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1. Introduction

Ascending oscillating air bubbles in water have fascinated sci-
entists for many years. Recently found drawings of Leonardo da
Vinci (Prosperetti et al., 2003) are now considered the first docu-
mented observations of this phenomenon. Small bubbles moving
in a low viscosity liquid rise in a straight line; beyond a certain size
the bubbles begin to ascend in a zigzag or spiral trajectory. Many
studies have been devoted to the subject, especially during the last
50 years (Magnaudet and Eames, 2000). Although the understand-
ing of the causes of this spectacular transition remained unclear for
a long time, now its comprehension is nearly complete: the wake
behind a spheroidal bubble becomes unstable when the vorticity
produced at its surface becomes larger than a certain limiting value
(Magnaudet and Mougin, 2007; Yang and Prosperetti, 2007).

The main clues that lead to this discovery arose from both
experimental and numerical investigations. Lunde and Perkins
(1997) and Brücker (1999) reported the first visualizations of the
wake behind oscillating bubbles. Although these studies were not
precisely focused to examine the conditions for the transition to
unstable trajectory, they showed the existence of vortical struc-
tures behind oscillating bubbles, which resembled those observed
behind solid spheres. By means of a Schlieren-type technique de
Vries et al. (2002), also recently Veldhuis (2007), visualized the
wake behind oscillating bubbles. The technique was developed
such that the hyper-clean water remained uncontaminated during
the experiment. Surface contamination has been found to have a
tremendous effect on the critical conditions for transition (Duine-
veld, 1995). de Vries et al. (2002) found that the wake behind oscil-
lating bubbles was formed by two filaments of counter-rotating
streamwise vorticity. They showed that such a vortical structure
produced a lift force on the bubble which caused the observed
ll rights reserved.
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sideways motion. Although the structure of the wake was visible,
only limited quantitative results could be obtained. It is not very
clear what the proper quantitative interpretation of these visual-
izations is, since the Schlieren optics show gradients of the refrac-
tion index and it is not obvious how to relate these gradients to
quantitative values of the velocity or vorticity in the wake.

Approximately at the same time as the experimental observa-
tions of de Vries et al. (2002), Mougin and Magnaudet (2002) re-
ported direct numerical simulation results of the motion of a
freely ascending fixed-shape spheroid with a stress-free condition
at its surface. They found that if the wake behind the bubble re-
mained axisymmetric, the bubble ascended in a straight trajectory;
the transition to oscillatory behavior coincided with the appear-
ance of two counter-rotating trailing vortices behind the bubble,
in direct agreement with the experimental observations.

The appearance of streamwise vorticity is, therefore, the key
for the path instability to occur. Surprisingly, direct experimental
measurements of this quantity in the wake behind an oscillating
bubble have not been reported to date. The visualizations of
Lunde and Perkins (1997) (who used dye) and of Brücker
(1999) (who used particle tracers and a PIV system) were not
‘clean’; hence, their results could not be used to investigate
the nature of the transition for bubbles rising in an uncontami-
nated liquid. On the other hand, the visualizations of de Vries
et al. (2002) and Veldhuis (2007) which clearly showed the
appearance of the streamwise vortical structure, provide mostly
qualitative information. Hence, it is still necessary to perform
‘clean’ experiments to measure directly the vorticity in the wake
of oscillating bubbles.

In this brief communication, we report measurements of the
velocity field in the plane perpendicular to the main bubble mo-
tion. From these measurements, the streamwise vorticity was cal-
culated and the structure of the wake was reconstructed. Also, the
strength of the vortical structures was measured and the resulting
lift force was inferred by two methods (from the trajectory of the
bubble and from the strength of the vortices). To our knowledge,
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direct measurements of the streamwise vorticity behind oscillating
bubbles have not been reported to date.

2. Experimental setup

Experiments were performed in a cylindrical container of 30 cm
height, with a diameter of 10 cm, which is shown schematically in
Fig. 1, A careful procedure to minimize contamination was used,
described in detail in Zenit and Magnaudet (2008). Air bubbles
were produced with a horizontal stainless steel capillary tube,
which was inserted through the side wall, and syringe pump.

The liquid used in this investigation was a silicon oil (DMS-T05,
polydimethylsiloxane, Gelest Inc.) The properties of the liquid are
listed in Table 1. We opted for this liquid because of its low viscos-
ity and because it is formed by a nonpolar molecule which ensures
that the gas–liquid interface remains clean under standard labora-
tory conditions. Recently, we showed (Zenit and Magnaudet, 2008)
that this type of liquid can be used to study the transition to oscil-
latory behavior for millimetric sized air bubbles without the need
of an ultrapure environment (Duineveld, 1995).

The shape and vertical terminal velocity of the bubbles were
measured using a high-speed camera (APX Photron). Images were
obtained at approximately 15 cm above the injection point using a
light emitting diode (LED) array which served as a diffuse back-
lighting illumination. The camera was operated at 1000 frames/s
in all cases. Using standard image processing routines (from Mat-
lab), the bubble ‘blob’ was identified in the x� z (or y� z) plane
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High speed
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Fig. 1. Scheme of the experimental setup.

Table 1
Properties of the liquid used in the experiment: q is the density, l the dynamic
viscosity and r the surface tension. The properties of pure water are also shown for
reference.

Liquid q, kg/m3 l, mPa s r, mN/m Mo ¼ gl4=ðqr3Þ

Water 1000 1.00 72.86 2:5� 10�11

DMS-T05 918 4.59 19.7 6:2� 10�7
(see reference frame in Fig. 1) and its geometrical center was lo-
cated and tracked in time to calculate the vertical terminal veloc-
ity. In this manner, the bubble equivalent diameter
(deq ¼ ðd2

l dsÞ1=3, where dl and ds are the long and short bubble
diameters, respectively) and the aspect ratio (v ¼ dl=ds) were cal-
culated for each case. Clearly, this technique is sufficient to deter-
mine the bubble shape precisely only if the bubbles rise in a
straight trajectory. For the case of oscillatory trajectories, the bub-
ble shape could only be obtained when the bubble orientation
coincided with the imaging plane.

To investigate the nature of the vortical structures behind mov-
ing bubbles, and particularly the streamwise vorticity component,
a high-speed particle image velocimetry (PIV) system was imple-
mented to only measure this component. As shown in Fig. 1, the la-
ser plane was aligned horizontally, such that only the velocities in
the x� y plane (the reference frame is shown in the figure) could
be measured and the streamwise vorticity xz be calculated. Hence,
the camera was placed below the container and images were ob-
tained at a rate of 400 images/s (also using the APX Photron cam-
era). A NdYag pulsed Laser was used. Great care was taken to
prepare the tracer particles. To avoid the reflections from the bub-
ble surface, fluorescent polymer tracer particles of 30 lm were
used (from Dantec Dynamics Inc.) To ensure that the addition of
the tracers did not contaminate the gas–liquid interface, an elabo-
rate cleaning process was followed. First, the water in which the
tracers were suspended was removed by making the suspension
pass through a paper filter. The particles were then rinsed and fil-
tered; this process was repeated twice with high-purity methanol
and four times with double distilled water. After, the particles were
dried with a lamp heater. Once dried, they were rinsed and filtered
twice with a low viscosity silicon oil (DMS-T00, from Gelest). Final-
ly, the tracers were suspended in a small quantity of the working
fluid (DMS-T05 silicon oil) to be subsequently added to the exper-
iment. To corroborate that the addition of tracer particles did not
contaminate the bubble surface, some experiments were con-
ducted using the seeded fluid to measure the bubble terminal
velocity (shown below). The bubble velocity and shape were found
to be virtually unaffected by the tracers; hence, we can argue that
the bubble surface is stress-free in the PIV experiments.

Typical images obtained with the PIV system are shown in
Fig. 2. Also, a sequence of images can be viewed in the associated
video. The figure shows the two cases that will be studied in detail
here. These images were processed with the software Flow Man-
ager (from Dantec Dynamics Inc.) The fluid velocities ðu; vÞ in the
x� y plane were obtained for different instants in time. An adap-
tive cross-correlation technique was used, with a final interroga-
tion area of 32� 32 pixels, and an overlap of 50% in both
directions. Subsequently, a peak validation, moving average and
spacial filter routines were applied. The fluid motion was studied
only for times posterior to the passage of the bubble through the
plane. Time t ¼ 0 is set by the time at which the bubble crosses
the laser plane: posterior times correspond to positive time values.
The curl of the velocity field is the x� y plane was calculated to ob-
tain the streamwise vorticity as

xz ¼
@v
@x
� @u
@y
: ð1Þ

In addition to the fluid velocity measurements obtained after
the bubble has passed through the laser plane, the time evolution
of the bubble position in the x� y plane could also be obtained be-
fore the bubble crosses the plane. In the video shown along with
Fig. 2 it can be observed that prior to the arrival of the bubble in
the laser plane, a region devoid of tracers can be clearly identified.
This ‘shadow’ results from the fact that the bubble is in between
the light source (the illuminated tracers) and the camera. The sha-
dow can be used to determine the position of the bubble for differ-



Fig. 2. On the left, images (a and c), are typical images of the PIV plane, at the moment when the bubble crosses the laser plane (t ¼ 0). On the right, (b and d), flow streaklines
are shown (obtained by superposing images of the flow motion for t > 0). (a and c) correspond to cases (S) and (O) of Table 2, respectively. The associated online video shows
the fluid motion before and after the bubble passes through the laser plane.
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ent times, before the bubble crosses the laser plane. Using image
processing tools such as binarization, blob dilation and outline
identification (also from Matlab,) the region without tracers was
located and its position (geometrical center) was determined in
the x� y plane, with an uncertainty of approximately 2%. This
information was used, along with the bubble vertical terminal
velocity, to calculate the 3D trajectory before the bubble passage
through the laser plane.

The image in Fig. 2b (and the corresponding video) shows that
the bubble rises in a straight line with no significant vortical mo-
tion behind it. On the other hand, for the case of an oscillating bub-
ble (Fig. 2d), the motion occurs in a zigzag manner and the swirling
motion of the fluid indicates that the streamwise vorticity compo-
nent is significant.

3. Results

3.1. Determination of critical conditions

Initially, a series of experiments was conducted to obtain a rela-
tion between size, shape and terminal velocity, and also to deter-
mine the conditions for transition to an oscillatory trajectory.
Some of these data were taken from our previous investigation (Ze-
nit and Magnaudet, 2008). Fig. 3 shows the bubble aspect ratio v
and Reynolds number, calculated as Re ¼ deqUbq=l, as a function
of the bubble equivalent diameter, deq. Both Re and v increase with
bubble size, as expected and as predicted by Moore (1965) for the
case of perfectly clean spheroidal bubbles. There is a small discrep-
ancy in the Reynolds number, since the experimentally determined
value is slightly larger than the theoretical prediction. This differ-
ence is a result of the slightly larger velocities measured experi-
mentally. As previously discussed by Duineveld (1995) and Zenit
and Magnaudet (2008), bubbles experience a drag force slightly
smaller than that calculated by Moore’s model, because of their
non-perfect spheroidal shape. Nevertheless, since both the aspect
ratio and Reynolds number are very close to the predictions of
Moore, we can state that the bubble surfaces are clean and, hence,
stress-free.

The conditions of transition to an oscillatory trajectory were
determined by calculating the standard deviation of the bubble
velocity. A bubble was said to be oscillating when the standard
deviation of its velocity was larger that 5% of its terminal velocity.
In Fig. 3 this condition is depicted by the vertical and horizontal
dashed lines. The conditions for transition in this particular liquid
are: deq ¼ 2:89 mm, v ¼ 2:10 and Re ¼ 110:3.

Furthermore, experiments were also performed in the liquid
with PIV tracers, also shown in Fig. 3. No distinguishable difference
can be observed between the measurements with and without PIV
tracers. Therefore, we can conclude that the addition of particles
did not contaminate the bubble interface.

Based on these results, two cases were chosen to be studied in
detail with the PIV system: slightly below and above the transition.
These two cases are shown by the asterisk (case S) and filled circle
(case O) in Fig. 3, and the corresponding experimental conditions
are summarized in Table 2.

3.2. Bubble trajectory

As discussed above, the bubble position in the x� y plane was
obtained by further processing of the PIV images: the ‘shadow’ of
the bubble appeared on the images before the bubble itself crossed
the laser plane. Fig. 4 shows the x� y position for a bubble ascend-
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Fig. 3. (a) Bubble aspect ratio, v, and (b) Reynolds number, Re, as a function of the
bubble equivalent diameter, deq . The empty and solid squares show the results for a
liquid with (taken from Zenit and Magnaudet, 2008) and without PIV tracers,
respectively. The solid lines show the prediction of Moore (1965). The dashed lines
show the critical conditions for transition to an oscillatory trajectory. The asterisk
and solid circle show the conditions for the cases (S) and (O) from Table 2.

Table 2
Experimental conditions for the two cases studied in detail.

Case deq , mm v ¼ dl=ds Ub , mm/s Re ¼ Ubdeqq=l We ¼ U2
bdeqq=r

S (straight) 2.65 1.98 188.7 100.0 4.4
O (oscillating) 2.93 2.16 193.1 113.1 5.1

198 R. Zenit, J. Magnaudet / International Journal of Multiphase Flow 35 (2009) 195–203
ing in a straight (case S) and an oscillatory trajectories (case O), (a)
and (c) respectively. The difference between the two cases is
evident.

Note that although the bubble path in (a) is not perfectly verti-
cal, it is notably straight. Some authors have observed such
straight-but-not-vertical trajectories for the case of freely ascend-
ing light spheres (Jenny et al., 2004). As will be seen below, the
wake behind bubbles rising in a straight trajectory does not show
a coherent streamwise vorticity structure; hence, the non-vertical
trajectory cannot attributed to an effect of the wake. Since the bub-
ble was injected using a horizontal capillary (as shown in Fig. 1), a
small initial horizontal motion may have been imposed on the
bubble during its release.
On the other hand, the bubble path in (b) shows significant
oscillations. The amplitude of oscillation in the y direction is al-
most seven times larger than that in the x direction: the bubble
is moving in a zigzag trajectory or, more precisely, in a very flat
spiral.

To reconstruct the 3D trajectory of the bubbles, we considered
that the vertical position could be calculated as z ¼ UbNif , where
Ni is the image number and f is the frame rate. For the results
shown here, a fixed value of f ¼ 400 frames/s was used. Fig. 4(b)
and (d) shows the reconstructed 3D trajectory of the two cases
shown in (a) and (c). Both the straight and zigzagging nature of
the trajectories is very clear.

3.3. Velocity and vorticity fields

From the images shown in Fig. 2 (and its associated video), a
standard cross-correlation technique was applied to obtain the
velocity field in the x� y plane. The streamwise vorticity was cal-
culated according to Eq. 1. With these measurements we can ob-
serve directly if there is a significant change in the streamwise
vorticity between a straight and an oscillating bubble.

Fig. 5 shows the velocity and vorticity fields generated by the
oscillating bubble (case O) for several time instants after the bub-
ble has crossed the laser plane. The appearance of two swirling re-
gions of vorticity of opposite sign is very clear. These regions of
concentrated vorticity move and their strength reduces in time.

On the other hand, for the case of a bubble rising in a straight
line (case S), shown in Fig. 6, the velocity field resembles a ‘sink’
flow (since the bubble is dragging fluid behind it and across the la-
ser plane), for which the streamwise vorticity is negligible. The
wake does not show any significant structure which could explain
the straight but not exactly vertical trajectory found for this case.
This is why we suspect the detachment of the bubble from the hor-
izontal capillary to be responsible for this small inclination of the
path.

3.4. Reconstruction of the wake structure

Now, since we could clearly identify the formation of two re-
gions of streamwise vorticity of opposite sign for case (O), it is pos-
sible to reconstruct the structure of the wake behind the oscillating
bubble. The measurements of the vorticity field at different time
instants are converted into slices of the flow at different stream-
wise distances (coordinate z) behind the bubble by simply consid-
ering that z ¼ Ubt. This is clearly an approximation and would only
represent the Lagrangian vorticity field behind the bubble for short
times (or distances) but, nevertheless, its visualization is
instructive.

Figs. 7 and 8 show the reconstructed streamwise vorticity field
for case (O). These images show iso-surfaces of xz for two values of
equal magnitude but opposite sign. Two tubes are observed which
extend for approximately seven bubble diameters (for the chosen
value of xz). The cross-sectional area of the tubes reduces with dis-
tance, as the vorticity dissipates due to viscous effects. The bubble
trajectory is also shown in the figure. It is important to note that
the zigzagging motion occurs in a x� z plane corresponding to that
which separates the two vortex tubes. The two vortex tubes are in-
clined with the same slight inclination as the bubble at t ¼ 0. Mou-
gin and Magnaudet (2002) and Magnaudet and Mougin (2007)
showed the structure of the streamwise vorticity for the case of
oscillating and fixed spheroids. The similarity between the experi-
mental wake and the numerical results is striking. Note, that
although the Reynolds number is very different, the aspect ratio
is similar. This resemblance further confirms the fact that the as-
pect ratio, and not the Reynolds number, is the most relevant factor
to determine the transition to an oscillatory path (Zenit and Mag-



Fig. 4. Bubble trajectories. (a and c) show the position as a function of time: ð�Þ, x-position; ð�Þ, y-position. Position and time are normalized by deq and deq=Ub , respectively.
(b and d) show the reconstruction of the tridimensional bubble trajectory. The size of the bubble is shown at (0,0,0), which denotes the position of the bubble center when it
crosses the laser plane. The lines, in all cases, show spline fits. (a–b) and (c–d) correspond to cases (S) and (O), respectively, from Table 2.
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naudet, 2008), as two bubbles of similar aspect ratio but different
Reynolds numbers produce similar streamwise vortical structures.

4. Calculation of the lift force

Using the results presented above, the magnitude of the in-
duced lift force can be determined for the case of the oscillating
bubble. The force was calculated from the trajectory of the bubble
and from the circulation of the vortices in the wake.

4.1. Lift force inferred from trajectory

The fact that the bubble moves in a non-straight fashion as it as-
cends (for case O), is an indication that forces in the horizontal
direction are present and change in time. Since the three-dimen-
sional trajectory of the bubble was obtained, the evolution of the
forces exerted on the bubble can be inferred. By considering similar
approaches, Shew et al. (2006) and Veldhuis (2007) calculated the
drag and lift (in two directions) forces for both zigzagging and spi-
ralling trajectories. Their analysis was based on a simplification of
the generalized Kirchhoff equations expressed in a coordinate sys-
tem rotating with the bubble.

We used the scheme proposed by Shew et al. (2006) to calculate
the lift force. By considering the simplified set of Kirchhoff equa-
tions, assuming that the bubble moves with its minor axis always
aligned with the velocity vector (as demonstrated by Ellingsen and
Risso, 2001; de Vries et al., 2002; Mougin and Magnaudet, 2002;
Veldhuis, 2007), the forces on the bubble can be calculated if the
pitch and azimuthal angles, h and w, respectively, as defined by
Shew et al. (2006), and their time evolutions are known. The lift
force in the normal and binormal directions can be calculated from
the balance between buoyancy and added mass forces. In other
words, the lift force depends on the pitch (or azimuthal) angle,
its time variation, the added mass coefficient along the bubble
minor axis and the bubble terminal velocity. Details of this calcu-
lation can be found in the references above.

The uncertainty in determining the trajectory would, therefore,
influence the force calculation. However, as discussed above, with
our procedure it is possible to accurately determine the trajectory
(within 5% of uncertainty). Also, shape fluctuations could signifi-



Fig. 5. Velocity and vorticity fields for different times after the bubble has passed the laser plane: bubble rising in a a zigzag trajectory. The arrows denote the velocity vectors
in the ðx; yÞ plane. The gray level shows the value of the streamwise vorticity, xz: color white (resp. black) denotes a value higher (resp. lower) that xz=ðUbdeq=2Þ ¼ þ0:20
(resp. �0.20). The lines show contours of iso-vorticity: green, xz=ðUbdeq=2Þ ¼ þ0:12 and red, xz=ðUbdeq=2Þ ¼ �0:12. (a), t� ¼ t=ðUb=deqÞ � 1; (b), t� � 2;(c), t� � 3; (d), t� � 5;
(e),t� � 7; (f),t� � 9. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Velocity and vorticity fields for different times after the bubble has passed the laser plane: bubble rising in a straight trajectory. Gray levels, lines and arrows as in
Fig. 5. (a), t� ¼ t=ðUb=deqÞ � 0:7; (b), t� � 1:4; (c), t� � 2:1.
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cantly affect the force calculation. Both Ellingsen and Risso (2001)
and Veldhuis (2007) have shown that for this regime (slightly
above the transition to oscillatory behavior), shape fluctuations
are small and therefore have a negligible effect.

The pitch angle, h, varies approximately from �15 to 15 degrees
(with respect to the vertical direction) being zero when the bub-
ble’s short axis is vertical. Fig. 9 shows the calculated values of
the lift force in the 2 and 3 directions (normal and binormal direc-
tions, with respect to the direction of the bubble velocity). In this
case, the force FL2 is greater than FL3 because the motion of the
bubble is nearly a planar zigzag. The drag force, FD fluctuates
slightly around the value of the buoyancy force. Presumably, the
difference between the drag and buoyancy forces results from sec-
ondary added-mass effects associated with small changes in the
bubble velocity, as noticed by Mougin and Magnaudet (2006)
(see their Fig. 3). Other effects, like the lift-induced drag, discussed
in detail by Veldhuis (2007), are already included in the total drag
force, FD. When the bubble crosses the laser plane (t ¼ 0), the value
of h is approximately 11o and the horizontal component of the lift
force FL2 is

FL ¼ FL2 cos h ¼ 2:04� 10�5N;
which is approximately 0.18 times the value of the buoyancy force.
Such a force is of sufficient magnitude to affect the path if applied to
a nearly massless body, like a bubble. The uncertainty on this esti-
mation, which arises from the determination of the bubble trajec-
tory and aspect ratio, is within 5%.

4.2. Lift force inferred from the vorticity in the wake

It is known that the lift and induced drag on an object can be
inferred from the vorticity field in the flow (see for instance Light-
hill, 1985). This profound theoretical concept is, however, of lim-
ited practical use. For instance, according to the expression given
by Howe (1995), to infer the lift force on a bubble, say in the x
direction, one would need to know the acceleration of the bubble
in the y direction, the vorticity and fluid velocity everywhere out-
side the bubble in the y and z directions and the image vorticity in-
side the bubble also in the y and z directions.

Therefore, from the measurements obtained in this investiga-
tion, it is not possible to completely calculate the lift force acting
on the bubble. Alternatively, we can use the model proposed by
de Vries et al. (2002), recently revised and used by Veldhuis
(2007). This simplified model estimates the force exerted on a bub-



Fig. 7. Reconstructed isovorticity surfaces: the red and green surfaces show iso-
streamwise-vorticity surfaces with values of xz=ð2Ub=deqÞ ¼ �12:1. (a and b) show
two views of the same flow. The situation shown corresponds to case (O). The line
shows the trajectory of the bubble (same data as that shown in Fig. 4d). The profile
of the bubble and its orientation are depicted at (0,0,0) by a circle.

Fig. 8. Reconstructed isovorticity surfaces. All symbols as in Fig. 7.
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ble resulting from the velocity field induced by two inviscid vortex
tubes. The lift force, FL is estimated as

FL ¼ qClcUb ð2Þ
where C is the strength of the circulation of each of the vortex tubes
and lc is the separation between their centers. This expression gives
the lift force for the case of two infinitely long vortex tubes in an
inviscid flow. We can use this expression to calculate approximately
the lift force on the oscillating bubble since both lc and C can be ob-
tained directly from our measurements.

First, for the case of inviscid vortices, the calculation of the cir-
culation is straightforward because the vorticity is concentrated at
the origin of the vortex. The circulation is defined as

C ¼
Z
~v � d~r ¼

Z
S
xzdS ð3Þ

where S is an area surrounding the vortex center. For a viscous vor-
tex, the vorticity is not compact; rather it is diffused all around the
vortex center as clearly shown in Fig. 5. Although the vorticity is
much higher near the center of the vortex, the value of the circula-
tion will depend on the size and shape of S. Moreover, as time pro-
gresses, for a given area S, the measured value of C decreases with
time due to viscous dissipation. Also, the separation distance be-
tween the vortex centers changes with time due to vorticity
diffusion.

Fig. 10 shows the position of the center of the two vortices as a
function of time. This center was calculated on the one hand from
the point of maximum vorticity and on the other hand by locating
the center of rotation of the velocity field (the point around which
streamlines rotate). The two measurements gave approximately
the same result. It can be observed in the figure that as time pro-
gresses, the separation between the two vortices increases. The
distance between centers is lc=deq � 0:4 when the vortices are ini-
tially identified and grows to lc=deq � 0:8 for t� � 10. The variation
of lc with time follows approximately:

lc=deq ¼ Aþ Bt� þ Cðt�Þ2

where t� ¼ t=ðdeq=UbÞ is the dimensionless time and A ¼ 0:23,
B ¼ 16:3 and C ¼ �42:8. This result can be compared with the value
estimated by de Vries et al. (2002): lc=deq ¼ 0:3 (with deq ¼ 2 mm),
and by Veldhuis (2007): lc=deq ¼ 0:27 (with deq ¼ 1:9 mm), both of
which where obtained from Schlieren visualizations of spiralling
bubbles in ultrapure water. Both groups reported a constant value
of the separation, regardless of the time or distance from the bub-
ble. Our measurements, even for the initial time, give a value of
lc=deq larger than that of de Vries et al. (2002) or Veldhuis (2007).
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The circulation of the vortices was measured by considering the
surface area formed by the contours of iso-vorticity shown in Fig. 5
(xz=ð2Ub=deqÞ ¼ �12:1). In this manner only the region with high-
est vorticity is considered in the calculation. The measurement is
shown in Fig. 11. We find that the measurement of the circulation
is robust; a relatively small variation of the circulation is found for
different choices of the surface S. For times t� < 2, the measured
circulation remains relatively constant and is about 0.28. It then
decreases as time progresses. de Vries et al. (2002) obtained
C=ðUbdeqÞ � 0:21 which is 25% smaller than the value we deter-
mined for times t� < 2:0. Nevertheless, the order of magnitude is
similar.

Now, the lift force can be calculated from Eq. 12, using the re-
sults shown in Figs. 10 and 11. Since both the separation distance
lc and the circulation C change with time, we calculated the value
of FL for different time instants. Strictly speaking, this is not correct
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Fig. 11. Dimensionless circulation of the two streamwise vortices calculated
according to Eq. 3 considering the area of the iso-vorticity contours shown in
Fig. 5, which correspond to xz=ð2Ub=deqÞ ¼ �12:1. (	) and (�) correspond to
positive and negative vortices, respectively. The dotted lines show the variation of
the measured circulation obtained by considering iso-vorticity contours with
xz=ð2Ub=deqÞ ¼ 12:1� 4:0.
since the model is developed for an inviscid vortex with infinite
length. The resulting lift force is shown in Fig. 12. Since the dis-
tance increases and the circulation decreases with time, a maxi-
mum value of the induced lift is found. The normalized lift,
Fl=ðqgV), starts at a value of approximately 0.2, increasing to a
maximum about 0.5 at t� � 3:0, to then decrease to zero for
t� > 8. The mean value of the induced lift is then calculated as

FL ¼
1
T

Z T

0
FLðt�Þdt� ¼ 2:98� 10�5N;

considering T ¼ 8. The obtained value is close to the value calcu-
lated from the trajectory of the bubble. It must again be stressed
that the calculation of the lift from the vorticity in the wake is an
approximation; strictly speaking, one would need the Lagrangian
vorticity field behind the bubble. Our reconstruction of the wake
is based on Eulerian measurements. Nevertheless, the comparison
between the two determinations (trajectory and wake) is fair.

5. Conclusions

The mechanism that causes a bubble to ascend in an oscillatory
trajectory is now nearly completely understood. The axisymmetric
wake becomes unstable when, for large Reynolds number, the bub-
ble aspect ratio exceeds a critical value. The wake then develops
two vortex tubes of streamwise vorticity which, in turn, induce a
horizontal force on the bubble which causes the sideways motion
that characterizes the path instability. Although these vortical
structures had been qualitatively observed experimentally and
computed numerically in the recent years, an experimental mea-
surement of their strength had never been reported. We performed
measurements of the streamwise vorticity in the wake of the bub-
ble using a PIV system maintaining the surface of the bubble clean.
The fact that the wake is formed by two counter-rotating vortex
tubes of streamwise vorticity was confirmed by direct measure-
ments of the velocity and vorticity fields. Their magnitude was
shown to decrease with the distance from the bubble, in very good
agreement with previous numerical results. The induced horizon-
tal force inferred from a simple inviscid model was found to be
in reasonable agreement with that calculated from the bubble tra-
jectory. In the present case, the magnitude of this force was found
to be 20–30% of the buoyancy force.

Among the challenges which remain to fully understand the
problem of oscillating bubbles, is the type of trajectory ‘chosen’
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by the bubble. Among all possible non-straight trajectories, only
zigzags or vertical helices are observed. Moreover, it is not clear
how the initial zigzag trajectory slowly evolves to a spiral, i.e. the
progressive loss of the planar symmetry of the streamwise vortices
needs to be clarified.

These experiments were performed at IMFT during the sabbat-
ical stay of R.Z., who acknowledges the support of the PASPA pro-
gram of UNAM. The technical assistance of S. Cazin was greatly
appreciated.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ijmultiphaseflow.2008.10.007.
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