision of solid particles determines the rate of erosion in the
transport of solid-liquid mixtures;2 in flotation processes, the
contact of bubbles with particles is a necessary condition.3

For the case of solid particles, the collision-rebound pro-
cess is characterized through a lumped parameter: the coef-
ficient of restitution, �. This number is defined as

� = −
Udepart

U0
, �1�

where Udepart is the velocity at which the particle loses con-
tact with the wall and U0 is the velocity far from the wall. It
is an indirect measure of the energy dissipation that results
from the contact. In numerical simulations, for instance, the
coefficient of restitution can be used to simplify the particle
contact process and, hence, reduce the computational load.4

For collisions in air, the effect of the interstitial fluid can be
practically neglected;5 the energy dissipated results from
plastic deformation. For particles colliding against a wall im-

mersed in a viscous liquid, Joseph et al.6 and Gondret et al.7

clearly demonstrated that the coefficient of restitution can be
scaled by a particle Stokes number St, which compares par-
ticle inertia to viscous effects. For collisions with a large
Stokes number, the coefficient of restitution approached the
value found in a dry collision. The coefficient of restitution
decreases monotonically with Stokes number as viscous ef-
fects gain importance. For collisions for Stokes number be-
low 10, approximately, the particles do not rebound but ar-
rest against the wall ��=0�. Recently, Yang and Hunt8 found
that the same behavior is observed for particle-particle colli-
sions.

Legendre et al.9 showed that the concept of coefficient of
restitution could also be used to characterize the collision of
droplets. They argued that the coefficient of restitution could
be scaled with a modified Stokes number �which accounted
for the inertia of the associated fluid surrounding the droplet�
in a similar manner to that observed for solid particles. Leg-
endre et al.10 reported that if the fluid inertia was also con-
sidered in the definition of Stokes number for solid particles,
then the coefficient of restitution for both contaminated drop-
lets and particles had the same universal dependence

� = �dry exp�− �

St�
� , �2�

where �dry is the dry coefficient of restitution and � is a
constant. The modified Stokes number St� is defined as

St� =
��p + CAM��deqU0

9�
, �3�

where �p and � are the densities of the particle and liquid,
respectively, � is the liquid viscosity, CAM��� is the added
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mass coefficient �which depends on the particle aspect ratio
��, deq is the particle �or droplet� equivalent diameter, and U0

is the terminal velocity. The added mass coefficient can be
calculated for any ellipsoidal shape;11 its value increases
monotonically with the aspect ratio. Defined in this manner,
the Stokes number compares the total inertia available to the
particle motion �associated fluid and particle� before the col-
lision with the viscous dissipation.

One of the objectives of the study presented here is to
investigate if this universal description of the coefficient of
restitution found for solid spheres is also applicable for the
case of air bubbles colliding against walls. We will show
that, in fact, for the case of deformable particles �droplets or
bubbles�, the scaling of the coefficient of restitution follows
a very different functional dependence.

The collision of bubbles against the walls has been stud-
ied only by a few authors. Tsao and Koch12 studied, theoreti-
cally and experimentally, the process of collision of air
bubbles in water. They reported that for a nearly spherical
bubble colliding against a free interface �a large bubble� in
water with salt, the coefficient of restitution was 0.85�0.05
for a Stokes number �as defined here� of approximately 17.
The same authors, in another study,13 reported more detailed
experiments of the collision of ellipsoidal bubbles with a
horizontal wall. They, however, discussed that for the case of
bubbles the “simple description” given by the coefficient of
restitution was not possible because of the “finite amplitude
deformation of the bubble.” From their position and velocity
measurements, we calculated, with the same procedure de-
scribed here �below�, a value of �=0.74 for St�=45. These
authors were the first to report the contact-rebound process
for air bubbles in a liquid. For the case of bubbles and drop-
lets, a rebound is possible due to the energy storage in the
form of surface deformation. The balance between energy
storage and viscous energy determines whether or not the
bubble can rebound or not. Additionally, wall surface prop-
erties and contamination play role in determining if a re-
bound may occur. Malysa et al.,14 Krasowska and Malysa,15

and Zawala et al.16 recently studied these aspects and their
influence in the rebound of bubbles against solid walls. They
have not explicitly evaluated the coefficient of restitution but
it can be inferred from their raw data ���0.85 for a Stokes
number of 49�. To our knowledge, a careful parametric study
of the influence of the Stokes number in the collision of air
bubbles against solid walls does not exist.

Quéré and co-workers17,18 extensively studied the bounc-
ing of droplets for nonwetting walls. For this case, a rebound
rather than a splash is possible because of the nonwetting
condition allows air to be trapped at the contact point of the
drop and wall. Also, since the wetting hysteresis mechanism
is avoided, a large value of the coefficient of restitution was
observed �approximately 0.9�. Moreover, they found that,
surprisingly, the contact time of colliding drops does not de-
pend on the velocity. For such a system the Stokes number is
of O�1000�. Hence, the dissipation does not arise from the
viscosity of the surrounding fluid. They argued that the rela-
tively low value of the coefficient of restitution was a result
of shape oscillations. In our case, this effect, although pos-
sible, is not dominant because of the much smaller impact

velocities attained by bubbles in viscous fluids. The same
group conducted a related study for the case of bouncing
soap bubbles in water.19 For this case, the Stokes number is
of O�1�; hence, the coefficient of restitution would be largely
influenced by viscous effects. Vincent et al. indeed discussed
that the film drainage could be significant to evaluate energy
losses during the contact-rebound process. The condition of
this particular experiment is closer to those presented here;
however, direct comparisons are not possible since the coef-
ficient of restitution was not reported in Ref. 19.

In this paper, we report the results of an experimental
investigation about the process of approach, contact, and re-
bound of air bubbles moving in viscous Newtonian fluids
colliding against solid walls. By changing the size of the
bubbles and the properties of the liquid, a wide range of
conditions were tested. Hence, the transition from arrest to
rebound was observed. The process of rebound is studied
through the so-called coefficient of restitution, which charac-
terizes the amount of energy loss during the contact of a
body with a surface. We obtain a correlation with the Stokes
and capillary numbers of the flows: such correlations show
agreement with the predictions of a spring-mass-type model.
To our knowledge, only few experimental results of this pro-
cess exist. Nevertheless, comparisons with the existing data
are also performed, leading to a good agreement.

II. EXPERIMENTAL SETUP

Experiments were performed in a glass cylindrical con-
tainer with a height of 30 cm and a diameter of 10 cm,
shown schematically in Fig. 1. The Plexiglas and glass walls
onto which the bubbles collided were horizontal and fully
immersed. The bubbles were formed with stainless steel cap-
illaries of different diameters, which were inserted through
the sidewall. The bubbles were released approximately at the
center of the tube. Air gas pumped through the capillary
using a syringe pump, which delivered a very small flow rate
�approximately 1 �l /min�, such that individual bubbles
were released one at the time. All experiments were per-
formed in room with a temperature control which kept the
temperature at 22�1 °C.

Capillary
tube

High speed
camera

Bubble
trajectory

LED array

Colliding plate

x

y

z

FIG. 1. Scheme of the experimental setup. z=0, the origin of the vertical
coordinate is located at the wall.
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To vary the range of experimental conditions, both the
size of the bubbles and the liquid properties were varied. The
properties of a few water-glycerin mixtures used in this study
are listed in Table I. The viscosity, density, and surface ten-
sion of the test liquids were measured using a stress-
controlled rheometer �TA Instruments�, a pycnometer �Si-
max, 50 ml�, and Wilhelmy balance with a DuNouy ring
�Sigma 700�, respectively. For all the liquids used here the
contact angle was approximately 30.5�2°, measured on
sessile bubbles resting on the wall for a long time �few min-
utes�. For all the experiments the Morton number ranged
from 7.0�10−10 to 2.3�10−7. The bubble size was varied by
using capillary tubes with different inner diameters, ranging
from 0.1 to 1 mm. The Reynolds �Re=�deqU0 /�� and Weber
�We=�deqU0

2 /�� numbers ranged from 4.0 to 541.7 and from
0.02 to 3.52, respectively.

Since the main objective of this study is to investigate
the collision and rebound process of bubbles, a high speed
camera �APX Photron� was used. For most tests a recording
rate of 3000 frames/s was used. The images were obtained at
approximately 12 cm above the injection point. The bubbles
were illuminated from the back using a light emitting diode
array which served as a diffuse light source. Using standard
image processing routines �from MATLAB

©�, the bubble
“blob” was identified and its geometrical center was located
and tracked in time to calculate the vertical velocity using a
central difference scheme. The resolution of the array, con-
sidering the lenses and the camera, was of the order of 50
pixels/mm for all the experiments. The uncertainty in the
measurement of the velocity considering this particle-
tracking scheme is within 1.5%.

Before the analysis of the collision, the “terminal” prop-
erties of the bubbles were determined: terminal velocity, U0,
the bubble equivalent diameter �deq= �dl

2ds�1/3, where dl and
ds are the long and short bubble axes, respectively� and the
aspect ratio ��0=dl /ds�. Most tests were performed for
bubbles ascending in a straight trajectory. As is well known,
when the size an air bubble in a liquid is larger than a certain
critical value, its trajectory becomes oscillatory20 because the
wake loses its axisymmetry and steady nature. With the cur-
rent setup it was not possible to measure the shape and tra-
jectory of a bubble ascending in an oscillatory manner;
hence, most results shown here correspond to bubbles as-
cending straightly. Furthermore, the rebound of a zig-
zagging bubble is, most likely, affected by the unsteady na-
ture of the wake. Such effect complicates the interpretation

of the measurements for such conditions. Its analysis is be-
yond the scope of the present communication.

The drag coefficient can be inferred indirectly from the
measurements of the terminal velocity and bubble size. As-
suming a steady balance between drag and buoyancy, we
have

CD =
4

3

gdeq

U0
2 , �4�

where g is the gravitational acceleration, deq is the bubble
equivalent diameter, and U0 is the terminal velocity. Figure 2
shows the drag coefficient as a function of the Reynolds
number for all the experiments performed in this investiga-
tion.

Along with the experimental results, the predictions of
the drag coefficient for perfectly clean ellipsoidal bubbles by
Moore21 are presented for three liquids �three values of the
Morton number� with properties similar to those used in this
study. Also shown in the figure is the correlation from Shiller
and Nauman,22 which is valid for solid spheres. The mea-
sured values of the drag coefficient are bounded in between
the prediction for clean bubbles and that for solid spheres. In
general, the experimental drag is closer �but larger� to the
theoretical prediction for clean ellipsoidal bubbles. Since
previous investigations have shown good agreement between
experiments and the prediction of Moore for the case of
bubbles in pure liquids �clean interface�,23,24 we can say that
the surface of the bubbles in these experiments is not clean,
but not fully immobilized either. Bubbles with a contami-
nated surface would show a drag coefficient closer to that
expected for solid spheres.

As will be discussed later, a rebound occurs when some
of the available kinetic energy of the bubble is stored as
surface deformation and the dissipation is not too large. The
surface energy stored in the bubble can be written as17

TABLE I. Properties of the liquids used in the experiment: � is the density,
� is the dynamic viscosity, and � is the surface tension. The measured
properties of water are also shown for reference.

Liquid
�

�kg /m3�
�

�mPa s�
�

�mN/m� Mo=g�4 / ���3�

Fluid 1 1140 4.19 65.61 9.4�10−9

Fluid 2 1110 2.42 62.36 1.3�10−9

Fluid 3 1080 1.96 59.80 6.3�10−10

Fluid 4 1070 1.49 58.05 2.3�10−10

Water 1005 1.00 69.96 2.9�10−11
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FIG. 2. �Color online� The measured drag coefficient as a function of Rey-
nolds number for all the experiments. Different symbols show experimental
ranges of Morton number: �, 1�10−7	Mo	1�10−8; �, 1�10−8	Mo
	1�10−9; and �, 1�10−9	Mo	1�10−10. The prediction from the
theory of Moore �Ref. 21� is shown for three different liquids: solid line,
Mo=1�10−8; dashed line: Mo=1�10−9; dash-dotted line: Mo=1�10−10.
The dotted line shows the Shiller–Nauman drag correlation �Ref. 22�.
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E� =
8

5

�deq

2 �0
−1/3	1 − � �0

�max
�2/3
2

, �5�

where �0 and �max are the aspect ratio away from the wall
and at maximum deformation, respectively. The bubble ki-
netic energy, away from the wall, is

Ek =



12
��air + �CAM�deq

3 U0
2. �6�

Therefore, the ratio of these two quantities would give an
idea of the energy transfer during the contact process

E�

Ek
=

96

5

�0
−1/3

We� 	1 − � �0

�max
�2/3
2

, �7�

where We�=deq8��air+�CAM�U0
2 /� is a modified Weber

number. One would expect this ratio to be close to, but
smaller than, 1 for colliding bubbles. Since all these quanti-
ties can be obtained from the image analysis of the experi-
ments, the ratio E� /Ek will be calculated and discussed
throughout the paper.

III. RESULTS

A. Description of the collision process

The process of approach, contact, and rebound was stud-
ied in detail for a wide range of parameters. We found that
for bubbles colliding against this type of walls �hydropho-
bic�, either bounce or arrest was observed, depending on
whether the inertia or dissipation dominated the process. A
typical experiment for the case of a bouncing bubble is
shown in Fig. 3. It shows a sequence of images of the bubble
for different instants before, during, and after the collision.
Note that although the frame rate for this particular experi-
ment was 3000 frames/s ��t=0.33 ms�, not all images are
shown. A selection has been chosen to describe the process.
The time is shown in dimensionless terms: t�= tU0 /deq. The
time origin �t�=0� was chosen to coincide with the instant in
which the velocity of the bubble is zero.

Along with the images, Fig. 4 shows the measurements
of position, velocity, and shape of the bubble for the case
shown in Fig. 3. For times t�	−1, the bubble approaches the
wall at its terminal speed, U0, and shape, �0. During the
period −1	 t�	−0.6, the bubble begins to decelerate pre-
serving its terminal shape. For t��−0.6, the bubble center is
at approximately one diameter away from the wall. From this
moment and on, the shape of the bubble begins to change
importantly; the leading edge of the bubble becomes pro-
gressively flatter. From t��−0.1 a film between the bubble
surface and the wall forms. This film thins as time progresses
but does not break. For this type of wall15 and for such large
Weber numbers,13 the wetting film does not rupture. During
this period, the contact time, the bubble does not actually
make “contact” with the wall and velocity decreases rapidly,
reaching a value of zero. At this moment, all the kinetic
energy of the bubble is transferred into deformation and dis-
sipation such that the bubble shape reaches its maximum
deformation. For this particular case, the ratio E� /Ek=0.51,
which shows that a significant part of the initial kinetic en-
ergy is transferred to surface deformation.

After this instant, the restitution process begins �t��0�:
the bubble begins to “spring back;” as the bubble moves
backward the front edge flattens �before, this side was
rounded�. The radius of the draining film begins to reduce.
The bubble appears to remain “attached” to the wall; a
cusped tail forms. The tail remains in contact with the wall
until t��0.8. This cusp forms as the bubble surface deforms:
the center of mass of the bubble is already moving away
from the wall but the pressure in the film is now low, as the
fluid is drawn toward the center; the film thickens first at the
edges, eventually reaching the center. For the case shown,
the maximum rebound velocity occurs when the cusp tail of
the bubble leaves the wall. We consider that the bubble sur-

FIG. 3. Images of typical bubble collision. For the case shown, deq

=2.62 mm, �0=1.63, and U0=28.71 cm /s, which correspond to a Re
=214 and We=3.37 for a liquid with Mo=5.7�10−9. For this case, E� /Ek

=0.51. The time stamp in the lower left corner of each image is in terms of
t�= tU0 /deq.
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face has lost contact with the wall when the distance between
the bubble surface and the wall is larger than 0.04 mm,
which is slightly larger than measurement resolution.

For subsequent times �t��0.8�, the bubble recuperates a
more round shape as its velocity progressively is reduced. At
t��1.5 the bubble velocity is zero again. Subsequently, the
bubble moves again toward the wall and it may rebound
again or simply arrest against it.

The process described above is approximately the same
for bubbles for which the associated inertia is larger that the
viscous dissipation; hence, some energy is stored as surface
deformation and the bubble can rebound from the wall. Fig-
ure 5 shows a comparison of three experiments performed at
different conditions; Fig. 6 shows the images of the same
experiments at three instants of the process �terminal, zero
velocity, and maximum rebound velocity�. The collisions are
characterized by a modified Stokes number, St�, defined in
Eq. �3�. The added mass coefficient, CAM, is calculated by11

CAM��� =
��2 − 1�1/2 − cos−1 �−1

cos−1 �−1 − ��2 − 1�1/2�−2 , �8�

where � is the bubble aspect ratio. Note that if �=1, the
expression above recovers the well-known value of 0.5 for a
sphere.

In these figures, experiments for three distinct Stokes
numbers are presented. The case with smaller Stokes number
�St�=3.9� shows an experiment for which the bubble did not
rebound from the wall. Note, however, that a negative veloc-
ity is observed after t�=0. Although the bubble center moves
away from the wall �due to shape oscillation�, its surface
remains in contact with the wall. For the other two cases

shown in the figure �one of which corresponds to the case
shown in Figs. 3 and 4�, the bubbles do leave the wall with a
finite velocity. As it will be discussed below, the rebound
velocity increases as the Stokes number increases. Another
interesting observation is the fact that the approach process
of all bubbles is similar when presented in dimensionless
form. The same amount of velocity decay prior to t�=0 is
observed regardless of the Stokes number. On the other hand,
the rebound process is strongly dependent on the Stokes
number.

−1.5 −1 −0.5 0 0.5 1 1.5 2
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−0.5
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o
/d
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FIG. 4. �Color online� Typical bubble collision. The measurements corre-
spond to the images shown in Fig. 3. �+�, bubble position, 2z /deq+2; ���,
normalized velocity, U /U0; and ���, normalized deformation �� /�0−1�. All
quantities are shown as a function of the dimensionless time, t�= tU0 /deq.
The time t�=0 corresponds to the moment for which U /U0=0; positive and
negative times correspond to instants after and before the zero-velocity in-
stant, respectively. The dashed vertical line shows the time at which the
bubble center is at a distance of one deq from the wall �contact time�, t��
−0.6. The vertical dashed-dotted line shows the time at which the bubble
loses contact with the wall �departure time�, t��0.8.
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FIG. 5. �Color online� Bubble position, 2z /deq+2, and normalized velocity,
U /U0, as a function of the dimensionless time, t�= tU0 /deq. Comparison of
three bubble collisions at different Stokes numbers. The filled and empty
symbols denote position �2z /deq+2� and velocity �U /U0�, respectively. ���
and ���, St�=3.9, E� /Ek=0.66, �=0; ��� and ���, St�=10.8, E� /Ek=0.67,
�=0.39; ��� and ���, St�=21.1, E� /Ek=0.51, �=0.54.

FIG. 6. Images of the bubbles at three instants: left, terminal shape �t
�	−1�; center, maximum deformation �t�=0�; and right, maximum rebound
velocity �or time of departure� �t�= treb�. The three cases correspond to those
shown in Fig. 5. The scale is the same for all the images.
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B. Bubble approach: Analysis of the character
of the drainage

Now, we consider the drainage of the liquid between the
bubble and a wall. By solving the fluid motion in the gap, the
pressure field can be inferred and, hence, the hydrodynamic
force can be calculated. Once the hydrodynamic force is
known, a dynamic equation can be used to calculate the de-
celeration of the bubble as it approaches the wall. For the
case of solid particles approaching a solid wall, both Joseph
et al.6 and Gondret et al.7 showed that the film drainage
satisfied the viscous approximation proposed by Davis et
al.25 In our case, it is interesting to note that the velocity of
approach, in dimensionless form, is independent of the
Stokes number, as shown in Fig. 5. This fact is in direct
contradiction to what is expected for solid particles, for
which the Stokes number affects directly the deceleration of
the particle during the approach. Hence, we can argue that in
the case of a bubble the inertial effects in the film may be
important. To investigate this behavior, we conducted an
analysis of the film drainage considering both a viscous and
inertial flows. For the case of inertial draining, we followed
closely the analysis of Weinbaum et al.;26 we modified the
boundary conditions to satisfy those in our problem. To cal-
culate the viscous draining, the analysis of Davis et al.25 was
followed, with a minor correction to account for the non-
spherical bubble shape. Details of the analysis are shown in
the Appendix and in the original references.

In the limit of infinite Reynolds number, the boundary
layers on the bubble and wall surfaces are vanishingly thin
and viscous effects are negligible. From Eq. �A13�, the evo-
lution of the bubble velocity as it approaches the wall is

ht

U0
= � 2� + 1

2� + h0/h�
3/2

, �9�

where h is the distance from the bubble surface to the wall
�h0=h�t=0��, ht is the time rate of change of h, and

� �
64CAMmf


�deq
3 =

32

3
CAM �10�

considering that h0=deq and L=deq /2. In our case, �
=O�10�. The distance h as a function of time has to be ob-
tained numerically. In Fig. 7 the solution of Eq. �9� is shown
for a range of values of � considering that h0=deq.

Now, if the flow in the film is assumed to be dominated
by viscous effects, then the bubble velocity can be calculated
to be �Eq. �A28��

ht

U0
= 1 −

1



ln

h0

h
, �11�

where 
 is defined as


 =
2�mair + CAMmf�U0

3�
b2�2 = 4�−4/3 St�. �12�

The distance h is then given by


e−
	Ei�
� − Ei�
 − ln
h0

h
�
 =

U0t

deq
, �13�

where Ei is the exponential integral function.
In Fig. 7, the predictions of the inertial and viscous

drainage models are compared and contrasted with experi-
mental measurements. The distance h is calculated from the
experiments as

h = z − 1
2deq�

−2/3,

where z is the distance from the bubble center to the wall.
The three experiments shown in the figure are the same as
those in Fig. 4.

The comparison shows that the inertial drainage mecha-
nism fits the experimental results more closely. In particular,
the model prediction is close to the experimental measure-
ments at a distance not very near to the wall. It is expected
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FIG. 7. �Color online� �a� and �b� show the comparison between experi-
ments and the inertial �Eq. �9�� and viscous �Eq. �11�� drainage predictions,
respectively. The solid lines show ht and the dashed lines h. The different
lines show predictions for varying � or 
: �a� �=5,10,50 �b� 
=3,8 ,20,
which correspond approximately to St�=0.9,2.2,5.6. The filled and empty
symbols denote experimental results of �h /deq� and �U /U0�, respectively;
the results here correspond to those shown in Fig. 4.
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that when the gap is very thin, the viscous effects cannot be
neglected. Furthermore, the behavior of the prediction de-
pends on the parameter �, which remains O�10� and in a
narrow range for all the experiments �11.8	�	15.3, for the
three experiments shown in Fig. 5�. The prediction does not
change significantly for these range of values of � and is
close to the experimental observations. On the other hand,
the prediction from the viscous draining model can be made
to coincide the experimental observations but only for a par-
ticular value of the Stokes number, which is in fact lower
that the corresponding value in the experiments �St��2.2�.
Moreover, in the experiments, the value of St� varies signifi-
cantly �in the data shown in Fig. 7, it varies from 4 to 20�;
the corresponding curves for such values of St� are very
different from each other. Therefore, we can conclude that
the dominating mechanism for film drainage, and the associ-
ated hydrodynamic force, before contact is the inertia of the
fluid. The viscous effects are only important when the film is
very thin.

C. Coefficient of restitution

As discussed in Sec. I, for solid particles6,7 and liquid
drops,9 the Stokes number correctly characterizes the colli-
sion process. The restitution coefficient “lumps” the process
into a single parameter. For the case of bubble collisions, we
define this parameter as the negative of the ratio between
rebound and incoming velocity

� = −
Udepart

U0
, �14�

where Udepart is the velocity at which the bubble loses contact
with the wall and U0 is the bubble terminal velocity. Defined
in this manner, the coefficient of restitution gives a global
description of the energy dissipation during the approach,
contact, and bounce. Legendre et al.9 discussed that the co-
efficient of restitution could be defined in different manners,
depending on the value chosen for the approach velocity
�either the contact or terminal velocity�. In our case, we
opted for the definition shown above because of the difficulty
of accurately determining the point in which the bubble ef-
fectively contacts the wall.

Figure 8 shows the measured coefficient of restitution �
as a function of the Stokes number for all the experiments
performed in this investigation. The coefficient of restitution
is observed to decrease monotonically with Stokes. This is an
indication of the two competing mechanisms in the process:
viscous dissipation and the inertia associated with the colli-
sion. When the Stokes number is small, viscous dissipation
dominates over inertia and the bubble motion is damped be-
fore a rebound can occur. On the other hand, when the inertia
is sufficient, the bubble reaches the wall with enough energy
to overcome dissipation and store it in the form of surface
deformation. The surface deformation energy is recovered
into kinetic energy and bubble bounces off the wall with a
velocity smaller that the incoming one. Note also that no
difference in behavior was found when bubbles collided
against a glass or Plexiglas wall. In the figure, we also
present the values of the coefficient of restitution inferred

from Tsao and Koch13 and Malysa et al.14 Although these
previous data are limited, good agreement is found. The
measurements for oscillating bubbles appear to have slightly
higher values of the restitution coefficient; however, a more
in depth analysis for oscillating bubbles was not pursued.

From the figure it can also be noted that, although the
trend is very clear, a certain amount of scatter is present. In
addition to the uncertainty from the experimental technique,
we believe that the fact that our experiments are conducted
under ordinary laboratory conditions �not an ultrapure envi-
ronment� causes some additional variability of the results.
The terminal conditions of an approaching bubble may vary
depending on how much contamination is contained on its
surface. Also, for the same approach conditions, the rebound
velocity may change depending on the degree of contamina-
tion that the bubble surface acquires during the contact with
the wall. These effects, which cannot be quantified, result in
the dispersion of the experimental results, which can be as
high as 20%.

For the same reason, it is not possible to accurately de-
termine the value of the Stokes number for which the tran-
sition from bounce to arrest occurs. We observed that for the
same nominal conditions, sometimes rebound or arrest could
be observed. Surface active agents, possible present in our
arrangement, wall wettability, and roughness15 add additional
effects that could prevent the bubble from leaving the wall.
The fact that these effects may vary under the same labora-
tory conditions explain the variability observed in our mea-
surements. Extrapolating our measurements, the value of the
critical Stokes number would be approximately 1.

By plotting the data as −log��� as a function of St� �as
shown in the inset in Fig. 8�, we can observe that the coef-
ficient of restitution can be closely fitted to
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FIG. 8. �Color online� Coefficient of restitution � as a function of Stokes
number St�. The solid and empty circles show the results obtained for
bubbles rising in a straight and oscillatory path, respectively. The blue and
black circles show the results obtained for bubbles colliding against a glass
and Plexiglas wall, respectively. The dashed and dashed-dotted lines corre-
spond to expressions �15� and �16�, respectively. Results from others: Tsao
and Koch �Ref. 13� �� �; Malysa et al. �Ref. 14� ���. The inset shows
−log��� as a function of the Stokes number.
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� = exp�−
�1

�St�
� , �15�

where �1=3.5. The only data that appear not to follow this
trend are that obtained from oscillating bubbles. This func-
tional dependence is very different to that reported for the
case of solid spheres and liquid drops by Legendre et al.10

� = exp�−
�2

St�
� , �16�

where �2 is equal to 35. In Sec. IV we will discuss the nature
of this different functional dependence for bubble collisions.

IV. SCALING OF THE COEFFICIENT
OF RESTITUTION

Legendre et al.9 proposed a simple model for the
contact-rebound process of droplets colliding with a wall.
Since we found that the functional dependence of the coef-
ficient of restitution with the Stokes number is significantly
different for bubbles and particles, it is instructive to revise
the model.

The model contemplates a dynamic equation for defor-
mation of the bubble �or droplet�, valid only during the du-
ration of contact with the wall. The deformation is written in
terms of the length � �as defined in Ref. 9�, which represents
the difference between the instantaneous and terminal minor
semiaxes of the bubble. With some minor modifications, the
dynamic equation can be written as

m�
�2�

�t2 + C�

��

�t
+ C�� = 0, �17�

where m�= �4 /3�
R3��, C�=K1�R, and C�=K2�. Also, ��

=�air+�CAM. The second term in Eq. �17� represents the vis-
cous dissipation; it is given by the product of the viscosity
and a characteristic velocity. Legendre et al.9 showed that the
characteristic velocity was, in fact, the velocity of deforma-
tion. This term accounts for the viscous dissipation in the
draining film and can be shown to scale with the capillary
number. The third term in Eq. �17� models the energy storage
�a spring term�. It accounts for the energy stored as surface
energy. Hence, one can expect the coefficient C� to depend
on the bubble aspect ratio.

In dimensionless form, considering �̂=� /R and t̂
= tU0 /R, where R is the bubble equivalent radius �2R=deq�
and U0 is the terminal velocity, and dropping the “ ˆ ” sym-
bols, Eq. �17� can be written as

�2�

�t2 +
�1

St�
��

�t
+

�2

St� Ca
� = 0, �18�

where St� is the modified Stokes number �defined in Eq. �3��
and Ca=U0� /� is the capillary number. The constants �1

and �2 have absorbed all numerical constants. Considering
the initial conditions ��0�=0 and �� /�t�0�=1, the solution
for � is

� =
1

C
exp�−

�1

2 St�
t�sin�Ct� , �19�

where

C =� �2

St� Ca
�1 −

�1
2

4�2

Ca

St�
�1/2

. �20�

Note that St�Ca=We�, where We�=2R��U0
2 /� is a modified

Weber number.
We can obtain an estimation of the coefficient of restitu-

tion � by considering

� = −

� ��

�t
�

t=treb

� ��

�t
�

t=0

= − � ��

�t
�

t=treb

. �21�

From the experiments, treb roughly corresponds to the
time at which the bubble recovers its initial deformation after
the compression-decompression process ��=0�. It follows
from Eq. �19�, that �=0 when

treb =



C
. �22�

Therefore,

� = exp�−



2

�1

St�
1

C
� . �23�

From the value of C �Eq. �20�� and since
�1

2 Ca / �4�2 St�� is small �of order O�0.01� for our case�, we
can write

� � exp�−



2

�1

��2

�Ca

St�
� . �24�

This expression, which, in fact, can be deduced from the
results of Legendre et al.,9 gives a functional dependence of
−log����St�−1/2 for a given value of Ca. This is in accor-
dance with the measurements shown in Fig. 8. Moreover,
this analysis reveals that the proper dimensionless number
that characterizes the collision-rebound process of bubbles
and droplets is not the Stokes number alone; instead, the
number Ca /St�=9�2 / �2R���� should give the correct scal-
ing of the problem. Note that �Ca /St� is, in fact, the so-
called the Ohnesorge number, used in the spray technology
literature.27 Figure 9 shows the measured coefficient of res-
titution now as a function of the ratio Ca /St�. The data
clearly follow the expected functional dependence. A best fit
reveals

� = exp�− 30�Ca

St�
� . �25�

Also noteworthy is the agreement with the experimental re-
sults of Tsao and Koch13 and Malysa et al.,14 as shown in the
figure.

The fact that the data can be presented well either in
terms of St� �Fig. 8� or Ca /St� �Fig. 9� results from the fact
that in the experiments performed here the capillary number
does not change significantly �it ranges approximately from
0.005 to 0.02� and remains relatively constant.

A closer examination of the results of Legendre et al.9

reveals that their measurements can be closely fitted to �
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=exp�−10�Ca /St��, with the same functional dependence as
Eq. �25�. It is, in fact, difficult to discern whether �Ca /St� or
1/St is the proper dimensionless parameter, which character-
izes their collision process. It must be noted that the range of
parameters in their study was not large enough and also their
range of Ca values was narrow. Based on the analysis pre-
sented above, we believe that the proper parameter should be
�Ca /St�. The dependence of the coefficient of restitution
given by Legendre et al.�log ��−1 /St�� and that inferred
here �log ��−�Ca /St�� gave similarly good fittings, by co-
incidence, in their small range of experimental parameters.

Finally, it is important to note that in the relation
�Ca /St� the velocity U0 cancels out. This would imply that
the coefficient of restitution would not depend on approach
velocity. This result, although surprising, is expected from
the fact that the model considered here is linear. The energy
storage mechanism of the model is linearly proportional to
deformation; hence, it is expected that Udepart�U0. For the
case of solid spheres, this is not the case. The elastic energy
is a nonlinear function of deformation28 and therefore it is
expected that the rebound velocity is not directly propor-
tional to the approach velocity.

V. CONCLUSIONS

The process of approach-contact-rebound of air bubbles
against solid walls was studied experimentally. A detailed
examination of the evolution of the position, velocity, and
shape of the bubble during the process was presented for a
wide range of conditions.

First, we found that the bubble approach process is
dominated by the inertia in the draining film between the
bubble and the wall. By comparing the trajectory and veloc-
ity of the bubble, as it approaches the wall, with film drain-
ing models we found that the inertial prediction fits well with
the experimental results.

The bubble-wall interaction process was found to evolve
in a manner similar to that for solid particles or liquid drops:
when the inertia associated with the bubble motion domi-

nates over viscous dissipation, a rebound is observed; on the
other hand, when the inertia is not enough to overcome dis-
sipation, the bubble may oscillate or arrests over the wall,
but no rebound is observed. The process is characterized
with an effective coefficient of restitution, which compares
the rebound and approach velocities. We found that there is a
clear correlation between the coefficient of restitution and the
bubble Stokes number. The functional dependence between
these two parameters was found to be significantly different
from that observed for the case of solid particles. Consider-
ing a simplified mass-spring-type model, the collision pro-
cess was analyzed. It was found that if both surface tension
and viscous effects are accounted for, the coefficient of res-
titution should evolve with the number Ca /St�

=9�2 / �2R���� and not only with St�. Such dependency was
in very good agreement with what was found experimentally.
More experiments are necessary to further corroborate this
dependence for colliding fluid particles. In particular, it
would be important to obtain measurements �through experi-
ments or numerical simulations� for systems in which Ca and
St� could be varied independently. Moreover, it is necessary
to perform experiments considering clean fluids in order to
obtain a precise measurement of the critical value of the
Stokes number beyond which a rebound can be expected. We
plan to continue our investigation in these lines in the future.
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APPENDIX: FILM DRAINING AND RESULTING
HYDRODYNAMIC FORCE

In this appendix we show the summary of the analysis
done to obtain expressions for the bubble deceleration as a
result of the hydrodynamic force on the film. We follow two
approaches. First, we analyze the case in which the drainage
is inertial. The equation for inertial drainage in a film was
first derived by Weinbaum et al.26 for the draining of a thin
fluid layer between parallel plates. We use this analysis with
the boundary and initial conditions related to our problem.
On the other hand, we follow the analysis of Davis et al.25 to
calculate the viscous draining adding the effect of the oblate-
ness of the bubble.

1. Inertial draining

Let us consider the arrangement depicted in Fig. 10: a
bubble of equivalent diameter deq ascending straightly at its
terminal velocity U0, approaching a horizontal rigid wall.

Far from the wall, the evolution of the distance from the
surface to the wall h is given by
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FIG. 9. �Color online� Coefficient of restitution � as a function of Ca /St�.
All symbols as in Fig. 8. The dashed line corresponds to expression �25�.
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w =
dh

dt
= − U0, i.e., h�t� = h0 − U0t , �A1�

where by definition −ht=−dh /dt is the instantaneous velocity
of the bubble. Since the bubble is deformed, we assume that
at first order the lubrication occurs between two parallel
plane surfaces. The bubble is considered equivalent to a disk
of radius L=O�deq� and we assume that the fluid is at rest in
front of the bubble. In fact, since Re�1, the flow decays as
deq

3 /r3 �potential flow� so that the flow is at rest for deq
3 /h3

�1. Under these conditions, we consider that the bubble sees
the wall instantaneously at time t=0. We want to study the
induced inertial drainage of the fluid between the bubble and
the wall.

Weinbaum et al.26 considered a two-dimensional axi-
symmetric flow in the gap between the bubble and the wall.
They formulated the solution in terms of a stream function
�,

u =
1

r

��

�z
= rFz�z,t� , �A2�

w = −
1

r

��

�r
= − 2F�z,t� , �A3�

where u and w are the fluid velocities in the r and z direc-
tions, respectively, and F�z , t� is an unknown function that
can be determined by the boundary and initial conditions of
the problem.

The boundary conditions at the wall, z=0, are F=0 and
Fz=0; at the bubble surface, the normal velocity condition
and the zero shear stress give F=−ht /2 and Fzz=0. The ini-
tial condition is 2F=−ht=U0 at h=h0.

Substituting Eq. �A2� into the Navier–Stokes equations
and integrating the pressure in r and z, one can obtain, after
some manipulations, following Ref. 26, the pressure distri-
bution on the bubble surface

p�r,h,t� = 1
2�r2A�t� + p0�t� , �A4�

where p0�t� is the pressure at the center �r=0� of the lower
surface of the body. The function A�z , t� resulting from the
integration of the pressure is

A�z,t� = �Fzzz − Fzt − Fz
2 + 2FFzz. �A5�

The unknown function A�t� can be related to the instan-
taneous motion of the bubble. Assuming that the dominant
effect is induced by the inertial drainage and considering that
during the deceleration, the viscous drag balances the buoy-
ancy, the bubble force balance can be written as

CAMmfhtt = D�t� , �A6�

where mf =
deq
3 � /6 is the mass of fluid displaced, CAM is the

added mass coefficient �defined in Eq. �8��, and D�t� is the
hydrodynamic force.

By assuming that the normal viscous stresses are of sec-
ond order, the hydrodynamic force can be calculated inte-
grating the pressure profile over the bubble surface,

D�t� = 

0

L

2
rp�r,h,t�dr =
1

2

�L4A�t� . �A7�

This expression is obtained by considering that the reference
pressure is zero. Therefore, the relation between A�t� and htt

is

A�t� = −
4CMmf

�
L4 htt. �A8�

Thus, the film equation in dimensionless form �consid-
ering z�=z /h0, h�=h /h0, F�=F /U0, and t�= tU0 /h0 and
dropping the asterisks� can be written as

Fzt + Fz
2 − 2FFzz −

1

Re0
Fzzz = �htt, �A9�

with the Reynolds number Re0=h0U0� /� and � given by

� =
4CMmfh0

�
L4 . �A10�

For our case, we can consider that h0�deq and that L
�deq /2; hence, we have �=O�10�.

In the infinite Re limit, the boundary layers at z=0 and
z=h�t� can be assumed to be vanishingly thin ��h0 and thus
the viscous term in Eq. �A9� disappears. In the case of a
bubble, the boundary layer thickness is ��b Re0

1/2; there-
fore, we will assume that the viscous effects in the gap are
negligible. The film equation then reduces to

Fzt + Fz
2 − 2FFzz = �htt. �A11�

Furthermore, following Ref. 26, it can be assumed that
�=r2z��t� since the flow resembles a time-dependent axi-
symmetric stagnation-point flow. After some algebra, an
equation for the evolution of h can be obtained

�� +
1

2h
�htt −

3

4h2 = 0 �A12�

with the initial conditions ht�0�=−1 and h�0�=1.
The solution for ht can, in fact, be obtained analytically

ht = 	h�2� + 1�
2�h + 1


3/2

. �A13�

The solution of h, however, has to be obtained by numerical
integration. These expressions are compared with our experi-

wall

bubble

r

z

L

U

FIG. 10. Sketch of the geometry showing the coordinate axes and
dimensions.
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mental results in Sec. III B. Note that for this case, obvi-
ously, the evolution of ht with time is independent of the
Stokes number of the flow since the effect of viscosity was
not considered.

2. Viscous draining

We consider that the bubble is an ellipsoid of revolution
along its small axis, as shown in Fig. 10. The bubble surface
is perfectly clean and it is allowed to deform during the film
drainage. We note h0 the position of the ellipsoid before the
deformation and � is the deformation induced by the inter-
action with the wall. The instantaneous gap between the
bubble and the wall is thus

h�r,t� = h0 + ��r,t� . �A14�

The initial shape of the bubble can be approximated by pa-
raboloids in the region of near contact and the deformation
gap profile is

h�r,t� = z�t� +
r2

2b�
+ ��r,t� , �A15�

where z�t� is the distance between the wall and the bubble
and b is the bubble small semiaxis. We assume that the wall
does not deform so that ��r , t� results only from the defor-
mation of the bubble. For �=1 �spherical shape�, Eq. �A15�
recuperates the original result of Davis et al.25 for an spheri-
cal shape.

Before the interaction with the wall, the bubble is de-
formed resulting from the hydrodynamic interaction with the
fluid. Neglecting normal viscous stresses, the shape is given
by

pB − pL = 2H� with H =
1

r

�

�r
�r

�h

�r
� , �A16�

with H being the mean curvature of the bubble surface. By
noting H0=2 /b� the curvature in the region of near contact,
the additional deformation is related to the pressure in the
film by

p = −
�

r

�

�r
�r

��

�r
� . �A17�

Under the lubrication assumption, the Navier–Stokes
equations reduce to

�p

�r
= �

�2u

�r2 , �A18�

�p

�z
= 0, �A19�

by integration along z the velocity profile is

u =
1

2�

dp

dr
�z2 − hz� + UI

z

h
, �A20�

where UI is the interfacial velocity.
From the continuity equation

�h

�t
= −

1

r

�

�r�r

0

z

udz� , �A21�

and combining Eqs. �A20� and �A21�, one obtains

�h

�t
= −

1

r

�

�r
	r�UIh

2
−

1

12�
h3dp

dr
�
 . �A22�

Considering the zero-shear stress boundary condition,
after some manipulations, we obtain

UI = −
3

4

r

h
zt, �A23�

p =
3

4
��b

zt

�z +
r2

2�b
�2 . �A24�

Integrating the pressure over the surface, the hydrody-
namic force on the bubble is

D�t� =
3

2

�b2�2zt

z
. �A25�

Note that Davis et al.25 obtained D�t�=6
�a2zt /z for the
case of a solid sphere.

Now, the motion of the bubble during the film drainage
can be obtained by a dynamic equation given by

�mair + CAM���mf�ztt = − D�t� . �A26�

Introducing the dimensionless quantity,


 =
2�mair + CAM���mf�U0

3�
b2�2 = 4�−4/3 St�, �A27�

where St� is the modified Stokes number �defined in Eq. �3��,
and considering the initial conditions zt=U0 and z=z0, the
solution of this problem resembles that obtained by Davis et
al.25

zt

U0
= 1 −

1



ln

z0

z
. �A28�

The distance between the bubble and wall, z, which can,
in fact, be obtained analytically, is then given by


e−
	Ei�
� − Ei�
 − ln
z0

z
�
 =

U0t

z0
. �A29�

The predictions of these expressions are shown in Fig. 7,
compared to the predictions of inertial draining and experi-
ments.
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