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The unusual quantum Hall effect (QHE) in graphene is often discussed in terms of Dirac
fermions moving with a linear dispersion. A new theory describing the same phenomena
is presented in terms of the more traditional composite bosons. The “electron” (wave
packet) is shown to move easier in the direction [110] ≡ [110 c-axis] of the honeycomb
lattice than perpendicular to it, while the “hole” moves easier in [001]. Since “electrons”
and “holes” move in different channels, the number densities can be very high especially
when the Fermi surface has “necks”. The strong QHE at filling factor ν = 2 arises from
the “neck” Fermi surfaces.
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1. Introduction

Experiments1,2,3 indicate that there are two kinds of oscillations for the magnetore-

sistivity ρ in graphene when plotted as a function of the external magnetic field

(magnitude) B. A Shubnikov-de Haas (SdH) oscillation appears on the low field

side and a Quantum Hall Effect (QHE) oscillation appears on the high field side.

We present a microscopic theory. We start with the graphene crystal, construct

a two-dimensional Fermi surface, develop a Bardeen-Cooper-Schrieffer (BCS)-like

theory4 based on the phonon exchange attraction between the electron and the flux

quantum (fluxon), and describe the phenomena.

The two-dimensional (2D) Landau Levels (LL) generates an oscillatory density

of states. If multiple oscillations occur within the drop of the Fermi distribution

function, then the SdH oscillation is developed for the magnetoconductivity. Thus,

the carriers in the SdH must be fermions. The envelope of the SdH oscillation is

controlled by the dressed electrons, see below. Its observed shrinkage toward the

low fields2 indicate that the dressed electron has a mass, see below.
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An “electron” (“hole”) is an elementary excitation which has an energy higher

(lower) than the Fermi energy and which circulates counterclockwise (clockwise)

viewed from the tip of the applied magnetic field vector. In the presence of a static

magnetic field the classical electron orbit is curved. Then, the basic kinetic theo-

retical picture breaks down. Fortunately, quantum theory can save the situation. If

the magnetic field is applied, the classical electron can continuously change from

the straight line motion at zero field to the curved motion at a finite B. When

the magnetic field is applied slowly, the energy of the electron does not change but

the spiral motion always acts so as to reduce the magnetic fields. Hence, the total

energy of the electron with its surrounding fields is less than the electron energy

plus the unperturbed field energy. The electron “dressed” with the fields is in a

bound (negative energy) state, and it is stable against the break-up. The guiding

center of circulation can move in all directions in the absence of the electric field. If

a weak electric field is applied, then the dressed electron whose position is the guid-

ing center, preferentially moves in the field direction, and generates a current. We

may apply kinetic theory to the guiding center motion. The dressed electron carries

a magnetotransport mass M∗ different from the cyclotron mass m∗. The dressed

electron can be identified as the composite particle5 used in the thoery of quantum

Hall effect6. Breifly, the electron circulates around a finite number of fluxons intact

according to Onsager’s flux quantization hypothesis7. Applying relativity, we may

view that the fluxons circulate around the electron. From this view the electron is

thought to carry a number of fluxons. The dressed electron is, then, a composite

of an electron and fluxons. The composite particle moves as a fermion (boson) if it

carries an even (odd) number of fluxons8. The composite boson with one fluxon is

relevant for the QHE in graphene.

The integer QHE at filling factor ν = 1, 2, . . . was found by Kim’s group3 at

high magnetic fields (∼ 45 T), and was interpreted in terms of the Dirac fermion

with a linear dispersion relation. However, the magnetotransport in general must be

discussed in terms of the dressed electron, that is, the c-particles containing electrons

and fluxons. The bare Dirac particle, if exist, would be dressed with fluxons in the

presence of a magnetic field, and it would acquire a mass. As we see later, the

conduction electron (“electron”, “hole”) has a size of the unit cell. It is unlikely

that the point-like Dirac electron can contribute to a charge transport in solids. We

shall develop an alternative microscopic theory.

2. Theory

In graphene carbon atoms (C) occupy the two-dimensional (2D) honeycomb crystal

lattice.

The applied gate voltage can control the carrier charge type, “electron” (1) or

“hole” (2), and the number density nj , j = 1, 2. The “hole” has a positive charge e

and has a size of the unit hexagon formed by positively charged carbon ions C+. The

“hole” tends to stay away from C+. The Center-of-Mass (CM) of the “hole” (wave
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Fig. 1. A unit cell for graphene.

packet) is at the center of the hexagon. It moves easily with a small effective mass

along the directions 〈100〉 ≡ 〈100c-axis〉, where we used the conventional Miller

indices for the hexagonal lattice with the omission of the c-axis index. see below.

The “electron” has a negative charge (−e) and a unit hexagon size. The “elec-

tron” tends to stay near C+ and the charge distribution are concentrated near

the hexagon. The CM of the “electron” (wave packet) is also at the center of the

hexagon. It moves easily with a small effective mass along the directions 〈110〉, see

Fig. 1 and below.

For the description of the electron motion in terms of the mass tensor it is

convenient to introduce Cartesian coordinates, which may or may not align along

the crystal’s natural (triangular) axes. The “electron” may move up or down to the

neighboring hexagon sites passing over one C+. The positively charged C+ acts as

a welcome potential valley for the negatively charged “electron”, while the C+ acts

as a hindering potential hill for the positively charged “hole”. The “hole” however

can move over on a series of vacant site, each surrounded by six C, without meating

the hindering potential hills. Thus the easy channel direction for the “electron” and

“hole” are 〈110〉 and 〈100〉, respectively.

We may choose the unit cell as shown. The choice is not unique. But the size

of the rectangle with side-length pair (b, c) for any unit cell is the same. Then,

the Brillouin zone is unique: a rectangle with the side length (2π/b, 2π/c). Let us

consider the system (graphene) at 0 K. If we put an electron in the crystal, then

the electron should occupy the center O of the Brillouin zone, where the lowest
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energy lies. Additional electrons occupy the points neighboring O in consideration

of Pauli’s exclusion principle. The electron distribution is lattice-periodic over the

entire crystal in accordance with the Bloch theorem.

The graphene is quadrivalent metal. The first few low-lying bands are completely

filled. The uppermost partially filled bands are important for the transport prop-

erties discussion. We consider such a band. The Fermi surface, which defines the

boundary between the filled and unfilled k-spaces (areas) is not a circle since the

x-y symmetry is broken. The effective mass is lighter in the direction [110] than

perpendicular to it, and hence, the Fermi surface may more quickly grow in this

direction with increasing number of “electrons”. By the inversion symmetry of the

crystal the Fermi surface must approach perpendicular to the Brillouin boundary.

As the gate voltage is varied to the charge-neutral point, the Fermi surface should

go through a “neck” configuration, where the density of states rapidly grows on

both sides of the voltage, generating high densities of “electrons” and “holes”. Ex-

periments by Kim’s group2 indicate that (a) both “electrons” and “holes” can be

excited in graphene, (b) At zero gate voltage the electrons are dominant, (c) the

resistivity ρ exhibits a sharp maximum at the “electron” density n1 ≈ 2×1011 cm2.

The feature (b) should arise from the existence of the welcoming C+-potential for

the “electrons”. The feature (c) is due to the fact that the conductivity

σ ≡ ρ−1 =
e2ne

m∗
τ, (1)

where τ is the relaxation time, must decrease since the effective mass m∗ shoot up

to infinity in the small “neck” limit.

We note that the “neck” Fermi surface was observed in copper, which has high

densities of “electrons” and “holes”. Copper has negative Hall coefficient and posi-

tive thermopower. It is interesting to see if graphene shows the same properties.

The same easy channels in which the “electron” runs with a small mass, may be

assumed for other hexagonal directions, [011] and [101]. Thus, the system does not

show anisotropy.

We use a composite (c)-particle (fermion, boson) model5 for the discussion of

the QHE6. These particles, by definition, are bound. We assume a phonon-exchange

attraction for the cause of the binding. Since the phonon (boson) does not carry a

charge, the generation of the c-particles must occur without the charge-state change.

It then follows that the phonon annihilation can, and must, pair-creates positively

(+) and negatively (−) charged particles simultaneously. The numbers of + and

− c-bosons created must be equal to each other. Normally, the carrier (“electron”,

“hole”) densites are highly unbalanced. The “electrons” are the majority carrier for

graphene at zero magnetic field, and the c-boson density is considerably smaller than

the majority carrier density. In graphene however, the two necks (Fermi surface),

which are assumed to be located near the filling factor ν = 2, make the c-boson

density very high.
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The c-bosons move with linear dispersion relation10

W (j)
p = W0 + (2/π)v

(j)
F p, (2)

where W0 is the (negative) ground state energy, p the c-boson momentum magni-

tude, and v
(j)
F the Fermi velocity of type j, j = 1 (“electron”), j = 2 (“hole”). This

relation is obtained, starting with a BCS-like Hamiltonian, setting up and solving

an energy-eigenvalue problem for the moving c-boson. For completeness, we give a

brief derivation in Appendix. These bosons move similar to massless particles with

the common speed (2/π)v
(j)
F .

In graphene the “electron” c-bosons, having the greater speed, dominate the

transport and the Bose-Einstein Condensation (BEC). The critical temperature Tc

below which the QHE is observed is given by11

kBTc = 1.24 ~v
(1)
F n

1/2
0 , (3)

where n0 is the c-boson density. Briefly the BEC occurs when the chemical potential

µ vanishes at a finite T . The critical temperature Tc can be determined from

n = (2π~)−2

∫

d2p[eβcε − 1]−1, βc ≡ (kBTc)
−1. (4)

After expanding the integrand in powers of e−βcε and using ε = cp, we obtain

n = 1.654(2π)−1(kBTc/~c)2, (5)

yielding formula (3) with c = (2/π)vF .

3. Discussion

Novoselov et al.12 observed a QHE in graphene at 300 K, which is most remarkable.

Experiments1 indicate that the Fermi velocity vF is approximately equal to 1.57

×106 ms−1. Using Eq. (3), we obtain the critical temperature Tc = 516 K, for

n0 = 1010 cm−2. These numbers are reasonable.

The QHE behavior observed for graphene is remarkably similar to that for the

heterojunction GaAs/AlGaAs. The physical conditions are different since the gate

voltage and the applied magnetic field are varied. The present authors regard the

QHE as the superconductivity induced by the magnetic field10. The magnetoresistiv-

ity for a QHE system reaches zero (supercurrent). The accompanied Hall resistivity

has a plateau by kind of the Meissner effect. The QHE state is stable because of the

energy gap in the c-boson excitation spectrum. If an extra magnetic field is applied

to the system at optimum QHE state (the center of the plateau), then the sytem

tries to stay in the same state by expelling the extra field. If the field is reduced,

then the system stays in the same state by sucking in the extra field, thus gener-

ating a Hall resistivity plateau. In the graphene experiments, the gate voltage is

varied. A little extra voltage relative to the voltage at the center of zero resistivity

line charge the system without changing the superconducting state. The stationary

charge in the form of “electrons” or “holes” do not change the supercurrent and the
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Hall voltage, and hence the system remains the same state, keeping zero resistivity

and the flat Hall resistivity. This state has an extra electric field energy

A

2
ε0(∆E)2, (6)

where A is the sample area, and ∆E is the electric field, positive or negative, gen-

erated by the sample charge. If the gate voltage is further increased (or decreased),

then it will eventually destroy the superconducting state and the resistivity will rise

from zero. This explains the QHE behavior.

Lanzara’s group13 used angle-resolved photoemission spectroscopy (ARPES) to

study the dispersion relation. They found a linear dispersion relation of the form (2)

in 〈110〉. Earlier Lanzara et al. obtained linear dispersion relations for the Cooper

pairs in the HTSC14. We note that the HTSC and the QHE are similar. Both occur

in 2D. The Cooper pairs and c-bosons move with linear dispersion relation of the

form (2). The critical temperature Tc is given by the same expression, Eq. (3).
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Appendix A. Derivation of Equation (2)

We assume that the magnetic field B is applied perpendicular to the plane. The 2D

LL’s

E = (NL + 1/2)~ω0, (A.1)

ω0 ≡ eB/m∗,

with the states (NL, ky) have a great degeneracy. We regard the fluxon as a half-spin

fermion with zero mass and zero charge. Our view is supported by the fact that the

magnetic (electric) flux line cannot (can) terminate at a sink, and hence the asso-

ciated fluxon (photon) is fermionic (bosonic). No half-spin fermion can disappear

spontaneously because of angular momentum conservation. Fujita and Morabito

showed that the CM of any composite moves as a fermion (boson), that is, the CM

momentum occupation number is limited to 0 or 1 (unlimited) if the composite

contains an odd (even) number of elementary fermions. Hence, the composite con-

taining an electron and Q fluxons moves as a boson (fermions) if Q is odd (even).

The c-particle (boson, fermion) in the prevalent theories is defined as the complex

comprising an electron and Chern-Simons statistical field objects. These objects

are neither bosonic nor fermionic. Hence, the statistics of the c-particle cannot be

discussed. In our theory the fluxons are fermions, and the quantum statistics of the

c-particles is well founded. The countability of the fluxons has been well established.

The de Haas-van Alphen oscillations are routinely analyzed using Onsager’s formula

based on the flux quantization : B = (h/e)nφ, where nφ is the fluxon density. The
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countability and statistics of the fluxons are fundamental quantum particle proper-

ties. Hence, they cannot be derived from any Hamiltonian and must be postulated.

The longtitudinal phonon, acoustic or optical, proceeding in [100] can generate a

density wave, which affects the electron (fluxon) motion by the lattice-ionic charge

displacement (current), establishing the electron (fluxon)-phonon interaction. The

phonon exchange between an electron and a fluxon generates a transition in the

electron states with the effective interaction:

Vef ≡ |VqV
′
q |

~ωq

(ε|k+q|s − εks)2 − ~2ω2
q

, (A.2)

where Vq (V ′
q ) is the electron (fluxon)-phonon interaction strength; the Landau

quantum number NL is omitted; the bold k denotes the 2D guiding center momen-

tum and the italic k the magnitude. The interaction is attractive when the electron

states before and after the exchange have the same energy as in the degenerate LL

so that Vef = −|VqV
′
q |(~ωq)

−1.

Following BCS, we start with a Hamiltonian H with the phonon variables elim-

inated:

H =
∑

k

∑

s

ε
(1)
k n

(1)
ks +

∑

k

∑

s

ε
(2)
k n

(2)
ks

+
∑

k

∑

s

ε
(3)
k n

(3)
ks − v1

∑′

q

∑′

k

∑′

k′

∑

s

[

B
(1)†
k′qsB

(1)
kqs

+ B
(1)†
k′qsB

(2)†
kqs + B

(2)
k′qsB

(1)
kqs + B

(2)
k′qsB

(2)†
kqs

]

, (A.3)

where n
(j)
ks is the number operator for the “electron” (1) [“hole” (2), fluxon (3)] at

momentum k and spin s with the energy ε
(j)
ks . We represent the “electron” (“hole”)

number n
(j)
ks by c

(j)†
ks c

(j)
ks , where c (c†) are annihilation (creation) operators satisfying

the Fermi anticommutation rules:

{c
(i)
ks , c

(j)†
k′s′} ≡ c

(i)
ksc

(j)†
k′s′ + c

(j)†
k′s′c

(i)
ks = δk,k′δs,s′δi,j ,

{c
(i)
ks , c

(j)
k′s′} = 0. (A.4)

We represent the fluxon number n
(3)
ks by a†

ksaks, with a(a†), satisfying the anti-

commutation rules. B
(1)†
kq s ≡ c

(1)†
k+q/2 sa

†
−k+q/2 −s, B

(2)
kq s ≡ c

(2)
k+q/2 sa−k+q/2 −s.

The prime on the summation means the restriction: 0 < ε
(j)
ks < ~ωD, ωD =

Debye frequency. If the fluxons are replaced by the conduction electrons (“elec-

trons”, “holes”) our Hamiltonian H is reduced to the original BCS Hamiltonian,

Eq. (24) of Ref. 4. The “electron” and “hole” are generated, depending on the en-

ergy contour curvature sign. For example only “electrons” (“holes”) are generated

for a circular Fermi surface with the negative (positive) curvature whose inside (out-

side) is filled with electrons. Since the phonon has no charge, the phonon exchange

cannot change the net charge. The pairing interaction terms in Eq. (A.3) conserve
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the charge. The term −v0B
(1)†
k′qsB

(1)
kqs, where v0 ≡ |VqV

′
q |(~ω0A)−1, A = sample area,

is the pairing strength, generates the transition in the “electron” states. Similarly,

the exchange of a phonon generates a transition in the “hole” states, represented by

−v0B
(2)
k′qsB

(2)†
kqs . The phonon exchange can also pair-create and pair-annihilate “elec-

tron” (“hole”)-fluxon composites, represented by −v0B
(1)†
k′qsB

(2)†
kqs , −v0B

(2)
k′qsB

(1)
kqs.

At 0 K the system can have equal numbers of −(+)c-bosons, “electrons” (“holes”)

composites, generated by −v0B
(1)†
k′qsB

(2)†
kqs .

Let us take a dilute system of electrons moving in the plane. Applying a mag-

netic field B perpendicular to the plane, each electron will be in the LL state with

the energy given by Eq. (A.1). In this state the electron can be viewed as circulating

around the guiding center. We now apply a weak electric field E in the x-direction.

With the scatterers (impurities, phonons) present in the system the guiding cen-

ters can jump from place to place preferrentially and generate a current in the

x-direction.

The c-bosons, each with one electron and one fluxon, is relevant for graphene.

Their energies w
(j)
q are obtained from

w(j)
q Ψ(k,q) = ε

(j)
|k+q|Ψ(k,q) − (2π~)−2v0

∫ ′

d2k′Ψ(k′,q), (A.5)

where Ψ(k,q) is the reduced wavefunction for the c-boson; we assumed zero fluxon

energy since the fluxon is meant to describe static magnetic field only. For small q,

we obtain

w(j)
q = w0 + (2/π)v

(j)
F q, w0 =

−~ωD

exp(v0D0)−1 − 1
, (A.6)

where v
(j)
F ≡ (2εF /mj)

1/2 is the Fermi velocity and D0 ≡ D(εF ) the density of

states per spin. Note that the energy w
(j)
q depends linearly on the momentum q.
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