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Materiales, UniVersidad Nacional Autónoma de México, Apdo. Postal México, D.F. 04510, México
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The shear-banding flow in polymer-like micellar solutions is examined here with the generalized
Bautista-Manero-Puig model. The coupling between flow and diffusion naturally arises in this model, which
is derived from the extended irreversible thermodynamic formalism. The limit of an abrupt interface is treated
here. The model predicts a dynamic master steady-flow diagram, in which all data collapse at low shear
rates. Moreover, the model predicts that a nonequilibrium critical line is reached upon decreasing the shear-
banding intensity parameter of the model, which corresponds to increasing temperature, increasing surfactant
concentration, or varying salt-to-surfactant concentration ratio. By employing nonequilibrium critical theory
and the concept of dissipated energy (or extended Gibbs free energy), a set of symmetrical reduced stress
versus reduced shear-rate curves are obtained similar to gas-liquid transitions around the critical point. In
addition, the nonequilibrium critical exponents are derived, which follow the extended Widom’s rule and the
extended Rushbroke relationship, but they are nonclassical.

Introduction

The description of nonequilibrium systems has been a
standing problem for the fundamental understanding of the
behavior of complex fluids. The features generally observed in
equilibrium systems close to a phase transition, such as
universality and scale invariance, can also arise from nonequi-
librium dynamics.1 A straightforward approach to describe
nonequilibrium systems is seeking similar methods or theories
used in equilibrium critical behavior.

Nonequilibrium systems can be classified into two main
groups: those that are driven and evolve to a steady state but
never reach equilibrium, and those that relax to a final
equilibrium state. In complex fluids, such as micellar solutions,
block copolymers, associative polymers, and so on, both
behaviors are observed.2 Elsewhere it has been shown that along
the region bounded by two critical shear rates (γ̇c1 and γ̇c2) where
a stress plateau develops and shear-banding flow arises, dynamic
equilibrium (in this case, a steady flow) in some systems is not
achieved, and stress oscillations that last very long times upon
inception of shear flow are observed.3-8 Indeed, the constitutive
response is intrinsically unsteady in some regimes.9 An opposite
situation is detected along the regions where the flow is stable and
the solution tends to a definite steady state. Examples of the former
class that exhibit critical behavior are systems that undergo a
nonequilibrium phase transition. This kind of shear-induced phase
transition as well as nonequilibrium critical points (necp) have been
examined both theoretically and experimentally in complex fluids
such as polymers2,10-12 and micellar solutions.13-20

Optical and small-angle neutron scattering (SANS) measure-
ments have examined the alignment of micellar solutions under
flow. Early optical experiments on wormlike micelles show a
temporally oscillating state with alternating turbid and clear
bands.21 Indeed, along the stress plateau region, turbidity and
flow dichroism arise. SANS measurements have shown that the
turbid band has higher alignment than the isotropic band.21,22

This observation is explained to be due to shear bands composed
of a highly branched concentrated micellar solution coexisting
with an isotropic phase. The shear banding observed is proposed
to be connected with an underlying thermodynamic phase
separation.

For wormlike micellar solutions, the intrinsic constitutive
curve of shear stress as a function of shear rate may be
nonmonotonic. The constitutive curve has a maximum in the
stress and a region of decreasing stress where steady homoge-
neous flow is unstable. Several models predict that the system
must separate into low- and high-shear-rate bands for applied
shear rates in the unstable region of the constitutive curve.17,23-25

Experimentally, for shear-thinning wormlike micelles, the
steady-state flow curve has a well-defined and reproducible
plateau.18,19,26 The stress selection problem has been addressed
in various analyses. One of them includes interfacial gradient
terms into the constitutive equation and predicts a diffusion of
the stationary front between the low- and high-shear-rate
bands.18 The former descriptions that consider coupling flow
and diffusion have been undoubtedly useful and have led to a
considerable amount of scientific work.13,14,17 However, this
approach presents some drawbacks from the fundamental points
of view, because it is based on the inclusion of ad hoc terms.
It is conceivable, indeed, that other variables not found in
equilibrium may influence the thermodynamic equations in
nonequilibrium situations, as in the extended irreversible
thermodynamic (EIT) formalism. Our approach considers the
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coincidence of the minimum in the dissipation energy (or
extended Gibbs free energy) of the two relevant stable branches
to set the position of the stress plateau,9 which is in agreement
with the equal-areas criterion.

As shown elsewhere,9,25 the constitutive flow curve of the
Bautista-Manero-Puig (BMP) model strongly resembles the
pressure-volume (P-V) plot as a function of temperature
predicted by the van der Waals or other cubic equation of state.27

The constitutive flow curve exhibits a coexistence (of bands)
envelope, a region of instability akin to the spinodal region in
P-V plots, and two metastable regions that collapse into a
“critical” or inflection point. In fact, as observed experimentally,
when the temperature or the surfactant concentration is in-
creased, the shear-banding flow region diminishes, and it
vanishes at a critical temperature or surfactant concentration,
defining a critical line (or surface when an extra component
such as a salt is added), inasmuch as polymer-like micellar
solutions are two- or three-component systems.8,28,29

According to the usual description of critical phenomena and
assuming that the scaling laws for equilibrium and nonequilib-
rium critical transitions have the same mathematical form,30,31

the dominant part of the functions that describe the system
properties near the critical point should be mathematically
simple, since a system is very insensitive to the details of its
dynamics or structure near critical points. Then equilibrium (and
perhaps, nonequilibrium) systems near a critical point obey a
series of power laws with various exponents, called critical
exponents, which can be measured experimentally.30,31

The classical critical exponents describe how various singular
quantities, such as the order parameter and the specific heat,
depend on the difference between the current and critical
temperatures.30,31 An analogous order parameter in nonequilib-
rium critical behavior might be the time t,32 or its reciprocal,
the shear rate for a flowing system, γ̇. For shear-banding flow,
here it is proposed that an appropriate order parameter could
be the difference between the shear rates, γ̇ and γ̇c1. This is
based on the fact that this difference characterizes the degree
of order in the system because it corresponds to the departure
between homogeneous and nonhomogeneous flows, as shown
elsewhere.9,28 In addition, it is a fluctuating scalar field of order
unity upon renormalization that exhibits a discontinuity at the
transition point for a nonequilibrium first-order phase transition.
This choice is analogous to a real gas order parameter and
follows all the characteristics of the equilibrium order param-
eters. In this regard, the order parameter for shear-banding flow
may be given by φ ) γ̇(y) - γ̇c1(y), where y is velocity gradient
direction.

In this work, the first of two articles, the generalized
Bautista-Manero-Puig model is used to analyze the nonequi-
librium critical phenomenon in wormlike micellar solutions that
exhibit shear-banding flow. This model predicts the master
dynamic flow diagram proposed by Berret et al.29 and the
existence of a critical line as the shear-banding intensity
parameter of this modelswhich corresponds to increasing
temperature, surfactant concentration, or varying salt-to-surfac-
tant concentration ratiosgoes to zero. The model also predicts
that in the shear-banding flow region coexist at least two
different bands that dissipate equal power; i.e., the shear-banding
flow is a first-order nonequilibrium phase transition. Addition-
ally, the model demonstrates that the nonequilibrium critical
exponents follow the extended Widom’s rule and the extended
Rushbroke inequality. Nevertheless, they are nonclassical. The
model predictions are in agreement with the scaling hypothesis.
In part 2, experimental evidence is provided in several micellar

solutions that exhibit shear-banding flow, supporting the exist-
ence of a nonequilibrium critical point in these systems.

Theoretical Section

Extended irreversible thermodynamics provides a consistent
form to derive constitutive equations for systems far from
equilibrium. Beyond the local equilibrium hypothesis, EIT
assumes the existence of a regular and continuous function ηE

that plays the role of generalized entropy and considers
independent variables such as the dissipative fluxes in addition
to the classical variables, i.e., internal energy, density, etc.33

The fluid is assumed to be incompressible, heat-insulated with
constant internal energy, and chemically inert.

The Generalized BMP Model and the Master Flow
Diagram. The set of equations of the generalized BMP model
are34

where the upper-convected derivatives of the mass flux vector Jj
and of the stress tensor σ are defined, respectively, as

Here L is the velocity gradient tensor, D is the symmetric
part of rate of strain tensor and IID is its second invariant, � is
the inverse of the shear viscosity (η) or fluidity, �0 (≡η0

-1) is
the fluidity at zero shear rate, G0 is the plateau shear modulus,
λ is a structure relaxation time, k0 can be interpreted as a kinetic
parameter for structure breaking under shear flow, τ1 is a
relaxation time for the mass flux, D is the Fickean diffusion
coefficient, c is the local equilibrium concentration, and ϑ, �0,
�0′, �2 and �2′ are phenomenological parameters.

Equations 1-3 together with the conservation equations
represent a closed set of time evolution equations for all the
independent variables chosen to describe the behavior of
complex fluids. The relaxation equations for the nonconserved
variables have been obtained considering only restricted second-
order terms in the constitutive variables (�, Jj, σ) and up to first-
order terms in L. Note that these equations are double-coupled
to each other: eq 1 contains a coupling of the structure parameter
and the stress tensor; eq 2 has a coupling of the mass flux and
the structure parameter; and eq 3 involves the coupling of the
stress tensor and the mass flux.

Normal stresses are not included in eqs 1-3, since their
contribution does not change qualitatively the results of the
critical analysis that follows. Notwithstanding, their effects are
considered and discussed below. Solutions to eqs 1-3, in which

d�
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the coupling coefficients are nonzero, predict shear bands, rheo-
chaos, and a rich rheological behavior.35 In addition, a theoretical
analysis on the effect of shear on the microstructural order and
shear-induced structure formation, which plays an important role
in shear banding, can be found in a recent paper.36 In this
analysis, the flow-concentration coupling is considered in a
model that theoretically explains the experimentally observed
instabilities in shear-thinning and shear-thickening complex
fluids. These instabilities may occur along the gradient and
vorticity axes. In addition, it shows that due to the flow-concen-
tration coupling, the regions of instability broaden to include
regions of positive slope in the constitutive flow curve and that
the critical point shifts downward.

For steady simple shear, assuming that the gradients in �
and c vary along the y-direction, and after neglecting the
relaxation time for the mass flux, eqs 1-3 become

In eqs 7a and 7b we have assumed that normal stresses are
negligible. Equations 6-8 embody particular cases. For instance,
substituting eq 7b into eq 6 for the case where differences in
concentration are negligible yields

Equation 9 is a reaction-diffusion-like equation similar to that
analyzed by Pearson37 and Goveas et al.38 The diffusion term
in this equation is the analog of the nonlocal terms in the free
energy equation and provides gradients that can support
inhomogeneities and describe interfaces between states. Ac-
cording to Goveas and Olmsted,38 this term is supposed to be
necessary for determining the conditions of phase coexistence
under flow. The magnitude of the coefficient of this term is
proportional to the magnitude of the interfacial width.

On the other hand, when eq 7a is substituted in eq 8 gives

Equation 10 now contains diffusion terms for the stress. The
inclusion of these nonlocal terms in the constitutive equation has
been invoked elsewhere to resolve the location of the plateau
stress.39-43 Furthermore, the EIT formulation also provides a
coupling between eqs 9 and 10, inasmuch as the solution for � in
eq 9 is used to obtain the stress in eq 10. Yuan and Jupp40 pointed
out, on the basis of a coupling of stress with diffusion, that there
is no need to introduce any ad hoc diffusive stress term into the
constitutive equations as in earlier studies of shear banding.41-43

The steady-state stress for nonmonotonic constitutive equations can

be selected by the coupled model. Consequently, a coupling
between viscoelasticity and diffusion, which naturally arises in the
EIT formulation, provides the gradient terms more consistently for
the stress selection as it has been shown by us elsewhere.28,34 With
regard to the shear-banding state, a banding solution (homogeneous
phases separated by an interface) is, by definition, one that has no
gradients of � at the boundaries. At the conditions where the phase
coexistence is present, the fluidity is constant within the bulk of
each phase. Fluidity changes suddenly at the interface, wherein it
is assumed that

and similarly for Jx. Hence, eqs 6 and 8 become

and they reduce to the nondiffusive equations for simple steady
shear. Integrating eq 8 gives

where γ̇C1 and γ̇C2 are the critical shear rates that signal the onset
and end of the stress plateau. The result in eq 14 has been termed
by Dhont44 as the “modified Maxwell equal-area construction”.

At this point, it is important to address the fact that eq 14 is
of fundamental importance for the selection of the plateau stress
and the critical shear rates. The fact is that at the critical shear
rates, the shear-rate gradients vanish since the strain rate here
is independent of position. Since the coexistence curve depends
on the difference of these two critical shear rates, this curve is
independent of the gradient terms, and therefore, the integral
in eq 14, and hence the dissipated energy, is also independent
of the coordinates. This means that the dissipated energy does
not change if gradient terms are included.

In this regard, in the limit of an abrupt interface, the time-
dependent equations read

In these equations, σ and γ̇ are the shear stress and shear
rate, respectively, and ϑ is the shear-banding intensity parameter,
which, as shown elsewhere,9,28 is related to the stress plateau
selection by the modified Maxwell equal-area construction.

Substitution of eq 16 into eq 15 yields an equation that can
be expressed in terms of the dimensionless variables proposed
by Berret et al.,29 mainly, σ̂ ) σ/G0, γ̇ˆ ) γ̇ τR, and t̂ ) t/τR
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where k0 ) G0k0, λ̂ ) λ/τR, ϑ̂ ) ϑ/τR, and �̂∞ ) G0τR�∞ )
�∞/�0. This equation contains four dimensionless parameters
λ̂, k0, ϑ̂ and �̂∞, and two independent variables, either σ̂ or γ̂̇
and t̂. Under steady state (or dynamic equilibrium), which is
the situation examined here, the left-hand side of eq 17 becomes
zero and reduces to the following dimensionless cubic equation
in shear rate. In order to simplify the nomenclature, we drop
the superscript (ˆ) such as λ̂ ) λ, ϑ̂ ) ϑ, �̂∞ ) �∞, σ̂ ) σ, γ̂̇ )
γ̇ and t̂ ) t

where k ) k0λ. For steady state the number of constants reduce
to three, k, ϑ and �∞, and one independent variable, either σ
or γ̇. For very small shear rates, the quadratic and cubic terms
may be neglected, and so σ ) γ̇, which indicates that the
predicted data collapse in a single line with slope equal to one
at low shear rates. Hence, the dimensionless BMP equation
predicts the normalization suggested by Berret et al.,29 as it will
be shown in the Results and Discussion section.

Locus of the Critical Point and Its Dependence on the
Dimensionless Model Parameters. At the nonequilibrium
critical point (necp), the three roots of eq 18 are equal. Hence,
this equation can be rewritten as

which yields

The stress and fluidity at the critical point are given by

In order to find a relationship among the model parameters,
the expression ((1 - k�∞σc

2)/(3kϑcσc))1/2 ) 1/((kϑc)1/3) is chosen,
and upon defining two new parameters, 	 ) ϑc

2/3 and 
 )
k-1/3, it is found after straightforward algebraic work that

This equation suggests that only two dimensionless model
parameters are independent. Equation 23 exhibits a singular
point at �∞ ) 9; for �∞ e 9, the roots of � are complex, which
have no physical meaning. Hence, systems with parameter
values in this range have no physical meaning.

The Reduced BMP Model. The critical point plays an
important role because the set of equations can be rewritten in
terms of the critical properties or in terms of the model
parameters. By definition of the reduced variables, σr ) σ/σc,
γ̇r ) γ̇/γ̇c, and �r ) �/�c, eq 18 becomes

Since the reduced fluidity is not an independent variable, there
is only one independent variable in eq 24.

Equations Near the necp and Critical Exponents. At the
nonequilibrium critical point, the shear intensity parameter takes
the value ϑ ) ϑc, and so eq 24 can be solved for the normalized
stress. Near the critical point, the binomial expansion yields

Next, the magnitude of each term in eq 25 was estimated as
ϑ was varied. It was found that with the exception of the third,
second, and fifth terms, which increase as ϑf ϑc, the rest were
negligible. The critical isotherm equation is readily obtained

From eq 26 it is evident that the first term of the expansion
is the dominant part, and hence, the critical exponent, δ, which
relates the reduced shear stress with the reduced shear rate near
the critical point, is equal to 3.

Nonequilibrium Phase Equation (Coexistence Line). As
shown elsewhere,9,28 the criterion of the equal areas in the curve
of dissipated energy versus shear rate can be used to determine
the coexistence stress between the coexisting phases in the shear-
banding flow region. The integral that results when the equal-
areas criterion is used has no analytical solution. However,
because the symmetry of the curve, the shear rate, and the shear
stress at the critical point are nearly equal to those at the
inflection point of the flow curve, then γ̇c ≈ γ̇I and σc ≈ σI.
These approximations lead to analytical expressions at the
inflection point by setting the second derivative to zero in eq
18. The first derivative at γ̇I is

where
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The second derivative given below is equal to zero at the
inflection point, i.e.

After substituting eq 27 into eq 28 and up to first-order terms
in γ̇, the plateau stress can be determined, yielding

where σc is the critical stress given in eq 21.
The two remaining roots are (γ̇I + a) and (γ̇I - a), which

can be determined as follows

Solving for a produces

The coexistence curve is defined as γ̇c1 - γ̇c2 ) (γ̇ - γ̇I -
a) - (γ̇ - γ̇I + a) ) 2a, and therefore

The critical exponent � cannot be obtained analytically from
eq 32, and so it has to be estimated numerically from the slope
as ϑ f ϑc (see Figure 1), yielding an approximate value of
5.725 87.

Similarly to and in analogy with the isothermal compress-
ibility, the isothermal flow susceptibility is defined here as

From eq 18 it is obtained that

This expression diverges at the critical point, and the critical
exponent ν tends to 11.5. Notice that ν ≈ 2�. Again this
exponent is estimated numerically from the slope as ϑ f ϑc

(see Figure 2). Here it is evident that this function diverges as
the nonequilibrium critical point is approached, similar to the
divergence of the equilibrium counterpart property, the thermal
compressibility as the critical point is approached.

In addition and in analogy to the heat capacity at equilibrium
Cx, where x can be P or V, the normalized power dissipation
under shear-banding flow is defined here as
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Figure 1. Difference of normalized critical shear rates versus difference
of normalized shear-banding intensity parameter.

Figure 2. Isothermal flow susceptibility versus ϑ - ϑc.
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where the subindex ε can be σr or γ̇r and ϑ may depend on
temperature, surfactant concentration, or the surfactant-to-additive
concentration ratio. N is the mass of the system. Performing the
derivative indicated in eq 35 and using eq 27, near the critical point
it is obtained that

As it is shown in Figure 3, this function diverges as the necp
is approached. The critical exponent R was determined numeri-
cally from the slope as ϑ f ϑc (see Figure 3), and it tends to
2.2.

Widom’s and Rushbroke’s Inequalities and the Physical
Meaning of Critical Exponents. The three critical exponents
follow the extended Widom’s relationship inasmuch as ν g �(δ
- 1), i.e., 2� g �(3 - 1), and the extended Rushbroke’s
relationship since R + 2� - ν g 2, i.e., 2.2 + 2� - 2� g 2.
Although the critical exponents for BMP fluid are nonclassic
and take unusual values, the scaling hypothesis for nonequi-
librium systems holds since these critical exponents still follow
the extended Widom’s relationship and the Rushbroke’s
inequality.30,31

Results and Discussion

Figure 4 depicts the dimensionless shear stress (σ/G0) as a
function of dimensionless shear rate (γ̇ τR) for decreasing values
of the reduced shear-banding intensity parameter ϑ using eq
18. The same data are plotted in the usual way (σ versus γ̇ ) in
the inset. In order to produce more realistic predictions,
experimental parameters of the BMP model (kλ, �0, �∞, and
G0) for a 5% CTAT aqueous solution (reported in Table 1) were
used.8 When the data is plotted as σ against γ̇ , there are
individual flow curves for each value of the shear-banding
intensity parameter without overlapping among the curves (see
inset). However, the dimensionless BMP model predicts that
all data collapse in a single line for γ̇ τR < 1, similarly to
experimental data reported in the literature.20,26,29 The shear-
banding region width, which is equal to γ̇c1 - γ̇c2, diminishes
with decreasing ϑ (this is equivalent to increasing isotherms)
up to a value at which the stress plateau disappears and an
inflection is noticed. The similarity of this plot with the van
der Waals pressure-density isotherm phase diagram is remark-
able. The dissipated (or extended Gibbs free) energy, as

discussed elsewhere,9,28 depicts a single minimum in the low-
and high-shear-rate Newtonian regions (homogeneous flow) and
two minima in the multivalued σ-γ̇ region (nonhomogeneous
flow). In the latter region, two situations arise: (1) the metastable
region, in which one of the minima is deeper than the other,
indicating the shear-rate location of the stable state, and (2) the
shear-banding region, in which both minima have the same
depth. The latter scenario clearly determines the values of the
stress plateau and of the critical shear rates for shear banding
γ̇c1 and γ̇c2. Additionally, at the stress plateau, the amount of
each band is determined by the lever rule, similar to equilibrium
phase coexistence.

The “reduced dynamic phase diagram” obtained from eq 24
is shown in Figure 5. The diagram is quite similar to that
depicted in Figure 4 except that the critical point (or critical
line for a two-component system) now has coordinates (1, 1).

Figure 5. Reduced shear stress versus reduced shear rate for various
normalized shear-banding intensity parameters. Inset: enlargement of
the values of ϑ close to necp. ϑc ) 0.007 43. In the inset, the region
near the critical point is enlarged.

Figure 3. Normalized power dissipation under shear-banding flow
versus ϑ - ϑc.

Cσr
) - 1

N

3 + k
1/3ϑ

-2/3 - �∞
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1/3ϑ
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1

(1 + ϑγ̇c)
2
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Figure 4. Normalized stress versus normalized shear rate for various
normalized shear-banding intensity parameters: (a) 0.015, (b) 0.012,
(c) 0.0101, (d) 0.007, and (e) 0.001 (see Table 1). Inset: stress versus
shear rate for various normalized shear-banding intensity parameters.

TABLE 1: BMP Model Parameters of the CTAT 5% Weight

T (K) �0 �∞ kλ ϑ G0 τR

30 0.0101 7.00 0.0002 0.015 54.5 1.99
38 0.069 10.0 0.00005 0.012 57.5 0.241
40 0.105 11.0 0.00003 0.0101 64.0 0.161
45 0.24 16.0 0.00001 0.007 68.0 0.0517
50 0.45 17.0 0.000009 0.004 68.0 0.0356
55 1.3 19.0 0.000007 0.001 69.0 0.0253
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Notice that in this diagram there are spinodal and coexistence
regions that end at a nonequilibrium critical point (necp).
Beyond this point (actually it is a line since micellar solutions
are at least two-componentswater and surfactantssystems), the
relation σ-γ̇ becomes monotonic. However, in contrast to the
van der Waals equation of state, eq 24 is not universal since
there is one nonreduced parameter. The value of ϑ corresponding
to the critical isotherm, which describes the curve that passes
at the necp, is 0.007 43 for the parameters used in the
calculation. Although the curves are not symmetrical, a change
of scale from log-log to linear reveals that the curves are indeed
symmetrical near the necp. This symmetry is depicted in the
inset of Figure 5, where an enlargement around the inflection
point is shown for only one curve predicted with a value of the
shear-banding intensity parameter ϑ near the necp.

As shown elsewhere (Bautista et al., 2002; 2007), the
dissipated or extended Gibbs free energy G of a fluid system of
volume V subjected to a simple shear flow under isothermal-
isobaric conditions is given by

where ν is the specific volume and � is the solution of eq 18;
the first term within the parentheses of the rhs in eq 37 represents
the contribution of the normal stresses, whereas the second term
arises from the shear stress.

Figure 6 shows plots of the reduced stress and the normalized
dissipated energy (G/Gm) versus the reduced shear rate for
decreasing values of ϑ after neglecting normal stresses, i.e.,
making 4γ̇3/(�3G0

2) ) 0. The dissipated energy was normalized

by the dissipated energy value at the local maximum (Gm) of
each curve; this was done to be able to include all the curves in
this plot. As discussed above, the dissipated energy curve depicts
two minima of equal depth that indicate the position of the stress
plateau and the values of the critical shear rates, γ̇c1 and γ̇c2.
This figure also reveals that the depths of the minima become
shallower and that they disappear at the necp giving origin to
a flat dissipated energy profile. This is remarkably similar to
the behavior of the plots of the Gibbs free energy versus density
as the isotherms approach the critical one.21

When normal stresses are taken in account, the dissipated
energy near the maximum is lower than that calculated in the
absence of normal stresses (Figure 7); in addition, the curve
exhibits a shoulder at shear rates close to the second minima.
However, near the critical point the influence of the normal
stresses tends to disappear. In fact, the positions of the stress
plateau and γ̇c1 and γ̇c2 are practically the same, and they still
obey the modified equal-area criterion. Hence, the isothermal
susceptibility, the normalized power dissipation, and the critical
exponents remain unaltered.

Figure 8 depicts a coexistence line σPlateau versus (ϑ - ϑc)
following a constant shear-rate path that ends at the necp, as
indicated by dashed line across the sigmoid flow curve depicted
in Figure 5. This plot is equivalent to a P-T plot following an
isochoric path that approaches the critical point. For each point
selected in the path, there is a correspondent dissipated energy
versus shear-rate plot (Figure 8A). Far from the critical point
(flow curves a and b in Figure 5), two well-defined minima of
equal depth are observed, the positions of which determine the
values of γ̇c1 and γ̇c2. As the path approximates the necp (curves
c and d in Figure 5), the minima become shallower and they
approach each other, indicating the shrinking of the stress plateau

Figure 6. Reduced stress and the normalized dissipated energy (G/
Gm) versus the reduced shear rate for decreasing values of ϑ, after
neglecting normal stresses.

dG ) Vλσ( 4γ̇3

�3G0
2
+ γ̇

�)dγ̇ (37)

Figure 7. Reduced stress and the normalized dissipated energy (G/
Gm) versus the reduced shear rate for decreasing values of ϑ, where
the normal stresses are taken in account.
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until it vanished at the necp. This is similar to the behavior of
the Gibbs free energy alone P-T plots following an isochoric
path that approaches the critical point. On the other hand, when
the stress is above or below the plateau stress within the low-
or high-shear-rate metastable regions (see full squares in curve
b of Figure 5), the dissipated energy exhibits two minima of
different depths at the low- and the high-shear-rate sides of the
sigmoid (Figure 8B); in this situation, the lowest minimum
corresponds to the metastable state. Notice that in one case the
lowest minimum corresponds to the low-shear-rate side (inset
I), whereas in the other it corresponds to the high-shear-rate
side (inset II) of the sigmoid σ-γ̇ constitutive curve. Hence,
the existence of the metastable branches is evident from the
analysis presented here. The calculations shown in Figure 8B
indicate that a local free energy minimum exists at both
branches. Hence, if either of these branches is reached by, for
example, controlled-stress measurements, the local free energy
minimum guarantees its existence until large enough fluctuations
shift the system to the overall minimum within the shear-banding
region, and, as a consequence, two bands will form, whose
proportions are determined by the lever rule.

Conclusions

In this paper, the BMP model is used to analyze the dynamic
equilibrium (steady-state) flow of micellar solutions that exhibit

shear banding. The dimensionless version of the model, written
in terms of the dimensionless variables, σ̂ ) σ/G0, γ̂̇ ) γ̇ τR,
and t̂ ) t/τR, predicts the master dynamic phase diagram
proposed by Berret et al.29 By using an approach analogous to
equilibrium critical phenomena theory and defining φ ) γ̇(y)
- γ̇c1(y) as the order parameter of the system, the model reduces
to eq 24, written in terms of three reduced variables (σr, γ̇r, and
ϑ) and an independent parameter (k); in this equation, ϑ plays
the role of the reduced temperature or reduced concentration.
This reduced equation predicts the existence of a critical line
and spinodal and coexistence regions, which merge at the
nonequilibrium critical line. Further analysis demonstrates that
the critical exponents of the coexistence region bounded by γ̇c1

- γ̇c2 of the isothermal susceptibility (analogous to the
isothermal compressibility) and of the normalized power dis-
sipation under shear-banding flow (analogous to the equilibrium
heat capacity) follow Widom’s rule and Rushbroke’s relation-
ship, but they are nonclassic.

It is noteworthy that the numerical solution of the whole set of
eqs 1-3 in which the coupling coefficients are nonzero predicts
shear bands, rheo-chaos, and a rich rheological behavior as well
as the divergence of the banding interface as the necp is ap-
proached.35 In addition, as mentioned, when the flow-concentra-
tion coupling is considered to be first order, instabilities along the
gradient and vorticity axes are predicted, allowing the analysis of
the dynamic structure factor in the plane of shear.36

Finally, and to our knowledge, this is the first time that the
shear-banding flow of micellar solutions is examined in light
of a critical phenomena theory without adding ad hoc terms. In
the second part of this series, experimental evidence that
supports this report is presented.

Acknowledgment. We are thankful for the financial support
given by CONACYT (The National Council for Science and
Technology) through the project 100195.

References and Notes

(1) Onuki, A. Phase Transitions Dynamics; Cambridge University
Press: New York, 2002.

(2) Onuki, A. J. Phys.: Condens. Matter 1997, 9, 6119.
(3) Grand, C.; Arrault, J.; Cates, M. E. J. Phys. II 1996, 7, 1071.
(4) Decruppe, J.-P.; Cappelare, E.; Cresseley, R. J. Phys. II 1997, 7, 257.
(5) Berret, J.-F. Langmuir 1997, 13, 2227.
(6) Fischer, P.; Rehage, H. Rheol. Acta 1997, 36, 13.
(7) Berret, J.-F.; Porte, G. Phys. ReV. E 1999, 60, 4268.
(8) Soltero, J. F. A.; Bautista, F.; Puig, J. E.; Manero, O. Langmuir

1999, 15, 1604.
(9) Bautista, F.; Soltero, J. F. A.; Manero, O.; Puig, J. E. J Phys. Chem.

B 2002, 106, 13018.
(10) Criado-Sancho, M.; Casas-Vazquez, J.; Jou, D. Phys. ReV. E 1997,

56 (2), 1887.
(11) Criado-Sancho, M.; Jou, D.; Casas-Vazquez, J.; del Castillo, L. F.

Physica A 2002, 30 (1-2), 1.
(12) Garcı́a-Sancho, M.; Jou, D.; Casas-Vazquez, J.; del Castillo, L. F.

Phys. ReV. E 2002, 66 (6), 061803.
(13) Porte, J.; Berret, J.-F.; Harden, J. L. J. Phys. II 1997, 7, 459.
(14) Olmsted, P. D.; Lu, C.-Y. D. Phys. ReV. E. 1999, 60, 4397.
(15) Fielding; Omlsted, Phys. ReV. E 2003, 68 (3), 036312, part 2.
(16) Fielding; Omlsted, Phys. ReV. Lett. 2003, 90 (22), 224501.
(17) Fielding, S. M.; Olmsted, P. D. Eur. Phys. J. E 2003, 11, 65.
(18) Berret, J.-F. In Molecular Gels. Materials with Self-Assembled

Fibrillar Networks; Weiss, R. G., Terech, P., Eds.; Springer: Secaucus, NJ,
2006.

(19) Puig, J.E.;. Bautista, F. Soltero J. F. A.; Manero O. In Giant
Micelles: Properties and Applications; Zana, R., Kaler, E. W., Eds.; Francis
and Taylor: New York, 2007.

(20) Fernández, V. V. A.; Tepale, N.; Álvarez, J. G.; Pérez-López, J. H.;
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