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a b s t r a c t

In this work, non-equilibrium molecular dynamics simulations are used to generate the flow of linear
polymer chains (monomer-springs with FENE potential) and a Lennard–Jones fluid (Newtonian fluid)
through a contraction–expansion (4:1:4) geometry. An external force field simulating a constant pres-
sure gradient upstream the contraction region induces the flow, where the confining action of the walls
is represented by a Lennard–Jones potential. The equations of motion are solved through a multiple-step
integration algorithm coupled to a Nosé-Hoover dynamics [S. Nose, A unified formulation of the constant
temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511–519], i.e., to simulate a thermo-
stat, which maintains a constant temperature. In this investigation, we assume that the energy removed
by the thermostat is related to the viscous dissipation along the contraction–expansion geometry. A non-
linear increasing function between the pressure drop and the mean velocity along the contraction for the
linear molecules is found, being an order of magnitude larger than that predicted for the Lennard–Jones
fluid. The pressure drop of both systems (the linear molecules and Lennard–Jones fluid) is related to the

dissipated energy at the contraction entry. The large deformation that the linear molecules experience
and the evolution of the normal stress at the contraction entry follow a different trajectory in the relax-
ation process past the contraction, generating large hysteresis loops. The area enclosed by these cycles is
related to the dissipated energy. Large shear stresses developed near the re-entrant corners as well as the
vortex formation, dependent on the Deborah number, are also predicted at the exit of the contraction. To
our knowledge, for the first time, the excessive pressure losses found in experimental contraction flows

ically.
can be explained theoret

. Introduction

A notorious benchmark problem in rheology has been the
rediction of the dissipation and its relation with the pressure
rop along flow trajectories that involve abrupt changes in geom-
try. In particular, the viscoelastic flow through a contraction,

r contraction–expansion geometries, has been given special
ttention as a test to current constitutive equations. Complex flows
xperience an unusual large pressure drop along the contraction as
ompared to that corresponding to a Newtonian fluid with similar

∗ Corresponding author. Tel.: +52 241 41 72544; fax: +52 241 41 75844.
E-mail address: j castillo tejas@hotmail.com (J. Castillo-Tejas).

377-0257/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2009.04.005
© 2009 Elsevier B.V. All rights reserved.

viscosity. Large shear stresses develop near the re-entrant corner
regions while similarly large extensional stresses are generated
along the central streamline of the flow domain. Vortex generation
and large molecular deformation are observed in the flow patterns
along the geometry. Birefringence measurements reveal high
anisotropy at the entry region of the contraction followed by a
relaxation to an isotropic state at the exit. However, a standing
problem has been the prediction of the pressure drop along the
contraction geometry and its relation with the dissipation pro-

cesses occurring along the flow trajectory. Furthermore, analyses
of the stress and conformation along the flow trajectory have
pointed out the presence of hysteresis cycles along the entry and
exit regions of the flow domain. Yet, the relationship existing
between the pressure drop predictions and the hysteresis cycles

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:j_castillo_tejas@hotmail.com
dx.doi.org/10.1016/j.jnnfm.2009.04.005
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s still not clear. In this work, we analyze the pressure drop,
onformation hysteresis and the dissipation process along the
ontraction–expansion region, for various values of the Deborah
umber, with non-equilibrium molecular dynamics simulations.

Several explanations have been given to the excess pressure
rop in viscoelastic liquids undergoing complex flow situations. The
xistence of stress-conformation hysteresis cycles is assumed to be
losely related to the dissipation process occurring in these flows.
oyle et al. [1] found a stress-conformation hysteresis in uniax-

al extension. Theoretical predictions of the hysteretic cycles were
ade using Brownian dynamics applied to several dumbbell mod-

ls and to the bead-rod chain. A relevant result shows that very
mall changes in the chain conformation can result in very large
hanges in the stress. The evolution of stress and birefringence in
he initial deformation process follows a path which is different to
hat observed in the subsequent relaxation process. The hystere-
is observed in some of the models is in qualitative agreement
ith experiments involving polystyrene and poly-isobutylene-

ased Boger fluids.
Lielens et al. [2] performed stochastic simulations in one-

imensional elongational flows using the simple FENE model
ranslated into an equivalent macroscopic constitutive equation,
redicting hysteretic behavior. Sizaire et al. [3] further discussed the
ysteretic behavior of dilute polymer solutions in relaxation follow-

ng extensional flow, adopting the theoretical framework of FENE
umbbells and related macroscopic constitutive equations. Conclu-
ions show that the hysteretic behavior results from the combined
ffect of variation in the distribution of individual configurations
nd non-linearity in the dumbbell model.

Rothstein and McKinley [4–7] analyzed the flow of a Boger fluid
hrough a 4:1:4 contraction/expansion. For high Deborah numbers
n elastic instability is found, which is not directly connected to
he excess pressure drop or to the re-entrant corner curvature.
ather, this is assumed to be originated by dissipation associated to
he stress-conformation cycles. An excess pressure drop above the
ewtonian reference is found, independent of the contraction ratio
nd curvature of the contraction entry. In polystyrene solutions for
e > 0.5, the dilute solution exhibits a marked hysteresis cycle that

s not present in more concentrated solutions. Beyond a critical De
umber, the hysteresis cycles and the dissipated energy are closely
elated to the pressure drop, provided that the uniform transient
niaxial elongational flow can simulate the centre-line stresses and
olecular conformations existing in the contraction flow. Under

hese premises, the area enclosed in the hysteretic loops is shown
o be proportional to the dissipated energy of the deformation
istory.

Additional experimental works also have found excess pressure
rops above the Newtonian reference fluid. Nigen and Walters [8]
ound an excess pressure drop in Boger fluids higher than that mea-
ured in Newtonian fluids in axisymmetric contractions, but not
n the planar cases. Schroeder et al. [9] analyzed the extensional
ow of DNA molecules using fluorescence microscopy. The hystere-
is cycles found are assumed to be originated from hydrodynamic
orces and may directly influence bulk-solution stresses and the
evelopment of stress–strain relations in dilute polymer solutions.

Additional numerical simulation contributions are numerous
10–15,18–23] as well as the constitutive equations used to repro-
uce the kinematics and dynamics of the contraction–expansion
ow. Using a constitutive equation derived from the FENE
odel, Szabo et al. [10] simulated a flow through a 4:1:4

ontraction–expansion. They found an increase in the vortex size

t the contraction entry with De number. Results of the pressure
rop, however, show a decrease with respect to the Newtonian ref-
rence liquid, except when the extensibility parameter is small.
inding et al. [13] in a contraction–expansion flow the pressure
radient on the centre-line shifts downstream as the Deborah
n Fluid Mech. 161 (2009) 48–59 49

number is increased and the peak value of the pressure gradient
decreases. Similar results are found by Aguayo et al. [14] using
an Oldroyd-B equation through planar and axisymmetric con-
traction and contraction–expansion geometries. Wapperom and
Keunings [15] used the Pom-Pom model [16,17] through a 4:1:4
contraction–expansion with rounded corners found an increase in
the vortex size with De number, but again a decrease in the pressure
drop with respect to the Newtonian reference liquid, in contrast
to experimental results. Alves et al. [18,19] simulated a viscoelastic
flow through a 4:1 contraction using the Oldroyd-B and PTT models
observing the vortex inhibition with increasing De. In Boger fluids
the vortex size was found to follow a non-monotonic behavior with
the flow rate.

It is apparent that numerical simulations face a difficulty in
describing the experimental data through a contraction, particu-
larly the pressure drop. This problem arises in the context of the
need to more advanced solution methodologies and appropriate
constitutive equations that include accurate descriptions of the dis-
sipation process occurring in the flow domain, to predict more
adequately the dynamics of polymer solutions through complex
geometries. In this regard, predictions from continuum models
complemented with those of more molecularly oriented models
are necessary to grasp some of the fundamental problems related
with the dissipation occurring in the flow through complex geome-
tries.

Theoretical developments and simulations of complex liquids
flowing through abrupt changes in geometry include those based on
continuum mechanics, Brownian dynamics and molecular dynam-
ics. They differ in the particular simulation scale, namely, 10−3 m
for continuum models, 10−6 m for Coarse-Grained models used in
Brownian dynamics simulations (which do not describe specific
details at the atom level) and 10−9 m for molecular dynamics at the
microscopic level. The latter has been shown to predict the response
of polymeric materials, in qualitative agreement with continuum
simulations [24]. Here we use molecular dynamics to simulate the
flow of molecules along complex geometries. It is expected that this
approach is able to describe the response of the fluid to such abrupt
changes in geometry, although the simulation scale is not compara-
ble to macroscopic predictions from continuum models. However,
the qualitative agreement of both approaches is encouraging and
justifies molecular simulations.

Previous studies on molecular models include the analysis by
Todd et al. [25] using a Lennard–Jones fluid with periodic boundary
conditions in the three directions, and Mi and Chwang [26] using
molecular dynamics to simulate the Poiseuille flow along nano-
channels of various shapes. Using molecular dynamics simulations,
Castillo-Tejas et al. [27] analyzed the instabilities found in Poiseuille
flow of systems of linear and branched chains with various wall
interactions, and attention was given to the influence of the wall
surface on slip and molecular deformation of the material.

Homogeneous extensional flow presents difficulties for non-
equilibrium molecular dynamics simulations, since the results are
dependent on the size of the simulation domain in the normal direc-
tion to flow [28]. In planar extensional flow, Todd and Daivis [29]
suggest the modification of the periodic boundary conditions to
obtain mean values of the off-diagonal components of the stress
tensor and also extensional viscosity predictions.

The present work aims to analyze the flow of a polymer
modeled as monomer-springs with a FENE potential through a
4:1:4 contraction–expansion geometry and compare it with the
Newtonian fluid (modeled as a Lennard–Jones fluid), with non-

equilibrium molecular dynamics simulations. Special attention is
given here to the phenomena associated to the excess pressure drop
and its relationship with the stress-conformation hysteresis cycles
previously discussed. As it is shown below, large increases of the
pressure drop of the polymer as compared to those of the New-
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onian fluid are predicted, and explanations of the origin of these
ressure losses are given for the first time.

The manuscript is organized as follows. Section 2 presents the
olecular model and the equations of motion to simulate the flow.

ection 3 examines the simulation domain, the rheological prop-
rties calculations and technical details of the simulations. Section
discusses the flow of the two systems, the linear chains (poly-
er) and the Lennard–Jones (Newtonian fluid), and shows results

f extensional flow, including the pressure drops through the geom-
try. An analysis of the structural changes is provided as functions
f the Deborah number and their relations with the flow proper-
ies. Finally, in Section 5, discussion and the main conclusions are
resented.

. Theoretical

.1. Equations of motion

In Poiseuille flow, the motion is produced by a pressure gradient
long the flow direction. In molecular dynamics the flow motion is
imulated by an external force Fe which ensures that the system
aintains longitudinal homogeneity [25,30]. The Poiseuille flow

imulations require that the particle motion is described by the
ewtonian equations of motion,

dri

dt
= vi (1)

dvi

dt
= Fi

mi
+ Fe

mi
i − V�vi (2)

d�

dt
= V� (3)

dV�

dt
= 1

QS

[∑
i

mivi
2 − LS

ˇ

]
(4)

here ri is the position vector, i is a unit vector placed along the flow
irection and Fe is the magnitude of the external force field which
aintains the flow. Fi acts upon each monomer of mass mi and it

s related to fluid–fluid and fluid–wall interaction forces. Vector vi
epresents the velocity of particle i in the laboratory frame of refer-
nce, namely, the sum of the peculiar velocity and the streaming
elocity. The peculiar velocity is the rate of change of the posi-
ion of the particle under equilibrium conditions, i.e., in absence
f external perturbations. According to the geometry under study,
nly the y-component of the velocity vector develops a peculiar
elocity.

The flow itself generates heat which needs to be removed from
he system. The Nose–Hoover [31] thermostat is here used to main-
ain the temperature constant, where its dynamic variables � and

� are the coordinates of position and velocity, respectively, and QS
s its associated mass. Finally, LS is the degree of freedom and ˇ is
he reciprocal of the reduced temperature.

In this work, specifically, is important to obtain the energy
mount that the thermostat removes from the dynamic variables.
olution of Eqs. (1)–(4) allows obtaining the position vector and
aboratory reference velocity (ri and vi) according to the constant
imulation conditions N, V and T. As the temperature depends
n molecular velocity, the thermostat removes or introduces heat
hich in turn affects the particle velocities. The force to maintain

he temperature constant is given by the third term of the right-

and-side of Eq. (2), expressed as the gradient of a potential (see
q. (12)) as follows:

d

dri
UNHi = V�mivi (5)
n Fluid Mech. 161 (2009) 48–59

Here UNHi is the energy removed by the thermostat for particle i.
Eq. (5) is in turn derived with respect to time to obtain:

dUNHi

dt
= V�miv2

i (6)

Using the Liouville operator formulation, Eq. (6) is in turn inte-
grated according to the following transformation [32]:

UNHi → UNHi + �t

2
miV�v2

i (7)

Eq. (7) represents the energy UNH = ∑N
i=1UNHi that the thermo-

stat removes in the whole system and it is used to estimate the rate
of energy removed by thermostat.

To maintain longitudinal homogeneity in the system, the
Poiseuille flow is generated by a force Fe applied on the particles.
However, since the flow past contraction–expansion geometry is
not homogeneous in the flow direction, Fe is applied only at the
simulation entry region, x1 < x < x2 as shown in Fig. 1. The expression
for the external force is:

Fe(xi) = a − a(xi − c)2

b
(8)

where a is the magnitude of Fe, xi is the x-component of the position
of the particle i, c = (x1 + x2)/2 and b = (x2 − x1)2/4, with x1 = −90.92�
and x2 = −79.55�. The external field Fe is zero on x1 and x2, such that
the field is consistent with the concept of minimum image and peri-
odic boundary conditions along the flow direction. To determine
the energy UFe associated to Fe, an analogous procedure to that for∑N

i=1UNHi is followed, such that

UFe = −axi + a(xi − c)3

3b
+ c2 (9)

where c2 is the integration constant. Finally, the potential energy
of the system resulting from the application of the external force is
given by:

U(rN, �, V�) =
N∑

i=1

UFe(ri · i) +
N∑
i

N−1∑
i<j

U(ri, rj) +
N∑

i=1

UNHi
(10)

The system of equations is solved through a reversible inte-
gration algorithm RESPA (Reversible Reference System Propagator
Algorithm) [32,33], where the motion established by the Liouville
propagator for the thermostat dynamic variables occurs within the
same scale of the reference system [34].

2.2. Molecular model

In molecular dynamics formulations, the motion of parti-
cles in the system is described by classical mechanics including
particle–particle interactions. The detailed interaction among par-
ticles is given by summation of the overall pair–pair contributions
according to:

U(rN) =
∑

i

∑
j>i

U(rij) (11)

where U(rij) accounts for the potential energy among pairs and rij
is the scalar distance between particles i and j. The force acting on
a particle is obtained from the gradient of the potential function:

Fi = −∂U(rN)
∂r

(12)

i

In this work, the systems are: (1) molecules of linear chains and
(2) Lennard–Jones soft spheres. A linear molecule is represented
here according to the monomer-spring model of Kremer and Grest
[35]. This model considers that the polymer chain formed by a
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Fig. 1. Schematic representation of the simulat

ealth of particles is replaced by a spring and the mass is con-
entrated in a monomer or segment. Then, a chain is envisaged as
collection of segments connected through non-harmonic springs.
ccording to this model, the functional form of the intermolecu-

ar potential U(rN) includes two types of interactions among the
egments of linear molecules: bonding and non-bonding interac-
ions. The non-bonding interactions are of the van-der-Waals type,
uch that the interaction energy between two segments is the trun-
ated Lennard–Jones pair potential, smoothed at a cut-off distance
f rc = 21/6�,

LJ =

⎧⎪⎨
⎪⎩

4ε

[(
�

rij

)12

−
(

�

rij

)6
]

− �˚, rij < rc

0, rij ≥ rc

(13)

here rij is the scalar distance between segments i and j, and � and
are the collision diameter and potential depth, respectively, and
˚ is a shifting parameter. In this work we neglect particle–particle

nteractions whose separation is larger than the cut-off radius rc.
he term �˚ removes the discontinuity in the energy at rij = rc. The
on-bonding interactions are described by a short-range repulsive
otential, the Weeks–Chandler–Andersen (WCA) potential [36]. At
he density conditions considered, the repulsive interactions are
redominantly responsible of the structure behavior of the system.

The bonding interactions arise between two segments joined by
ovalent bonds. A finite-extensible non-linear elastic (FENE) poten-
ial [37] is used to model adjacent segments connectivity in the
ame molecule, and it is given by

FENE =

⎧⎨
⎩ −kvR0

2

2
ln

[
1 −

( rij

R0

)2
]

, rij < R0

∞, rij ≥ R0

(14)

here kv is the spring constant (kv = 100) and R0 (=1.5) is the
aximum extension of the bond. The attractive FENE potential
eproduces conveniently the behavior of polymer solutions [38].
he monomer-spring model has been used in molecular dynamics
imulations in confined polymer system [39,40]. Recently, with the
ame potential instabilities in the Poiseuille flow of polymer melts
ere analyzed [27]. Variations of the FENE potential have also been
gion for the 4:1:4 contraction–expansion flow.

used in systems with attractive walls and a Morse potential for non-
bonding interactions [41]. It is important to mention that the FENE
potential is used here to model the attractive force and does not
imply a constitutive expression for the stress.

Finally, the Newtonian fluid is represented by Lennard–Jones
soft spheres, where the interactions between particles are given
by Eq. (13). For monomer–wall and L–J particle–wall interactions,
it is considered that the wall is made of Lennard–Jones particles.

3. Technical details

3.1. Reduced properties

The system variables are expressed in terms of reduced quan-
tities with respect to the mass (mi), energy (ε) and length (�), to
which a value of one is assigned. This formulation presents an
advantage, namely, that the principle of corresponding states can
be applied. [42].

The mass is expressed in units of atomic mass, the energy is
given in units of the depth of the well potential and the lengths are
referred to the particle diameter. The reduced expressions of some
properties are listed below [43]:

�∗ = ��3, T∗ = kBT

ε
, U∗ = U

ε
, P∗ = P�3

ε
,

t∗ = t
(

ε

m�2

)1/2
, �̇∗ =

(
m�2

ε

)1/2

�̇ and 	∗ =
(

�4

mε

)1/2

	,

where � is the local density, kB is the Boltzmann constant, U is the
energy, P is the stress tensor and t is time. Results are expressed in
reduced units with no extra signals.

3.2. Geometry and simulation conditions
The particles are confined in a simulation region shown in Fig. 1.
Dimensions are given in units of � of a computational region with
a 4:1:4 contraction–expansion ratio where the origin is located in
the middle point of the domain. The minimum image and peri-
odic boundary conditions impose equal values of the transport and
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tructural properties of the fluid at the entry and exit regions. The
ollowing situations are then applied: (1) Lxc is equal to the max-
mum length of the extended chain, (2) Lx should be sufficiently
arge as to avoid that the boundary conditions in the x-direction
ffect the flow, and then Lx is fixed to 13Lxc, (3) Lzc is such that the
ontraction confinement allows reproducing bulk situations [27],
4) Lz = 4Lzc and finally, (5) Ly = 2rc, where rc is the cut-off radius of
he intermolecular potential. On this basis, the position coordinates
omain is the following:

90.92� < x < 90.92�, − 1.73� < y < 1.73� and

− 21.738� < z < 21.738�,

here the contraction itself is located at: −6.9935� < x < 6.9935�
nd −5.4345� < z < 5.4345�.

Notice that the measurement region is limited to the range
45.46� < x < 45.46�, as shown in Fig. 1. To simulate the confine-
ent effect, a Lennard–Jones surface is placed at the boundaries of

he simulation domain. The minimum image and periodic bound-
ry conditions are then applied to the flow and neutral directions,
espectively. If the centre of mass of a chain leaves the simulation
omain along the x and y directions, the chain enters the region
hrough the opposing side.

As mentioned in Section 2.1, Fe is applied to each parti-
le positioned at the entry point of the simulation domain
90.22 < x < −79.55 as shown in Fig. 1. To maintain longitudi-
al homogeneity, the external force is applied to all particles, as
eported in other simulation works. However, the contraction flow
s not homogeneous, so Fe is imposed only at the entry region of the
imulation domain. Therefore, the flow is developed at the entry
egion and the test region is not directly affected.

The system with linear chains contains 1666 chains, each one
ontaining 13 monomers of size � connected themselves, such as
he particle number N is 21,658. The same size is used for the
ennard–Jones fluid. Additionally, the reduced temperature and
ensity are 4 and 0.84, respectively.

The magnitude of the external force Fe is varied between 0.5
nd 3 for linear chains and from 0.125 to 1.0 for L–J soft spheres.
he initial configuration of particles is generated considering that
he entire simulation domain is composed of multiple sub-domains
ith the following dimensions: Lx = 13�, Ly = 3.46� and Lz = 10.869�.

articles lying in this region are equilibrated in absence of exter-
al perturbations and replicated along the entire domain. Once the

nitial configuration is generated, the external force is imposed to
roduce the flow. The integration steps amount to 2 million, from
hich one million steps are required for equilibrium conditions. A

ime step of �t = 0.001 is set to integrate the equations of motion
sing the reversible RESPA algorithm developed from the Liouville
ropagator.

.3. Calculation of the system properties

.3.1. Radius of gyration Rg

Conformations of linear chains for various simulation conditions
re analyzed by calculating the mean-squared radius of gyration
R2

g 〉, which allows obtaining the global distribution of the chain
egments:

Rg
2〉 = 1

El

〈
El∑

i=1

(ri − rm)2

〉
(15)
m is the center of mass of the chain and El is the number of segments
er chain. The radius of gyration can also be obtained by summing
he three eigenvalues (Ix, Iy, Iz) representing the three main axes
f the ellipsoid (containing the segment distribution in the three
irections) of the mass distribution tensor G.
n Fluid Mech. 161 (2009) 48–59

3.3.2. Viscous dissipation Ev
The expression for the viscous dissipation integrated over the

entire system volume is given by

Ev = −
∫

(� : ∇v)dV (16)

where � is the viscous stress tensor and ∇v is the velocity gradient.
Here the rate of viscous dissipation is assumed, as a first approxima-
tion, to be equal to the rate of energy amount that the thermostat
removes to maintain a constant temperature, such that

Ev ≈
〈∑

UNHi|t+�t −
∑

UNHi|t
〉

�t
= �UNH

�t
(17)

The validity of Eq. (17) is analyzed in Section 4.2 below.

3.3.3. Stress tensor
In this work, the plane method for non-homogeneous flow is

used [25,44] to calculate the pressure tensor in the fluid, according
to the following expression:

Pˇa(ˇ) = 1
A

〈
N∑

i=1

p˛ipˇi

mi
ı(ˇ − ˇi)

〉
+ 1

2A

〈
N∑

i=1

F˛i sgn(ˇi − ˇ)

〉
(18)

where Pˇ˛ is the pressure tensor component acting along direction
˛ through a plane normal to the ˇ axis. A is the area of the plane
normal to the ˇ axis, sgn(ˇi − ˇ) is equal to one if (ˇi − ˇ) > 0 and
to −1 if (ˇi − ˇ) < 0. Moreover, F˛i is the ˛-component of the force
acting on particle i, and p˛i and pˇi are the ˛ and ˇ components
of the momentum of particle i, respectively. The stress tensor T is
related to the non-equilibrium components of the pressure tensor
such that T = −P. The total stress T implies the contribution of the
pressure and that of the viscous stress, such that T = −pI + �. The
plane method allows calculating the stress components Txx, Tzz and
Tzx in the computational domain. In molecular dynamics the total
normal stress contains the non-separable contributions from the
viscous stress � and pressure −pI.

4. Results and discussion

4.1. Simple shear flow

Simulations of the viscoelastic simple shear flow of linear-chain
molecules involve 300 molecules, each one containing 13 sites. For
the Lennard–Jones fluid, simple shear flow is generated for a system
comprising 3000 particles. Same density and temperature condi-
tions of the contraction flow (0.84 and 4, respectively) are used
for both systems, with Lees–Edwards periodic boundary conditions
[45] coupled to a Nosé–Hoover thermostat to maintain a constant
temperature.

Fig. 2 presents the viscosity 	 for both systems and the first
normal-stress difference N1 as functions of the shear rate � in sim-
ple shear flow. For the linear molecules, at low shear rates the
viscosity is constant (first Newtonian region) and as the shear rate
increases the viscosity shear thins with a slope about of −0.39, near
the range as observed in polymer solutions and melts (0.4–0.9)
[46]. The slope is a regression curve of values obtained at sev-
eral shear rates. In reduced units, the relaxation time 
 obtained
from the relation 
 = �1,0/2	0 is 17.51, where� 1,0 and 	0 are the
first normal-stress coefficient and the zero-shear rate viscosity,
respectively, obtained from the simulations at low shear rates.

As the fluid changes from isotropic to anisotropic, N1 increases
with rising molecular deformation along the flow direction. For the
Lennard–Jones fluid, the shear viscosity is constant along the range
of shear rates presented, and therefore this system represents the
Newtonian fluid behavior.
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ig. 2. Shear viscosity and first normal-stress difference as functions of shear rate
nder simple-shear flow for the linear chain and Lennard–Jones fluids.

.2. Viscous dissipation and energy removed by the thermostat

The term −� : ∇v, included in Eq. (16), describes the irreversible
oss of mechanical energy into thermal energy. In polymeric fluids,
iscous dissipation generates an increase in the system temperature
nd velocity gradients [47]. One of the fundamental assumptions
f the present work considers that the increase in temperature
y viscous dissipation is associated to an energy content that is
quivalent, to a first approximation, to the energy content that the
hermostat removes to maintain a constant temperature. For the
urpose to demonstrate the basis of this assumption, a steady sim-
le shear is imposed on a system formed by 800 Lennard–Jones soft
pheres under same conditions of the flow curve in Fig. 2. In this
ow, the position coordinate and peculiar velocity coordinate evolve
ccording to SLLOD dynamics [30]. The rate of dissipation for this
ow is given by the product of the mean shear stress, the shear rate
nd the simulation volume, such that Ev = 〈�zx〉�̇V . Fig. 3 presents
he variation of the rate of viscous dissipation (Ev = 〈�zx〉�̇V) and the
ate of energy removed by the thermostat (�UNHx/�t, �UNHy/�t,
UNHz/�t) as functions of the shear rate for each velocity compo-

ent. At a shear rate of 0.1, the viscous dissipation is slightly larger
han the energies removed by the thermostat. This can be inter-

reted as an energy amount added to the system by the thermostat.
pon increasing the shear rate, only the rate of energy removed in
-direction tends to be slightly larger than the viscous dissipation.
lthough the viscous dissipation increases two orders of magni-

ig. 3. Rate of viscous dissipation and energy removed by the thermostat as a func-
ion of the shear rate.
n Fluid Mech. 161 (2009) 48–59 53

tude for shear rates from 0.1 to 1.0, the difference �UNHy/�t − Ev
diminishes as the shear rate increases. This behavior demonstrates
the equivalence between the rate of dissipation energy and the
rate of energy removed by thermostat for each peculiar velocity
component.

When the thermostat is applied to three component of vec-
tor velocity, the peculiar velocity distribution is Maxwellian, i.e.,
it describes a Gaussian with deviation (kBT/m)1/2 and zero mean
velocity (〈v〉 = 0) at a mean temperature (〈T〉). By equipartition of
kinetic energy, the scalar components of the velocity are mutu-
ally independent [48], namely, they exhibit same distribution and
deviation. This implies that each peculiar velocity component has
the same contribution to the mean temperature and therefore their
energy contribution is the same fraction of the total energy removed
by the thermostat. On this basis and according to the results in sim-
ple shear flow, the rate of energy removed by the thermostat is
estimated, for convenience, taking into account the only peculiar
velocity component (y-component of the velocity).

4.3. Flow through A 4:1:4 contraction–expansion

4.3.1. Extensional flow
This complex flow involves a non-constant deformation along

the central streamline. To characterise the change of elastic energy
during the deformation-relaxation process, the results are reported
in terms of the non-dimensional Deborah number (De), given by
De = 
U/Lzc, where 
 is the relaxation time and U is the mean veloc-
ity in the contraction region.

Fig. 4 presents the variation of the velocity of the linear
molecules vx(x) along the central streamline for various values of
the Deborah number. In this case the central streamline is divided
in 200 y–z planes, each one with a height of 2� and a width of Ly.
Notice that the contraction is located in the region −6.99 < x < 6.99.
Upstream, the molecular velocity vx(x) is constant up to a distance
of x ≈ −30�. From this point on, velocity increases with De up to a
maximum located just at the contraction entrance. For De values of
1.9, 3.9 and 5.5, velocity is near constant in the contraction region
and decreases at the exit, just before the expansion. For large De
values (6.3, 6.7, and 7.0) the maximum of the fluid velocity shifts
to regions downstream the expansion. Consequently, the velocity
gradient exhibits two peaks, one located just before the contraction
and another one located just at the beginning of the expansion.

In the expansion there is a negative peak corresponding to the
decrease in the axial velocity. For linear molecules, Fig. 5 shows the
velocity gradient variation along the central region prior and in the
contraction. At the point where the velocity increases (x ≈ −30�)

Fig. 4. Centerline velocity along the axial coordinate for various Deborah numbers.
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ig. 5. Axial velocity gradient along the flow direction for various Deborah numbers.

he fluid experiences an abrupt deformation before entering the
ontraction, and the magnitude of the maximum depends on the
eborah number. The deformation rate increases with the De num-
er, in agreement with experiments performed by Graham et al. on
he contraction flow of monodisperse linear entangled polystyrene

elts [49]. Right at the contraction, the strain rate diminishes and
ttains a second relative maximum in the exit of the contraction.
he strain rate describes a minimum (not shown) in the expansion
egion and eventually levels-off recovering the zero value it had
pstream the contraction.

For linear molecules, Fig. 6 describes the variation of N1 along
he central streamline. Upstream the contraction, the first stress
ifference presents positive values up to x ≈ −22�, due to the large
xtensional stress. The normal-stress difference changes sign as the
ontraction is approached due to the diminishing extensional stress
nd the increase in the normal stress. The normal stress increases
rastically with Deborah number, as the fluid approaches the con-
raction region, resulting in a peak in the negative value of N1. Inside
he contraction, the normal-stress difference starts its relaxation
rocess as the tension on the molecules relaxes. The increase in
he normal-stress component as the contraction is approached is
elated to the increase in the pressure drop, similarly to the increase

n the velocity gradient prior to the contraction region.

The increase in the normal stress as the contraction is
pproached suggests substantial changes in the molecular defor-
ation. Fig. 7 shows the radius of gyration R2

g along the centerline

ig. 6. First normal-stress difference along the central streamline for various Debo-
ah numbers.
Fig. 7. Radius of gyration along the central streamline for various Deborah numbers.

of the geometry. Upstream the contraction R2
g remains constant

up to a distance x ≈ −22�, where deformation of the molecule
in the flow direction starts to increase up to a maximum at
the contraction itself. Those molecules subjected to larger Deb-
orah numbers deform more. Past the contraction the molecule
relaxes as the expansion is approached. Upstream the 4:1:4
contraction–expansion device, the molecule is deformed and ori-
ented along the flow direction followed by a fast relaxation process
past the contraction [4–7].

Fig. 8 presents the components I2
x and I2

z of the radius of gyra-
tion along the central region corresponding to De = 7.0. The peak in
the component of the radius of gyration along the flow direction
almost coincides with the peak in the strain rate shown in Fig. 5.
The maximum deformation along the flow direction at the onset
of the contraction coincides with a compression along the normal
direction. These results are in agreement with the chain anisotropy
data along the contraction expansion by Graham et al. [49] in linear
monodisperse entangled polymers. Due to the strong elongational
component of the flow in this region, rupture of polymer chains has
been reported [50]. Here, no chain rupture is predicted in the range
of Deborah numbers considered.

In Fig. 9, the first normal-stress difference is plotted as a function
of the radius of gyration for De = 7.0. Results show a very interest-

ing stress-conformation hysteresis cycle, consistent with previous
reports [1–3,6,7]. N1 increases and attains a maximum around 19
units corresponding to a radius of gyration of 6.3� at the contraction
entry region and describes the hysteresis cycle downstream.

Fig. 8. Eigenvalues of the radius of gyration tensor I2
x and I2

z along the central stream-
line. De = 7.0.
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ig. 9. First normal-stress difference as a function of the radius of gyration. De = 7.

.3.2. Pressure drop
Results presented in this section support the assumption made

n the relation between the excess in the pressure drop in vis-
oelastic fluids and the stress-deformation hysteresis cycles. As
most important prediction, it shows a remarkable increase of

he pressure loss in the linear chains as compared to that of the
ewtonian fluid. The pressure within the contraction–expansion

est region depends on the Tzz component of the stress tensor.
alculations of this component is carried out through the MOP
ethod allowing 100 planes x–y from the central streamline to

he wall (z = Lz/2) prior and past the contraction. The area of each
lane is 133.127�2 and the separation between planes is 0.127�. In
ig. 10a, the pressure gradient of linear molecules along the cen-
erline of the geometry rises from the upstream constant value to a

aximum, before decreasing to the expected same constant value
ownstream. The maximum pressure gradient increases with Deb-
rah number. These predictions contrasts to those of Binding et
l. [13] on contraction–expansion flows using an Oldroyd-B fluid,

hich predicts a decrease of the maximum pressure gradient with
e number. In Fig. 10b, the normal-stress component Tzz is depicted

or various trajectories away from the symmetry line for De = 7. The
argest normal stress is found near z = 0 and close to the walls it
resents a small peak at −15� < x < −10� before diminishing. This

Fig. 11. Stress-conformation hysteresis cy
Fig. 10. (a) Centerline pressure gradient along the flow trajectory and (b) normal
stress along flow trajectories parallel to the central streamline, De = 7.

increase is consistent with results obtained by Aguayo et al. [14]

using continuum models, such as Oldroyd-B, Phan-Thien/Tanner
and Pom-Pom, representing a Boger fluid.

Doyle et al. [1] found that the excess pressure drop is related
to the energy dissipated along the stress-conformation hystere-

cles for various Deborah numbers.
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Fig. 12. Pressure drop and rate of dissipated energy as functions of the mean velocity
for the polymer and Lennard–Jones fluid.
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Fig. 15. Shear stress along the axial coordinate for various distances away from the
central streamline, De = 6.3.
ig. 13. Rate of dissipated energy of the molecules along the central streamline, for
arious Deborah numbers.

is cycle. In Fig. 11 the stress-conformation hysteresis cycles as

unctions of Deborah number are presented. For De = 1.9, the hys-
eresis area is small, while for larger Deborah numbers the area of
he hysteresis loop increases, as first normal-stress difference and
adius of gyration augment. Rothstein and McKinley [7] suggest

ig. 14. Rate of dissipated energy of the Lennard–Jones fluid along the central
treamline, for various values of the external force.
Fig. 16. Shear stress along the streamline located at z = 4� away from the central
streamline, for various Deborah numbers.

that the area enclosed within the hysteresis loop represents the
dissipated work per unit time of the coupling between stress and

the extensional flow kinematics. Although in this work the rate of
dissipated energy corresponds to the rate of energy removed by the
thermostat, i.e., Ev ≈ �UNH/�t, to maintain a constant temperature,
qualitative agreement with Ref. [7] is found.

Fig. 17. Rate of dissipated energy and shear stress as functions of the mean velocity
across the contraction–expansion geometry. Inset: rate of dissipated energy versus
shear stress.
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Fig. 18. History of the positions visited by th

Fig. 12 shows results of the pressure drop �P = P1 − P2 (P2
nd P1 are the pressures past and prior the contraction) and
UNHy/�t as functions of the mean velocity 〈v〉 of the molecules

nd Lennard–Jones fluid across the contraction. The Lennard–Jones
uid pressure drop is linear for low values of the mean veloc-

ty, which contrasts with the drastic increase in the pressure drop
xhibited by the polymer molecules. This is a remarkable predic-
ion, since most constitutive equations do not predict such increase
n the pressure drop as compared to Newtonian reference fluid, as
hown here for the first time. Another important observation is that
he pressure drop of both fluids can be related to the rate of energy
emoved by the thermostat, which is consistent with the fact that
he pressure drop is proportional to the rate of dissipated energy.

Results presented in Fig. 12 reveal that the pressure drop exhibits
highly non-linear behavior for mean velocities larger than 0.62,

orresponding to De = 5.5. Larger Deborah numbers imply higher
agnitudes of dissipated energy and hence wider hysteresis loops.

ikewise, the dissipated energy is associated to the work neces-
ary to deform the polymer molecules as they enter the contraction
egion undergoing a relaxation-deformation-relaxation cycle.

Fig. 13 addresses the rate of energy removed by the thermo-
tat for the polymer molecules along the flow direction in the test
egion. �UNHy/�t is close to zero up to x ≈ −30� where it starts to
row up to a maximum located at the contraction entry length. This
s consistent with the behavior along the geometry of the molec-
lar deformation and pressure drop predictions. In all cases, as
he De number increases, the rate of dissipated energy also aug-

ents. In the contraction region, �UNHy/�t diminishes and further
n the expansion region according to the relaxation process of the

olecules. In the case of the Lennard–Jones fluid, in Fig. 14 simi-
ar results are obtained as pressure gradient increases, except that

he magnitudes are one decade lower than those of the polymer

olecules.
The rate of energy removed by the thermostat is related to the

hear stress along the test region. In Fig. 15 the shear stress Tzx of
olecules is plotted with the axial coordinate along three planes
ar molecules for various Deborah numbers.

located normal to z = 4, 8 and 12� for De = 6.3. The trajectories along
which the stress is calculated show the influence of the corner on
the shear stress. The largest shear stress is found prior to the con-
traction in the region −15� < x < −6.9, ascribed to the plane z = 4�,
corresponding to the trajectory that is closer to the corners. In
Fig. 16, the shear stress as a function of the Deborah number is
depicted for z = 4�, showing the increase in the shear stress with
the Deborah number near the corners. In Fig. 17 the shear stress of
the system with linear molecules and the rate of energy removed
by the thermostat are plotted with the mean velocity at the entry
region of the contraction, within the test region. This figure clearly
shows the close relationship existing between the shear stress and
the rate of removed energy, and hence with the pressure loss.

Finally, Fig. 18 describes the history of positions visited by the
linear-chain molecules for various Deborah numbers. The pres-
ence of vortices at the exit of the contraction is related to the
value of the Deborah number. This behavior bears similarities
to that found in the flow of linear-chain polystyrenes through a
contraction–expansion device [51].

5. Conclusions

Results on the simulation of the viscoelastic flow (through a
4:1:4 contraction–expansion geometry) of linear chains modeled
with a FENE potential and a Lennard–Jones fluid by non-equilibrium
molecular dynamics lead to the following conclusions:

• The flow velocity increase prior the contraction is a function of
the Deborah number, and its maximum shifts downstream for
increasing De numbers. The strain rate, consequently, presents

two main peaks: one located just before the contraction, and a
second one of negative sign in the expansion region.

• The extensional component of the stress also attains its maximum
just before the contraction, and increases in magnitude with the
De number.
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The molecular deformation, i.e., the radius of gyration, presents a
maximum just after the contraction line, undergoing a relaxation
in the contraction itself. The magnitude of the peaks increases
with De number.
The behavior of N1 is consistent with the conformation changes
of the molecule along the flow direction. The chain segments are
extended along the flow direction and compressed in the normal
direction (see Figs. 7 and 8).
Results show the presence of stress-conformation hysteresis
cycles, i.e., the normal stress and the radius of gyration evolve
following a specific path during deformation and a different path
during the relaxation process. The area enclosed within the cycles
increases with the De number.
The most important result is the theoretical prediction, to our
knowledge shown here in this general context for the first time,
of a remarkable increase of the pressure loss in the polymer
fluid, one order of magnitude larger than that predicted for the
Lennard–Jones Newtonian fluid. Moreover, a second important
contribution is the description of the close relationship existing
between the pressure drop and the dissipated energy through
the contraction. In this regard, the rate of dissipated energy can
be directly related to the area of the hysteresis loops and with the
shear stress.
Specifically, the region next to the contraction is that where larger
rates of dissipated energy occur, and that where the largest pres-
sure drop is predicted, corresponding to the largest area of the
hysteresis cycles. The shear stress follows a linear relation with
the rate of dissipated energy and a maximum is predicted near
the corner regions.
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