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This work describes a model of interconversion between mechanical and dielectric measurement. A
previous version of this model has been proposed in the hereafter called “previous paper”
�Díaz-Calleja, et al.Phys. Rev. E 72, 051505 �2005��, starting from a scaling relation between the
translational and rotational viscosities present in a glass forming liquid near the glass transition
temperature. Now, in order to improve the previous procedure, the following modifications have
been made: �1� a definition of the rotational viscosity obtained from a fractional Fokker–Planck
equation has been used, �2� the complex translational viscosity is taken as a non-Newtonian one, �3�
a careful splitting of � and � relaxations is necessary, because the interconversión algorithm
depends on the underlying molecular mechanism of each relaxation, and �4� the modulus and phase
angle of complex viscosities were analyzed instead of real and imaginary parts of the complex
viscosities. The proposed interconversion model, in the interval of frequencies 10−2–10+5 Hz,
shows that the obtained results are more accurate than those one obtained in the previous paper.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3158555�

I. INTRODUCTION

The background analysis of the present paper is given by
the contribution made by the DiMarzio–Bishop �DMB� ap-
proach, which expresses the Debye rotational frictional coef-
ficient of a dipole in terms of the complex shear viscosity.1,2

This contribution gives a generalization of the Debye theory
to include memory effect on the basic assumption that the
total dielectric memory effect is produced by stress relax-
ation.

The results obtained by using the DMB equation are
only in qualitative agreement with experimental data but
they still describe some details of the interconversion be-
tween the dielectric and mechanical measurements.3–5 To
overcome this drawback of the theory, a one-dimensional
fractional Fokker–Plank �FFP� equation has been used to ex-
tend the classical Debye theory6 to obtain a more flexible
Cole–Cole equation.7–9

The appearance of a FFP equation, that we will call
Smoluchowski equation in the present context, is based on
the concept of a generalized version of the continuous time
random walk �CTRW� to include the effect of the time de-
pendent jump probabilities.10,11 Systems at which CTRW is
applied exhibit anomalous diffusion, that is, diffusion in dis-
ordered fractal structures or, more specifically, fractal time
random walks.12

A simple case of CTRW arises when one assumes that
the jump length and the jump time random variables are
decoupled. The jump length distribution becomes Gaussian
in the limit, while the mean waiting time between jumps
diverges. Such walks, possessing a discrete hierarchy of time

scales as known as fractal time random walks. In the limit of
a large sequence of jump times, they give rise to a fractional
diffusion equation or FFP equation in the configuration space
and, as a consequence, to anomalous relaxation behavior.

The CTRW model is appropriate to describe a broad set
of physical phenomena related to the physics of condensed
matter. In particular, it should be noted that CTRW has been
used by Dyre to describe the low frequency conduction in
polymers.13

In a previous paper14 a comparison between these data
for the ester dicyclohexyl methyl-2-methyl succinate �DC-
MMS� were carried out. From the experimental point of
view, the analysis was carried out on the assumption that
only one relaxation was present in the experimental data.
Nevertheless, a careful analysis of the dynamic mechanical
as well as dielectric data obtained from the polymers derived
from this compound show the presence of a prominent �
relaxation.15–17 The DCMMS has many degrees of freedom
in the chain giving rise to many possible molecular confor-
mations, which are the origin of a particularly complex di-
electric as well as mechanical relaxation spectra. For this
reason, we considered pertinent a careful characterization of
the experimental dielectric and mechanical data in order to
analyze in a separated form the alpha and beta relaxations.

Another prescription that was used in the previous
paper14 is based on the decoupling of the rotational diffusion
and shear viscosity.18 The equality was accounted in the
Debye–Stokes–Einstein �DSE� relation for the rotational dif-
fusion coefficient. Now it is allowed to be different from
each other, or partially related, which implies that the rota-
tional diffusion coefficient scales with the shear viscosity as
a power law with an exponent ranging between zero anda�Electronic mail: agarciab@ter.upv.es.
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one.19,20 This value reflects the degree of coupling between
the mechanical and dielectric relaxation mechanisms.

In the present paper the problem has been revisited on
grounds to confirm the aforementioned assumption. The plan
of the paper is as follows. In Sec. II A we propose a modi-
fication of the DMB equation1 based on the use of a FFP
equation. This procedure allows us to obtain a Cole–Cole-
like equation where a fractional power rotational viscosity
appears in a natural way. In Sec. II B, a fractional power law
for the relationship between the shear viscosity and the shear
modulus has been proposed. In fact the departure of the
Newtonian behavior for the viscous fluid is used considering
a power law.21,22 In Sec. II C, a relation between complex
rotational and translational viscosities as complex magni-
tudes has been proposed. In Secs. III A and III B, we ensure
that we are in the presence of an isolated � relaxation to be
subsequently analyzed. In Sec. IV, we discuss the validity of
the interconversion algorithm.

II. INTERCONVERSION MODEL FOR ALPHA
RELAXATION

A. Rotational viscosity

The one dimensional FFP can be written as8

�

�t
f�x,t� = 0Dt

1−aKa
�2

�x2 f�x,t� , �1�

where the Riemann–Liouville operator 0Dt
1−a= �� /�t�0Dt

−a is
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The generalized �or fractional� diffusion coefficient Ka ap-
pearing in Eq. �1� is defined by

Ka � �2�−a, �3�

where �2 is the mean squared displacement, � is the relax-
ation time, and �Ka� has the dimension cm2 s−a.

On these grounds the Debye–Smoluchowski equation for
the rotational diffusion of dipoles can be written as
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where �a is a rotational generalized friction coefficient with
the dimension ��a�=sa−2 and Ka=kBT /m�a is the generalized
DSE relation.

Then, according to the DMB methodology,1 Eq. �4� can
be generalized to include memory effects for Ka, as well as
for �a, to
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where we used a generalized version of the DSE relation to
express �a in terms of Ka as DMB did �their Eqs. �II.7� and
�II.13��.

To obtain the response to a sinusoidal electric internal
field,

F = F exp�i	t� . �6�

The torque due to this field will be given by

M = − 
F sin � , �7�

where 
 is the dipole moment of the rotating particle.
Now, following Debye, we assume a solution for Eq. �5�

with the following form:

f =
1

2�
�1 + B�t�


F0

kBT
exp�i	t�cos �	 . �8�

By taking the Laplace transform of Eq. �5� by using Eqs.
�6�–�8� and noting that

L�0Dt
1−af�t�� = s1−af�s� − Dt

−af�t��t=0, �9�

where s= i	; the following result is obtained,

B�	� =
1

1 + �i	��	��a , �10�

where we used the following definition for the complex De-
bye relaxation time,

�a�	� =
1

2Ka�	�
=

m�a�	�
2kBT

, �11�

which is a generalization of Eq. �II.20a� of the DMB paper.1

Finally following the main lines of the Debye calculation
for the complex dielectric permittivity, one obtains

���	� − ��

�0 − ��

=
1

1 +
�0 + 2

��+2
�i	��	��a

=
1

1 + �i	��	�� �0 + 2

�� + 2
	1/a
a , �12�

which is a Cole–Cole type equation. Cole–Cole equation was
introduced on empirical grounds to give account of the
“anomalous” dispersion behavior observed in some polar liq-
uids. In fact, it is equivalent to substitute the resistor in a
parallel capacitance-�capacitance-resistor� passive electric
circuit by a constant phase element �CPE�.

The origin of this CPE can be found in a seminal paper
of Cole–Cole.24 In this paper, Cole changes an electrical re-
sistor, which in the mechanical analogy corresponds to a
pure viscosity into complex impedance that is to a CPE in
electrical terms.25 In the mechanical analogy this corre-
sponds to a fractional complex viscosity. This assumption
allows these authors to fit better the experimental results. We
use a CPE in the DMB model in the same sense that Cole–
Cole did.

Therefore, the generalized rotational viscosity �
rot
� �	��

could be defined in terms of the following relation:

���	� − ��

�0 − ��

=
1

1 + �i	A
rot
� �	��a , �13�

And, consequently,
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A
rot
� �	� =

1

�i	�� �0 − ��

���	� − ��

− 1	1/a
, �14�

where A= �8�R3 /2kBT���0+2 /��+2�1/a and the a parameter
should be chosen in such a way that the real and imaginary
parts of the rotational viscosity do not show any divergence.
That is, they have the same behavior than an experimental
modulus. In fact, the real part shows a plateau at low fre-
quency and the decreasing at high frequency, whereas the
imaginary part shows a bell shape.

This generalized rotational viscosity will be expressed,
as usual, as a function of the real and imaginary parts, as

rot

� �	�=
rot� �	�− i
rot� �	�, or, in terms of modulus and phase
angle the rotational viscosity, as 
rot

� �	�= �
rot
� �	��ei�rot�	�.

B. Translational viscosity

The mechanical modulus usually is defined in the clas-
sical viscoelasticity theory by

G�t� − G�t = �� =
d
�t�

dt
. �15�

By taking the Laplace transform of Eq. �15�, the following
result is obtained:

G�	� − G�0� = i	
��	� . �16�

In the same way as the previous section, the mechanical
modulus can be related to the viscosity by means of the
fractional time derivate as follows:

G�t� − G�t = �� =
dc
�t�

dtc . �17�

By taking the Laplace transform of this equation, the me-
chanical modulus can be expressed by

G��	� − G0 = �i	�c
trans
� �	� , �18�

where 
trans
� �	� is the generalized translational viscosity,

which has the dimension �Pa sc� and c is a parameter, which
plays the same role than parameter a in Eq. �13�.

For computational purposes, the real and imaginary parts
of the dynamic shear viscosity are given in terms of the
frequency in a similar way as Eqs. �15� and �16�.


trans
� �	� = 
trans� �	� − i
trans� �	� = �
trans

� �	��ei�trans�	�.

�19�

C. Model for the relationship between both
viscosities

In order to introduce a scale relationship between rota-
tional and translational viscosities, we consider that the dif-
fusion of a tracer particle is related to the shear viscosity
according to the DSE relation. This equality is adequate for
spherical particles of any radius rotating in a Newtonian
fluid. However, for dipoles of the same size of the molecular
fluid or dipoles in a viscoelastic fluid, as it is in the case of a
supercooled liquid under nonergodic conditions, this result is
for the DSE relation breakdown. This effect has been recog-
nized as the decoupling of translational diffusion and the

rotational motion of dipoles in dielectric relaxation, as a con-
sequence of the dynamic heterogeneity.18,26 Therefore, this
decoupling modifies the DSE relationship and the equality of
the rotational and translational viscosities. In this case, the
relation between them can be formulated in terms of a power
law with a fractional exponent, being this relationship valid
not only for static, but also for the dynamic case, that is


rot
� �	� = B�
trans

� �	����, �20�

where B is a scale factor, � is a shape factor, and � is a
parameter that represents the shift of the curves in the fre-
quency domain. These three parameters will be obtained by
the fit of Eq. �20� to experimental data.

Furthermore, taking into account Eq. �20�, the relation-
ship between the modulus and phase angle of rotational and
translational viscosities can be written as follows:

�
rot
� �	�� = B��
trans

� �	�����, �21�

�rot�	� = ��trans�	�� . �22�

These two equations will be used to relate the dielectric and
mechanical experimental measurements. The interconversion
between the dielectric and mechanical measurements can be
carried out when the three fitting parameters involved in the
proposed model �B, �, and �� have been evaluated.

D. Evaluation of the dielectric permittivity from shear
modulus and shear modulus from dielectric
permittivity

According to the interconversion model, Eq. �20�, and
taking into account the � viscosities given in Eqs. �14� and
�19�, the � dielectric permittivity could be evaluated from �
shear modulus as

���	� − ��

�0 − ��

=
1

1 + �B�

�c 	�a

�i	��1−c��a�Gs
��	�� − G0��a

,

�23�

where B� is �B /A�. Just like in the previous case, the � shear
modulus should be determined from the � dielectric permit-
tivity as

Gs
��	�� − G0 = � �0 − ��

���	� − ��

− 1
1/a� �c

B�

1

�i	��1/�−c� . �24�

III. EXPERIMENTAL PART

The dielectric and mechanical measurements were done
at the laboratory of N. B. Olsen in IMFUFA, Roskilde Uni-
versity Center, Denmark. The mechanical measurement was
carried out at different temperatures using a piezoelectric
transducer cell, enabling one to measure the complex shear
modulus in the frequency interval from 10−2 Hz to 102 kHz.
For the dielectric measurement, a HP4192A impedance ana-
lyzer was used in the same frequency interval. The experi-
mental cell, temperature controller, and procedure to collect
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data were described previously.27 The glass transition tem-
perature Tg of this glass forming liquid analyzed �DCMMS�
is 220 K as previously reported.14

A. Experimental results

Isotherms representing the permittivity and the dielectric
loss are shown at several temperatures �between 218 and 234
K, step 2 K� in Fig. 1. The loss curves at 1 Hz, display a well
developed �-relaxation at temperature near the glass transi-
tion temperature. We can observe, in addition to the dipolar
� relaxation, the presence of conductive contribution at high
temperatures and low frequencies. Moreover, at low tem-
peratures and high frequencies, a second dipolar process,
overlapped with first seems to be present.

In Fig. 2 are represented the spectra of the real and
imaginary parts of the shear modulus at different tempera-
tures. Owing to the large half width of the isotherms repre-
senting the imaginary part of the shear modulus, we presume
the presence of a secondary process overlapped to the �
relaxation process in the interval of temperatures and fre-
quencies analyzed.

B. Dielectric characterization

To proceed to do deconvolution of � and � relaxations,
we start noting that a single relaxation processes corresponds

to a Dirac delta function in the time domain. This is in con-
trast with the broadness of these processes in the frequency
domain, and for this reason, it is convenient to express the
actual data in terms of the retardation time spectrum.

The complex dielectric permittivity can be expressed in
terms of the retardation time spectrum by28

�̂�	� = �
−�

� ��

1 + i	�
L�ln ��d�ln �� + � �0

i�vac	
	s

+ ��

� 

k=1

N
��

1 + i	�k
Lk�ln �� + � �0

i�vac	
	s

+ ��, �25�

where � is the retardation time, 	 is the angular frequency,
�� is the strengths of the relaxation, L�ln �� is the retardation
time distribution, �0 is the ionic conductivity, s is the expo-
nent of the conductivity, �vac is the dielectric permittivity in
vacuum �8.8542�10−12 N−1 m−2 C2�, and �� is the unre-
laxed permittivity.

Retardation spectra, obtained by means of numerical
procedure describe in Ref. 28, for DCMMS in the tempera-
ture window 218–234 K, are shown in Fig. 3. As we can
observe, the form of the spectra indicates the presence of at
least two processes, but the peaks associated with these pro-
cesses mutually overlap.

The analysis of the retardation time spectra was carried
out assuming that the spectra obey Havriliak–Negami �HN�
empirical equation.29 The pertinent expression for L�ln �� is
given by30

L�ln �� =
1

�

��/�HN�ab sin b�

���/�HN�2a + 2��/�HN�acos a� + 1�b/2 ,

with � = arctan� sin a�

��/�HN�a + cos a�
	 for � � 0,

and � = arctan� sin a�

��/�HN�a + cos a�
	 + � for � � 0

�26�

where a and b are the shape parameters for the � relaxation,
whereas �HN is a characteristic relaxation time. An additive
rule for the permittivity is assumed to be valid for the over-
lapping of the two found processes.

For each temperature, a good fitting was only accom-
plished by assuming the spectrum as the result of the over-
lapping of the �-relaxation and one secondary relaxation.

FIG. 1. Real and imaginary parts of the complex dielectric permittivity as a
function of frequency at temperatures between 218 and 234 K �step 2 K�.

FIG. 2. Real and imaginary parts of the shear modulus as a function of
frequency at temperatures between 218 and 234 K �step 2K�.

FIG. 3. Retardation spectra in the temperatures between 218 and 234 K
�step 2K�.

014912-4 Garcia-Bernabé et al. J. Appl. Phys. 106, 014912 �2009�



The deconvolution was carried out by means of a least-
squares error fitting methodology by using the methodology
previously described.31–35 The values of the HN parameters
obtained are summarized in Table I. The quality of the fitting
procedure is shown in the last line of Table I in terms of the
general uncertainty and in Fig. 4, where as an example, the
overall and the deconvoluted spectra of the � and � relax-
ations at 228 K are shown.

Both relaxation processes have a value of ai �i=� ,��
that slightly increases with increasing temperature. However,
the b� parameter undergoes a slight decreases with increas-
ing temperature and the b� parameter takes the value of 1 for
all temperatures, which corresponds to the Cole–Cole sym-
metric function as expected for the secondary relaxations.
The strengths of the relaxations were calculated by means of
the following expression:

��i = �
−�

�

Li�ln ��d ln � , �27�

where the subscript i refers to the relaxation processes �� and
��.

In Table I the strengths of the relaxations obtained for
the temperature interval analyzed are summarized. The tem-
perature dependence of the strengths of the processes follows
the classical trends, that is, the strength of the � relaxation
increases with increasing temperature, whereas the strength
of the � relaxation decreases with increasing temperature.

On the other hand, the relaxation times associated with
the peak maxima of the � process shows an Arrhenius-like

temperature dependence, but corresponding to the � process
is non-Arrhenius and present a Vogel–Fulcher–Tamman
dependence.36

C. Mechanical characterization

As mentioned previously, the mechanical spectra show
the overlapping of two relaxations processes �� and ��.
Thus, also in this case, in order to characterize and to analyze
the mechanical spectra, it was necessary to split the observed
relaxations into their components.

In this case, the deconvolution was carried out by using
only the imaginary part of the shear modulus, also assuming
additivity of the processes. In this case, the empirical HN
model was also employed,29

Gs��	� = 

k=�,�

Im� G0,k − G�,k

�1 + �i	�s,k�ck�dk

 , �28�

where G0 is the relaxed shear modulus, G� is the unrelaxed
shear modulus, �s is mechanical relaxation time, and c and d
are the shape parameters. For the secondary processes, the d
parameter takes the value of 1.

Table II summarizes the fitting HN parameters obtained
by means of a least-squares error fitting methodology by
using Eq. �28�. As we can see, the temperature dependence
of the fitting HN parameters is similar to that one observed
from dielectric results �Table I�.

The precision of the fit parameters is shown in the lowest
part of the Table II and, in Fig. 5, where, as an example, the
overall spectrum of Gs� and their splitting into � and � relax-
ations at 228 K are shown.

IV. APPLICATION OF THE INTERCONVERSION
ALGORITM

A. Rotational viscosity

By using the generalization of the rotational viscosity
that uses a power law with a fractional exponent proposed
previously, Eq. �13�, we could evaluate the rotational viscos-
ity as a function of the HN parameters as

TABLE I. Fitting HN parameters �dielectric� obtained for DCMMS using Eq. �26�.

T
�K� ��� a� b� log��HN,��s�� ��� a� b� log��HN,��s��

218 3.888 0.85 0.36 0.800 0.957 0.74 1 0.155
220 3.847 0.86 0.36 0.173 1.00 0.77 1 �0.458
222 3.656 0.86 0.35 �0.352 1.060 0.75 1 �0.975
224 3.575 0.87 0.35 �0.873 1.161 0.76 1 �1.493
226 3.486 0.87 0.34 �1.350 1.210 0.76 1 �1.967
228 3.332 0.87 0.32 �1.785 1.346 0.76 1 �2.421
230 3.272 0.87 0.31 �2.193 1.379 0.76 1 �2.845
232 3.272 0.87 0.30 �2.577 1.379 0.76 1 �3.228
234 3.253 0.87 0.29 �2.936 1.379 0.76 1 �3.599
Uncertainty �0.001 �0.01 �0.02 �0.002 �0.002 �0.02 �0.01 �0.005

FIG. 4. Deconvolution of the retardation spectrum for DCMMS at 228 K.
The comparison of the calculated dielectric loss from the spectrum �curves�
and the experimental results �circles� is shown in the inset.
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A
rot
� �	� =

1

i	
��1 + �i	�HN,��a��b� − 1�1/a. �29�

In the last equation, surprisingly, the divergences at low fre-
quencies disappear when the parameter a takes the same
value of a� in the HN equation �this is a=a��. That is, the
real and imaginary rotational viscosities present a behavior
that it is in agreement with the characteristics of a single
relaxation band theory.2 We can appreciate this fact in Fig. 6,
where the real and imaginary parts of � rotational viscosity
at different temperatures, evaluated by means of Eq. �29�, are
plotted as a function of the frequency.

In addition, we evaluated the modulus and phase angle
of the � rotational viscosity at temperatures in the range of
218–234 K and the results are plotted in function of fre-
quency in Fig. 7. As we can see the value of the modulus
diminishes with increasing temperature as expected, whereas
the phase angle shows a displacement to higher frequencies
with increasing temperature.

B. Translational viscosity

According to Eq. �18�, the � translational viscosity can
be evaluated as a function of the HN parameters as


trans
� �	� =

Gs,�
� − G0,�

�i	�c�
=

G�,� − G0,�

�i	�c��1 + �i	�s,��c��d�
. �30�

As the dielectric case, it also is surprise that the parameter c
is the same value of c� in the HN equation �c=c��.

In Fig. 8, are plotted the real and imaginary parts of the
� translational viscosity evaluated by means of Eq. �30� with
the HN parameters summarized in Table II. The frequency
dependence of the real and imaginary translational viscosi-

ties is in agreement with the expected behavior. In the same
way, the frequency dependence of the modulus and the phase
angle of the translational viscosity have been evaluated and
plotted in Fig. 9. As we can see, the frequency dependence of
the modulus and phase angle is similar to that obtained from
the rotational viscosity results.

C. Comparison of the rotational viscosity evaluated
from dielectric measurements and from
mechanical measurements

In order to verify the accuracy of the proposed model,
we compared the modulus and angle phase evaluate from
experimental dielectric data with those one obtained by
means of mechanical experimental data through Eqs. �29�
and �30�. As an example, the frequency dependence of the
modulus and phase angle of the rotational viscosity obtained
from dielectric and mechanical experimental data, at three
temperatures �218, 224, and 230 K�, is shown in Fig. 10.

D. Evaluation of the dielectric permittivity from shear
modulus and shear modulus from dielectric
permittivity

In addition, in order to verify the accuracy of the pro-
posed model, we compared the � dielectric permittivity ex-

TABLE II. Fitting HN parameters �mechanical� obtained for DCMMS using Eq. �28�.

T
�K� G�,�-G0,��10−8�Pa� c� d� log��s,��s�� G�,�-G0,��10−8�Pa� c� d� log��s,��s��

218 8.09 0.93 0.24 0.004 1.03 0.86 1 �0.963
220 7.71 0.92 0.24 �0.602 1.14 0.77 1 �1.516
222 7.48 0.91 0.25 �1.171 1.15 0.73 1 �2.050
224 7.41 0.93 0.22 �1.656 1.17 0.73 1 �2.564
226 7.36 0.94 0.19 �2.104 1.27 0.75 1 �3.020
228 7.28 0.95 0.18 �2.550 1.31 0.74 1 �3.416
230 7.24 0.96 0.17 �2.987 1.33 0.69 1 �3.824
232 7.24 0.97 0.17 �3.370 1.33 0.67 1 �4.233
234 7.24 0.98 0.16 �3.730 1.33 0.63 1 �4.616
Uncertainty �0.02 �0.03 �0.03 �0.004 �0.03 �0.04 �0.01 �0.005

FIG. 5. Deconvoluted mechanical loss curves at 228 K. Black circles cor-
respond to the experimental data and lines the result of fit.

FIG. 6. Real and imaginary parts of � rotational viscosity as a function of
frequency at temperatures between 218 and 234 K �step 2 K�, according to
Eq. �29�.
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perimental data with those one evaluated by means of Eq.
�23�, i.e., from the fitting parameters of the mechanical mea-
surements �Table II�.

In Fig. 11, we plotted the results obtained at 218, 224,
and 230 K. As can be seen, the values of real and imaginary
permittivities evaluated from mechanical data are very simi-
lar to those directly obtained from the experimental dielectric
measurements.

The calculated shear modulus �by using Eq. �24�� and
the experimental data are plotted at three different tempera-
tures �218, 224, and 230 K� and are shown in Fig. 12. In this
case, the proposed model �Eq. �24�� reproduces values of the
imaginary shear modulus that are more accurate than the
corresponding to the real shear modulus. This fact could be
related to the fact that in the fit method employed, in order to
characterize the �-mechanical relaxation, only the imaginary
shear modulus was used.

Table III summarizes the obtained fitting parameters of
the interconversion between dielectric and mechanical data
in the interval of temperatures of 218–234 at step of 2 K.
According to the results, the scale factor B in Eq. �20�
slightly decreases with increasing temperature. On the other

hand, in the temperature range analyzed, the form factor � in
Eq. �20� remains approximately constant. It is interesting to
note that, at high frequency, the slope of the dissipative
modulus is very sensitive to the value of the � parameter.
Finally, the shift parameter � in Eq. �20� remains constant
between 218 and 232 K and at the two greatest temperatures
slightly increases.

V. CONCLUSIONS

The main features of the present research can be sum-
marized as follows:

�1� The CTRW model was used to generalize the DMB
equation in order to get better results in the interconver-
sion between dielectric and mechanical measurements.
The CTRW model was applied to describe both dielec-
tric and shear modulus. This procedure allows defining
of the generalized rotational viscosity, as well as the
generalized shear viscosities. Therefore, generalized ro-
tational and translational viscosities have been calcu-
lated considering our system as a time fractal and the
fluid as a non-Newtonian. In both cases the expressions
for calculations employed a fractional exponent in the
term i	. These fractional exponents, a �rotational� and c

FIG. 7. Modulus and phase angle of � rotational viscosity as a function of
frequency at temperatures between 218 and 234 K �step 2 K�.

FIG. 8. Real and imaginary parts of � translational viscosity as a function of
frequency at temperatures between 218 and 234 K �step 2 K�, according to
Eq. �30�.

FIG. 9. Modulus and phase angle of alpha translational viscosity as a func-
tion of frequency at temperatures between 218 and 234 K �step 2 K�.

FIG. 10. Comparison of modulus and phase angle of � rotational viscosity
determinate from dielectric measurement �218 K �square�, 224 K �circle�
and 230 K �triangle�� and from mechanical measurement, using Eqs. �20�
and �29� �dash lines�.
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�translational�, are equal to the shape parameters of the
HN equations �a� and c��.

�2� We demonstrated that the experimental results of DC-
MMS shown in the experimental range of frequencies
and temperatures are more than one relaxation process.
In order to get that, the deconvolution of the overlapping
dielectric peaks has been carried out in the time domain
via the retardation spectrum. For mechanical measure-
ments this procedure is also necessary because the over-
lapping of the peaks is also so severe than in the dielec-
tric case. The obtained results for the dielectric and
mechanical processes together with the values of uncer-
tainty are reported in Tables I and II. The particular fit at
228K is shown in Figs. 4 and 5.

�3� The interconversion between dielectric and mechanical
measurement for � relaxation has been carried out by
using a relation between rotational and shear viscosities.
Associated with this relation there are three parameters.
They are related to the vertical shift �B� or scale factor to
the horizontal shift ��� and a shape factor ���. The ver-
tical shift is related to the different magnitudes of dielec-
tric and mechanical measurements. With respect to the
horizontal shift � is the inverse of the separation of the
maxima of each modulus in the frequency domain. The

physical interpretation of this shift is the delay in the
time response to rotational and translational motions.
The obtained value is about 0.24 and is constant inde-
pendent of the temperature. A similar horizontal shift has
been observed in previous measurements.4 The shape
factor is an exponent that takes into account the kinetic
differences of both viscosities and it is related to the
slope ratio of them in a logarithm plot. Their physical
interpretation is related to the degree of interconversion
between the shear and rotational viscosities. This inter-
pretation was mentioned in the literature as coupling be-
tween viscosities. �=1 represents the case in which both
viscosities are total coupling and �=0 is the case in
which both viscosities are originated from different mo-
lecular mechanism and both viscosities are independent
from each other. This parameter depends on temperature
and also depends on the nature of the involved relax-
ation. In fact, the results obtained for the alpha relax-
ation interconversion � varies from 0.687 �218 K� to
0.721 �234 K�. For the beta relaxation � is considered
equal to zero, since the rotational viscosity is a constant,
but the shear viscosity is non-Newtonian depending on
the frequency. The molecular mechanisms involved in
both viscosities are strictly different. The consequence
of this conclusion is that there is not possible intercon-
version between those measurements in the case of beta
relaxation.

�4� An important point is that in our proposal for the inter-
conversion, the shape factor, is valid in the frequency
domain and allows to fulfill the Kramer–Kronig rela-
tions, since this factor is equal for the real and imaginary
parts of the complex rotational viscosities.

According to the results, we can conclude that the
present model shows significant improvements with respect
to those previously employed. Thus, in the interval of fre-
quencies, 10−2–10+5 Hz, the proposed interconversion
model allows us to obtain more accurate results than those
one obtained in the previous papers.14 In fact, our results
show that the interconversion between the two types of data
is very accurate for both the modulus and phase angle of the
�-rotational viscosity. However, small deviations can be ap-
preciated in the angle phase at high temperatures and low

TABLE III. Fitting parameters of the interconversion for DCMMS �the
value of G0 is taking 3.2�105 Pa for all temperatures�.

T
�K� log�B��Pa s��−1�� � �

218 −5.43 0.687 0.24
220 −5.82 0.711 0.24
222 −6.01 0.712 0.24
224 −6.10 0.705 0.24
226 −6.27 0.711 0.24
228 −6.48 0.725 0.24
230 −6.57 0.724 0.24
232 −6.69 0.729 0.23
234 −6.73 0.721 0.21
Uncertainty �0.02 �0.002 �0.01

FIG. 11. Comparison of � dielectric permittivity obtained from dielectric
measurement �218 K �square�, 224 K �circle�, and 230 K �triangle�� and
from mechanical measurement, according to Eq. �23� �dash lines�.

FIG. 12. Comparison of � shear modulus obtained from mechanical mea-
surement �218 K �square�, 224 K �circle�, and 230 K �triangle�� and from
dielectric measurement by means of Eq. �24� �dash lines�.
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frequencies. The same deviations have been observed at low
frequencies in the real part of the shear modulus. However,
the differences between the experimental and the simulated
data are of minor relevance, since it should be noted that
these deviations can be due to errors propagation induced by
the numerical manipulation in the interconversion of mea-
surements by using a mathematical algorithm. Summing up,
we can conclude that a high compatibility there exists be-
tween the obtained results using the proposed model and the
experimental data.
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