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A physical interpretation is given to a curious “hump” that develops in the chemical
potential as a function of absolute temperature in an ideal Fermi gas for any spatial
dimensionality d < 2, integer or not, in contrast with the more familiar monotonic
decrease for all d ≥ 2. The hump height increases without limit as d decreases to zero.
The divergence at d = 0 is shown to be a clear manifestation of the Pauli Exclusion
Principle whereby two spinless fermions cannot sit on top of each other in configuration
space. The hump itself is thus an obvious precursor of this manifestation, otherwise well
understood in momentum space. It also constitutes an “ideal quantum dot” when d = 0.

Keywords: Ideal Fermi gas; arbitrary dimensions (integer or not); null dimension; ideal
quantum dot; Pauli exclusion principle.

1. Introduction

The Pauli Exclusion Principle1 plays a well-known role in constructing the Periodic

Table of the Elements starting from hydrogen and then helium and etc. It is also

crucial in explaining ionic and covalent bonding in molecules and solids, and in

characterizing and distinguishing metals from insulators from semiconductors from

superconductors. It accounts for nuclear shell structure and nuclear binding energies

and even for a whole class of “compact astrophysics objects” such as white-dwarf

stars, neutron stars, and black holes. It has been shown (see Refs. 2 and 3) to be
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Fig. 1. Variation with the dimension d in high-temperature cuprate superconductors of the em-
pirical ρc/ρab, where ρab is the resistivity parallel to the cooper-oxide planes and ρc that in the
perpendicular direction, as d changes continuously from 2 to 3. Point marked BSCCO corresponds
to the experimental value found in the Bi2+xSr2−yCuO6+δ superconductor while point Y BCO
stands for that commonly reported for the Y Ba2Cu3O7−δ superconductor.

responsible for fact that ordinary bulk matter is stable and occupies volume. Here

we present a novel proof of the Pauli Principle in ordinary space that starts from the

d-dimensional ideal Fermi gas (IFG), for all d > 0, integer or not. As a by product,

we propose a concrete example of what might be called an “ideal quantum dot.”

It is well-known that the nonrelativistic ideal Bose gas (IBG) of quadratically-

dispersive bosons undergoes a Bose-Einstein condensation (BEC) only for any di-

mensionality, integer or not, d > 2, with a cusp singularity in the temperature-

dependent heat capacity for 2 < d 6 4 and a finite jump discontinuity for d > 44-6.

Since its theoretical prediction by Einstein in 1925 based on work in 1924 by Bose

on photons, and after languishing many decades as a mere academic exercise in

textbooks, BEC has been observed in the laboratory in laser- and evaporatively-

cooled, magnetically-trapped ultra-cold bosonic atomic clouds of: 87
37Rb7 and later

of 7
3Li, 23

11Na, 1
1H, 85

37Rb, 4
2He , 41

19K , 174
70 Yb, 133

55 Cs, 52
24Cr and 50

24Cr. BEC has also

been observed in lower d: Görlitz et al. 8 report BEC of 23
11Na atoms in 1D and 2D;

Schreck et al. 9 observed it with 7
3Li atoms in 1D; Burger et al.10 study the phase

transition in cloud of 87
37Rb atoms in quasi-2D, to cite just a few instances.

The discovery of quasi-2D superconductors such as the cuprates1112, as well as

quasi-1D superconductors like the organo-metallic (or Bechgaard) salts13-16 and

carbon nanotubes17, has further motivated studying low-d quantum gases. For ex-

ample, if the CuO2 planes in cuprate superconductors are defined as the a, b plane

while c is the perpendicular direction, anisotropies in the resistivities ratio ρc/ρa,b

as high as 105 have been reported18 for Bi2+xSr2−yCuO6+δ (BSCCO) and are

commonly quoted to be around 102 for Y Ba2Cu3O7−δ (Y BCO). According to the

Drude model, Ref. 19 p. 7, of electric conductivity, the ratio ρc/ρa,b = mc/ma,b

where mc and ma,b are the charge-carrier masses along the c and a, b-plane direc-

tions. Perfect isotropy then means ρc/ρa,b = mc/ma,b = 1, as characterizes an ideal

3D material. And if this ratio is infinite the charges “frozen” onto the a, b plane

as in a perfectly 2D material. The continuous transition between 2D and 3D is

illustrated in Fig. 1 where both Y BCO and BSCCO lie in between. Indeed, two

independent studies20 21 found Y BCO “living” in d = 2.03 dimensions.



August 31, 2009 10:54 WSPC/INSTRUCTION FILE 06330

Anomalous Behavior of Ideal Fermi Gas Below 2D 4123

2. Ideal Fermi Gases in Any d > 0

In contrast to the boson case, Fermi systems exhibit nontrivial anomalous behavior

below 2D22. Low-d Fermi systems have found a host of practical applications in

microelectronics23-26 with quantum “wells ” (2D), “wires ”(1D) and “dots ”(0D) 27.

The N -boson or N -fermion number equation for particles with energy εk is

N =
∑

k

nk =
∑

k

[exp{εk − µ(T )}/kBT ∓ 1]−1 (1)

with µ(T ) the gas chemical potential. A peculiar rise in 1D of the fermion µ(T ) as

absolute temperature T increases from 0 was reported in a graph without further

comment in Ref. 28. It was determined from the Sommerfeld low-T series expansion,

Ref. 19 p. 45. For integer d 6= 229, and more generally for any d > 022 except

d = 2, using the large-z ≡ exp µ(T )/kBT expansion30 fσ(z) ' (ln z)σ/Γ(σ + 1) +
(

π2/6
)

(σ−1) (ln z)
σ−2

/Γ(σ)+· · · (also known as Sommerfeld’s lemma) for σ = d/2,

the Sommerfeld expansion for µ(T ) is found to become

µ(T )/EF −−→
T/TF →0

1 − (d − 2)(π2/12) (T/TF )
2

+ O(T 4) (2)

where TF ≡ EF /kB is Fermi temperature and EF ∝ ~
2n2/3/m (with n and m the

fermion particle density and mass). Clearly, the first correction to unity on the rhs

is negative (but positive) for all d > 2 (d < 2). For d = 2 one has the exact explicit

expression (not expandable in powers of T/TF by inspection)

µ(T )/EF = T/TF ln[exp(TF /T )− 1] −−→
T/TF →0

1. (3)

Since for T large enough µ(T ) must diverge negatively to approach the well-known

classical ideal gas value

µ(T )/EF −−→
T/TF →∞

− (d/2)(T/TF ) ln(T/TF ) (4)

a “hump” shape for µ(T ) can be surmised in association with its initial rise at small

T for all d 6 2. Figure 2 illustrates this for several values of d, integer or not. This

hump subsequently also appears22 in the specific heat CV (T ) curve.

In a volume Ld in any dimension d and in the continuum limit (1) becomes

N = (L/2π)d[2πd/2/Γ(d/2)]

∫

dkkd−1[z−1 exp(−βεk) ∓ 1]−1 (5)

where β ≡ 1/kBT , and the volume of a hypersphere of radius R in d ≥ 0 dimensions

Vd(R) = πd/2Rd/Γ(1 + d/2) note: V0(R) ≡ 1 (6)

was used. If the boson case holds for a = −1 and the fermion for a = +1, integrating

over x ≡ βεk instead of over k in (5), via the density-of-states associated with

εk = ~
2k2/2m, one deals with the expression

1

Γ(σ)

∫

∞

0

dx
xσ−1

z−1ex + a
= −

1

a

∞
∑

l=1

(−az)l

lσ
≡− aLiσ(−az) |z| < 1 (7)



August 31, 2009 10:54 WSPC/INSTRUCTION FILE 06330

4124 M. Grether, M. de Llano & M. H. Lee

���

���

�

�

�

� � � � � ��

�

�

�

�

0.989 1.44 3.47

µ/
	



���



�

�
�

0 0.2 0.4

�

��� ����
�
����

�
�
����

Fig. 2. Chemical potential µ(T ) (in units of the Fermi energy EF ) of an IFG in d = 3, 2, 1,
3/4, 1/2 and 1/100 spatial dimensions as function of absolute temperature T (in units of Fermi
temperature TF ≡ EF /kB). The monotonically-decreasing curves for d = 2 and 3 are the familiar
textbook curves which turn negative at T/TF ' 1.44 and 0.989, respectively. Inset illustrates rise
of µ(T ) with T for d < 2, as opposed to its monotonic decrease for all d ≥ 2.

where z ≡ exp[µ(T )/kBT ] ≡ exp βµ(T ) is the gas fugacity. The limitation |z| < 1

in convergence arises from the small-z binomial expansion of the integrand on the

lhs of (7), which is then integrated term by term to get the summation term. Here

we shall need to go beyond this unit circle of convergence in the z-plane, in fact the

case z → ∞ will be needed. For a = −1 (7) is the Bose integral gσ(z) which for

z = 1 and σ ≥ 1 becomes the Riemann Zeta function ζ(σ) of order σ. For a = 1 (7)

is the Fermi integral fσ(z). Both Bose and Fermi integrals are extensively discussed

in an Appendix of Ref. 30. In (7) Liσ(t) =
∞
∑

l=1

tl/lσ is the polylogarithm function

designated as PolyLog[σ, t] in Ref. 31.

Introducing the standard thermal wavelength

λ ≡ h/
√

2πmkBT (8)

one has for spinless fermions from (5) and (7) with σ = d/2 the reduced (i.e.,

dimensionless) number density

nλd =
1

Γ(d/2)

∫

∞

0

dx
xd/2−1

exp(x − α) + 1
≡ Id/2(α) (9)
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where n ≡ N/Ld and α(T ) ≡ βµ(T ) ≡ ln z. Letting exp(α − x) ≡ y in (9) and

calling d/2− 1 ≡ m one gets the integral representation32

Im+1(z) =
1

Γ(m + 1)

∫ z

0

dy

y + 1
(α − ln y)m 0 < z < ∞ (10)

which is now valid for all nonnegative z. It can in fact be shown (Ref. 32, Eq. 10)

that the integral defined in (9) is precisely

Im(z) ≡ −Lim(−z) (11)

where the polylog function Lim(z) is defined by

Lim(z)=

∞
∑

l=1

zl/l
m

|z| < 1 (12)

and also by

=

∫ z

0

dt

t
Lim−1(t) 0 < z < ∞.

Or, alternately by

z
∂

∂z
Lim(z) = Lim−1(z). (13)

This in turn immediately implies that

Li1(z) = − ln(1 − z) and Li0(z) = z/(1− z) (14)

where the latter expression is to be used in the d = 0 IFG case to be discussed

below. From (9) and (11) the number density n for N spinless fermions is thus

given by

nλd= Id/2(z) = −Lid/2(−z). (15)

For bosons, instead of (15) one has33 nλd = Lid/2(z). For z ≡ exp βµ =

expβc0 = 1 in 3D this implies nλ3
c = Li3/2(1) ≡ ζ(3/2) which in turn immedi-

ately leads to

Tc= 2π~
2n2/3/mζ(3/2)

2/3
(16)

or the familiar BEC critical temperature.

For fermions, if T → 0 (β → ∞) then α ≡ βµ ≡ ln z → ∞ and one can show

(Ref. 32 Eq. 3) that

Im+1(z0) = (α0)
m+1/Γ(m + 2) + O(α0) (17)

where α0 ≡ βµ0 ≡ ln z0 with µ0 ≡ EF ≡ ~
2k2

F /2m. For m + 1 = d/2 and since n is

temperature-independent so that from (15) one may evaluate Id/2(z)/λd at T = 0

using (17). Since from (8) λ ≡ h
√

β/2πm, one can then write

n =
1

λd
Id/2(α0) =

1

λd

(α0)
d/2

Γ(d/2 + 1)

=
1

(h
√

β/2πm)d

(βEF )d/2

Γ(d/2 + 1)
=

(k2
F /4π)d/2

Γ(d/2 + 1)
(18)
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Fig. 3. Inverse of the maximum height of the µ(T )/EF hump for an IFG for all d < 2. It exhibits
how µ(T )/EF must diverge when d → 0, as follows from the analytical result (19) at precisely

d = 0. Inset shows a semilog plot. Maximum value of µ(T ) is just EF (thin horizontal

line at top) for all d ≥ 2.

a known result. This reduces in d = 3 dimensions to the even more familiar expres-

sion n = k3
F /6π2 for spinless fermions.

3. Null-Dimensional (d = 0) IFG

At precisely d = 0 (15) and (18) imply that

nd→0=
(α

0
)
0

Γ(1)
= 1 = −Li0(−z) =

z

1 + z
0 < z < ∞ (19)

where the last equality comes from the second relation in (14). At first sight, (19)

implies that 1+z = z or that 1 = 0—obviously impossible. One quickly realizes that

infinite z is the only possible solution. And if z ≡ exp µ(T )/kBT = ∞ this in turn

implies that µ(T ) = ∞ for all T. Since the chemical potential µ is the energy that

must be given the N -particle system to bring one particle to it, µ = ∞ signifies an

impossibly high energy barrier to add another fermion when one is already present,

irrespective of T .

The analytical result (19)33 for d = 0 is consistent with numerical results exhib-

ited for all values of d > 0, integer or not, in Fig. 3.

4. Conclusion

The null-d ideal Fermi gas defines an “ideal quantum dot.” Its infinite chemical

potential is a statistical thermodynamic manifestation of the Pauli Exclusion Prin-

ciple whereby two identical spinless fermions cannot be placed on top of each other

in real space. The hump-shaped behavior in µ(T ) for all d < 2 is evidently a pre-

cursor of this infinity. All of the above is reminiscent of the relevant and amusing

quip: “Physics suggests that if the 2D realm is promising, then 1D or zero-D is even

better23.”
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